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Abstract

Background: The identification of transcription factor binding sites (TFBSs) and
cis-regulatory modules (CRMs) is a crucial step in studying gene expression, but the
computational method attempting to distinguish CRMs from NCNRs still remains a
challenging problem due to the limited knowledge of specific interactions involved.

Methods: The statistical properties of cis-regulatory modules (CRMs) are explored by
estimating the similar-word set distribution with overrepresentation (Z-score). It is
observed that CRMs tend to have a thin-tail Z-score distribution. A new statistical
thin-tail test with two thinness coefficients is proposed to distinguish CRMs from
non-coding non-regulatory regions (NCNRs).

Results: As compared with the existing fluffy-tail test, the first thinness coefficient is
designed to reduce computational time, making the novel thin-tail test very suitable
for long sequences and large database analysis in the post-genome time and the
second one to improve the separation accuracy between CRMs and NCNRs. These
two thinness coefficients may serve as valuable filtering indexes to predict CRMs
experimentally.

Conclusions: The novel thin-tail test provides an efficient and effective means for
distinguishing CRMs from NCNRs based on the specific statistical properties of CRMs
and can guide future experiments aimed at finding new CRMs in the post-genome
time.

Keywords: Statistical approach, Transcription factor binding sites (TFBSs),
Cis-regulatory modules (CRMs)
Background
The identification of transcription factor binding sites (TFBSs) and cis-regulatory

modules (CRMs) is a crucial step in studying gene expression. The computational

methods of predicting CRMs from non-coding non-regulatory regions (NCNRs) can

be classified into three types: 1) TFBS-based methods, 2) homology-based methods

and 3) content-based methods. TFBS-based methods, such as ClusterBuster [1] and

MCAST [2], use information about known TFBSs to identify potential CRMs. The

methods of this type are limited to the recognition of similarly regulated CRMs, and

generally unable to be applied to genes for which TFBSs have not yet been studied ex-

perimentally. Homology-based methods use information contained in the pattern of

conservation among related sequences. The related sequences can come from single

species [3], two species [4] and multiple species [5]. The methods of this type using
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the pattern of conservation alone are limited in their performance because TFBS con-

servation necessary to maintain regulatory function in binding sequences may not be

significantly higher than in non-binding sequences [6,7]. In addition, it still remains

an open question that how many genomes are sufficient to the reliable extraction

of regulatory regions. Content-based methods assume that different genome regions

(CRMs and NCNRs) have the different rates of evolutionary micro changes; therefore,

they exhibit different statistical properties in nucleotide composition. TFBSs often

occur together in clusters as CRMs. The binding site cluster causes a biased word dis-

tribution within CRMs, and this bias leaves a distinct “signature” in nucleotide com-

position. Content-based methods detect this signature by statistical [8,9] or machine-

learning [10,11] techniques in order to distinguish CRMs from non-CRMs. The

methods of this type may be used to predict the CRMs which have not yet been

observed experimentally, but the poor performance on non-coding sequences limits

their applications [12]. A large number of CRM search tools have been reported in the

literature, but the computational method attempting to distinguish CRMs from NCNRs

still remains a challenging problem due to the limited knowledge of specific interac-

tions involved [13].

The fluffy-tail test [9] is one of content-based methods. It is a bootstrapping proced-

ure to recognize statistically significant abundant similar-words in CRMs. There are

two problems with the fluffy-tail test: 1) Due to its bootstrapping procedure, the com-

putational time of calculating the fluffiness coefficient is determined by the number of

realization. In order to get reliable results statistically, the number of realization is usu-

ally set as very large in the fluffy-tail test, so the computational time is expensive, espe-

cially for long sequences. This limits the use of the fluffy-tail test under the situation

when more and more DNA sequences need to be analyzed in the post-genome time. 2)

The separation performance between CRMs and NCNRs is far from satisfactory [12].

The reason of poor performance is that both CRMs and NCNRs contain repetitive

elements such as poly(N) tracts (. . . TTT. . .) or long simple repeats (. . .CACACA. . .).

These strings are less interesting than the over-represented strings with more balanced

AT/GC ratio. It is an interest to address these two issues of the fluffy-tail test and to

develop a more efficient and effective CRM prediction method.

In this paper, the statistical properties of CRMs are explored by evaluating the

overrepresentation value of similar-word sets (motifs). Z-score is used as the measure

of overrepresentation of similar-word sets. Then, Z-score distribution is estimated to

distinguish CRMs from NCNRs.
Methods
Training datasets

To estimate the statistical properties of distinguishing CRMs from NCNRs, two (posi-

tive and negative) training datasets are employed in this paper. The positive training

dataset is a collection of 60 experimentally-verified functional Drosophila melanogaster

regulatory regions [14]. The positive training dataset consists of CRMs located far from

gene coding sequences and transcription start sites. It contains many binding sites and

site clusters, including abdominal-b, bicoid, caudal, deformed, distal-less, engrailed,

even-skipped, fushi tarazu, giant, hairy, huckebein, hunchback, knirps, krüppel, odd-
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paired, pleiohomeotic, runt, tailless, tramtrack, twist, wingless and zeste. The total size

of the positive training dataset comprises about 99 kilobase (kb) sequences. The nega-

tive training dataset is 60 randomly-picked Drosophila melanogaster NCNRs: The

NCNRs of length 1 kb upstream and downstream of genes are excluded by using the

Ensembl genome browser. The negative training dataset contains 90 kb sequences in

total.

Formulation of the thin-tail test

The thin-tail test is based on the assumption that each word (binding site) recognized

by a given transcription factor belongs to its own family of similar-word sets (binding

site motifs) found in the same enhancer sequence and the redundancy of the binding

sites within CRMs leaves distinct “signatures” in similar-word set distribution. For a

given m-letter segment Wm as a seed-word, all m-letter words that differ from Wm by

no more than j substitution comprise a corresponding similar-word set Nj(Wm). Be-

cause the core of TFBSs is relatively short [15], a 5-letter seed-word is considered,

allowing for 1 mismatch, i.e., m = 5 and j = 1. In order to distinguish CRMs from

NCNRs, the thin-tail test is adopted to study the Z-score distribution shape and to pre-

dict the probable function of the original input sequence. The test features special

statistics accounting for word overlaps in the same DNA strand. A flow chart of the

thin-tail test is shown in Figure 1.

Step 1: Search for all different seed-words (Wm)
A C G A C 

…A C G A C G C C G A C T ... Number of seed-words 
with the same Z-score

( f ) 

Kurtosis ( k ) 

Deviation from normal 
distribution ( E ) 

Deviation from randomness 

( rT ) 

Search for all different seed-words 

( mW ) 

ACGAC+  

Number of similar-words with the 
same seed-word ( n ) 

ACGAG 
ACGAA 
ACGAT 
ACGTC 
ACGGC 
ACGCC 

TCGAC 
GCGAC 
CCGAC 

Z-score with the same 
seed-word 

( Z ) 
C G A C G 

Figure 1 A flow chart of thin-tail test.
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The input sequence is scanned to find all the different m-letter words, allowing

overlaps. As an example, consider a stretch of DNA: ACGACGCCGACT. For m = 5,

all 5-letter segments W5 are selected as seed-words, i.e., ACGAC, CGACG, . . .,

CGACT.

Step 2: Number of similar-words with the same seed-word (n)

For each seed-word Wm, all m-letter words with no more than j substitution

comprise a corresponding similar-word set Nj(Wm). In this example, the first seed-

word W5, ACGAC, has 3 similar-words with no more than 1 mismatch: ACGAC,

ACGCC, CCGAC. n is the cardinality, n = |Nj(Wm)| = |N1(ACGAC)| = 3.

Step 3: Z-score with the same seed-word (Z)

A similar-word set that occurs significantly more often than chance expectation is said

to be overrepresentation. A reasonable overrepresentation measure would reflect

whether the actual occurrence number of similar-word set is significantly greater than

the number counted in a random sequence with the same composition of input

sequence. For any seed-word Wm, a statistical overrepresentation measure Z-score can

be defined by

Z ¼ n� E Wmð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V Wmð Þp ð1Þ

where E(Wm) and V(Wm) are, respectively, the occurrence expectation and variance of

similar-word set Nj(Wm), these being calculated for a random sequence with the same

composition of input sequence [16]. In a random Bernoulli type sequence, both
Z

f

Figure 2 Histogram of CRMs (m = 5, j = 1, k = -0.3).
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occurrence expectation and variance can be derived analytically by using a generating

function technique [17]. The Z-score with more overlaps is smaller than one with less

overlaps. For example, the Z-score corresponding to simple repeat strings, TTTTT or

AAAAA, is smaller than one corresponding to the seed-word with more balanced

composition. Z (Z-score) forms X axis in Figures 2, 3, 4, 5.

Step 4: Number of seed-words with the same Z-score (f )

f(Z) is the number of the seed-words with Z-score and forms Y axis in Figures 2, 3, 4,

5, 6, 7.

Step 5: Kurtosis (k)

The kurtosis k of Z-score distribution f(Z) is evaluated as

k ¼
XM

i¼1
f Zð Þ � μ½ �4

M � 1ð Þσ4
� 3 ð2Þ

where i is the ith seed-word, M is the total number of seed-words, μ and σ are the

mean and standard deviation of Z-score distribution f(Z) respectively.

Step 6: Two thinness coefficients (E and Tr)

The first thinness coefficient E is defined as:

E ¼ k0 þ 2ε
4ε

ð3Þ
Z

f

Figure 3 Histogram of CRMs (m = 5, j = 1, k = -0.14) after random shuffle.
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f

Figure 4 Histogram of NCNRs (m = 5, j = 1, k = 0.54).
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Here k0 denotes the kurtosis k of the original input sequence without random shuffle

and ε is the standard error calculated by:

ε ¼ 2

ffiffiffiffiffi
6
M

r
ð4Þ

E is used to measure how strongly Z-score distribution deviates from the normal
distribution. The 95% confidence interval is set between -2ε and 2ε.
Z

f

Figure 5 Histogram of NCNRs (m = 5, j = 1, k = 0.15) after random shuffle.
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Figure 6 Histograms for CRMs and NCNRs classified by E (m = 5, j = 1).
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A sequence is called “random” if it is obtained by randomly shuffling the original in-

put sequence r times, preserving its single nucleotide composition. To measure how

strongly the Z-score distribution deviates from randomness, the second thinness coeffi-

cient Tr is computed by comparing with all r-times randomly-shuffled sequence

versions of the original input sequence:
f

T-2

Figure 7 Histograms for CRMs and NCNRs classified by T50(m = 5, j = 1).
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Tr ¼ k0 � kr
σr

ð5Þ

Here Tr can be regarded as measuring the degree of the difference between signal and
noise, where the signal is regarded as the original input sequence, and the noise is

regarded as randomized sequences.

In the fluffy-tail test [9], the fluffiness coefficient Fr is defined as:

Fr ¼ L0 � Lr
sr

ð6Þ

where Lr is the number of the seed-words with the maximal similar-words for the

r-times randomly-shuffled sequences and sr is the standard deviation of the similar-

word set distribution between the number g(n) of seed-words and the number n of

similar-words. Here it is worth to mention to this end that both CRMs and NCNRs

contain repetitive elements such as poly(N) tracts (. . . TTT. . .) or long simple repeats

(. . .CACACA. . .), which are less interesting than the over-represented strings with

more balanced AT/GC ratio. Since Z-score measures the overrepresentation of similar-

word sets, the second thinness coefficient Tr based on Z-score distribution should be a

more reasonable index than the fluffiness coefficient Fr based on similar-word set dis-

tribution in order to distinguish CRMs from NCNRs.

Results
Distribution for CRMs

Figure 2 shows the Z-score distribution for all Drosophila melanogaster CRMs in the

positive training dataset. It can be seen that some similar-word sets have extreme posi-

tive/negative Z-score (Z > 3 or Z < -3). This means that some similar-word sets are

overrepresented or underrepresented.

To obtain a random distribution, the original sequence is randomly shuffled r = 50

times. Figure 3 shows a typical example of Z-score distribution after random shuffle. As

compared with the original input sequence in Figure 2, the randomized sequence in

Figure 3 lacks the overrepresented/underrepresented similar-word set (i.e. similar-word

set with extreme Z-score, Z > 3 or Z < -3).

Distribution for NCNRs

Figure 4 shows the Z-score distribution for all randomly-picked Drosophila

melanogaster NCNRs in the negative training dataset. The presence of short right tail

is noted in Figure 4. Figure 5 shows a typical example of Z-score distribution after ran-

dom shuffle. The distribution for the original input sequence notably differs from that

for the randomized version. The difference degree of the distribution between the ori-

ginal and randomly-shuffled sequences for NCNRs is greater than that for CRMs.

Thin-tail test

In order to distinguish CRMs from NCNRs, E and Tr are calculated for 120 sequences

in these two training datasets. Figure 6 shows that CRMs tend to have a smaller E than

NCNRs. Table 1(a) lists functional classification based on E. Nearly 71.7% CRMs has

E < 0.6, while only 41.7% NCNRs has E < 0.6. Figure 7 shows T50 for CRMs and NCNRs.



Table 1 Classification of 120 sequences

(a) Thin-tail test with E

Functional type E < 0.6 E > 0.6 Positive rate Negative rate

CRMs 43 17 71.7% 28.3%

NCNRs 25 35 41.7% 58.3%

(b) Thin-tail test with T50

Functional type T50 < 0 T50 > 0 Positive rate Negative rate

CRMs 44 16 73.3% 26.7%

NCNRs 24 36 40% 60%

(c) Fluffy-tail test

Functional type F50 > 2 F50 < 2 Positive rate Negative rate

CRMs 49 11 81.7% 18.3%

NCNRs 31 29 51.7% 48.3%
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For each sequence, its 50-times randomly-shuffled versions are generated to calculate

T50. It can be seen that CRMs tend to have a smaller T50 than NCNRs. Table 1(b) lists

functional classification based on T50. Nearly 73.3% CRMs has T50 < 0, while only 40%

NCNRs has T50 < 0.

Discussion
Some statistical properties of Z-score distribution in these two training datasets have

been explored. Results show that CRMs have a thin-tail distribution, i.e., tend to have

low thinness coefficients (E < 0.6, Tr < 0), while NCNRs lack a thin-tail distribution, i.e.,

tend to have high fatness coefficients. Thus, E and Tr can be used to distinguish CRMs

from NCNRs effectively. CRMs are predominant if (E < 0.6, Tr < 0), while NCNRs are

prevailing if (E > 0.6, Tr > 0). Thus, the regions with (E < 0.6, Tr < 0) are CRMs and those

with (E > 0.6, Tr > 0) are NCNRs.

Comparison with fluffy-tail test

The thin-tail test is evaluated by comparison with the fluffy-tail test [9]. The perform-

ance of three parameters is assessed: 1) the first thinness coefficient E, 2) the second

thinness coefficient Tr and 3) the fluffiness coefficient Fr based on the separation bet-

ween CRMs and NCNRs.

These two training datasets are employed to evaluate the above three parameters. For

comparison, the original input sequence is randomly shuffled 50 times to calculate T50

and F50. The thresholds of E, T50 and F50 are set as 0.6, 0 and 2 respectively. For the

thin-tail test, the original input DNA sequence with E < 0.6 and T50 < 0 is considered as

predicted CRMs. For the fluffy-tail test, the original input DNA sequence with F50 > 2

is considered as predicted CRMs. The classification result of 120 sequences in these

two training datasets by F50 is listed in Table 1(c). The fluffy-tail test F50 only identified

29 out of 60 NCNRs in the negative training dataset; while the thin-tail test identified

35 and 36 NCNRs based on E and T50 respectively (see Table 1). For each parameter,

sensitivity (SN) (number of true positive/number of positive), specificity (SP) (number

of true negative/number of negative) and accuracy (number of true positive + number

of true negative)/(number of positive + number of negative) are calculated to distin-

guish CRMs from NCNRs (Table 2).



Table 2 Evaluation of E, T50 and F50
(a) Distinguish CRMs from NCNRs

The thin-tail test The fluffy-tail test

E T50 F50

SN 71.7% 73.3% 81.7%

SP 58.3% 60% 48.3%

Accuracy 65% 66.7% 65%

(b) CPU time for a sequence length of 1000

The thin-tail test The fluffy-tail test

E T50 F50

CPU time 54 second 2700 second 310 second
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The thin-tail test with T50 has the best accuracy (66.7%), as compared with the other

two parameters (E: 65%; F50: 65%). Thus, the thin-tail test with T50 can effectively dis-

tinguish CRMs from NCNRs. Moreover, the thin-tail test (SP = 60% for T50 and SP =

58.3% for E) can more efficiently identify NCNRs than the fluffy-tail test (SP = 48.3%

for F50). The thin-tail test with E has the same accuracy as the fluffy-tail test. However,

the computational time (CPU time) of calculating E for an original input DNA sequence

length of 1000 is 50 times faster than that of calculating T50 and 6 times faster than that

of calculating F50 for the same original input sequence due to no sequence shuffle. Thus,

the thin-tail test with E is very suitable for long sequences and large database.
Time complexity

The second thinness coefficient Tr is gotten by bootstrapping procedure, the value is affected

by the number of realization r. In order to get the more reliable estimation of Tr, a large r is

needed, so that high computational time is expected. For the reliable result within reasonable

computational time, the original input sequence is randomly shuffled 50 times to calculate Tr.

In Table 2(c), the computational time (CPU time) of calculating E for an original input

DNA sequence length of 1000 is 50 times faster than that of calculating T50 and 6 times faster

than that of calculating F50 for the same original input sequence due to no sequence shuffle.

All computations are run on a 3.2 GHz Pentium IV processor with 1 G physical memory.
Large CRM datasets

The thin-tail algorithm has been tested on the current version 3 of the REDfly database

[18], which contains 894 experimentally-verified CRMs from Drosophila. Results show

that 72.5% CRMs has E < 0.6 and 70.8% CRMs has T50 < 0 passing the thin-tail test. It

is worth to mention to the point that the fluffy-tail algorithm has never been tested on

the large CRM datasets.
Conclusions
In the thin-tail test, the statistical properties of CRMs are investigated by examining

Z-score distribution pattern. The special statistical method used for calculating Z-score

can reduce the effect of poly N and other simple strings on the distribution pattern of

similar-word sets. Results show that the Z-score distribution of CRMs tends to be a

thin-tail distribution as compared with that of NCNRs. Based on this observation, two
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thinness coefficients E and Tr are introduced here. By using E and Tr, the thin-tail test

has the better separation accuracy of distinguishing CRMs from NCNRs than the

fluffy-tail test [9]. Especially by using the first thinness coefficient E, the computational

time is significantly decreased, in view of a bootstrapping procedure to be required for

calculating Tr and Fr. For the example as r = 50, the thin-tail test with E is 50 times

faster than the thin-tail test with T50, and is 6 times faster than the fluffy-tail test with

F50. Thus, the novel thin-tail test greatly simplifies the function prediction of an ori-

ginal input DNA sequence and can guide future experiments aimed at finding new

CRMs in the post-genome time [19-23].
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