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Abstract
Background: Translating a known metabolic network into a dynamic model requires rate laws for
all chemical reactions. The mathematical expressions depend on the underlying enzymatic
mechanism; they can become quite involved and may contain a large number of parameters. Rate
laws and enzyme parameters are still unknown for most enzymes.

Results: We introduce a simple and general rate law called "convenience kinetics". It can be
derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose
dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter
optimisation for large networks, we introduce thermodynamically independent system parameters:
their values can be varied independently, without violating thermodynamical constraints. We
achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or
by a set of independent equilibrium constants. The remaining system parameters are mean
turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation.
All parameters correspond to molecular energies, for instance, binding energies between reactants
and enzyme.

Conclusion: Convenience kinetics can be used to translate a biochemical network – manually or
automatically - into a dynamical model with plausible biological properties. It implements enzyme
saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries,
and can be specified by a small number of parameters. Its mathematical form makes it especially
suitable for parameter estimation and optimisation. Parameter estimates can be easily computed
from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and
other quantities that are routinely measured in enzyme assays and stored in kinetic databases.

Background
Dynamic modelling of biochemical networks requires
quantitative information about enzymatic reactions.
Because many metabolic networks are known and stored
in databases [1,2], it would be desirable to translate net-
works automatically into kinetic models that are in agree-
ment with the available data. As a first attempt, all
reactions could be described by versatile laws such as

mass-action kinetics, generalised mass-action kinetics
[3,4] or linlog kinetics [5,6]. However, these kinetic laws
fail to describe enzyme saturation at high substrate con-
centrations, which is a common and relevant phenome-
non.

A prominent example of a saturable kinetics is the revers-
ible form of the traditional Michaelis-Menten kinetics [7]
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for a reaction A ↔ B. At substrate concentration a and
product concentration b (measured in mM), the reaction
rate reads

with enzyme concentration E, turnover rates  and 

(measured in s-1), the shortcuts ã = a/  and  = b/ ,

and Michaelis-Menten constants  and  (in mM).

The rate law (1) can be derived from an enzyme mecha-

nism:  and  are the dissociation constants for reac-

tants bound to the enzyme. In the original work by
Michaelis and Menten for irreversible kinetics, kM was a
dissociation constant. Later, Briggs and Haldane pre-
sented a different derivation that assumes a quasi-steady
state for the enzyme-substrate complex and defines kM as
the sum of rate constants for complex degradation,
divided by the rate constant for complex production, kM =
(k-1 + k2)/k1. Other kinetic laws have been derived from

specific molecular reaction mechanisms [8,9]; they can
have complicated mathematical forms and have to be
established separately for each reaction stoichiometry.

Large numbers of enzyme kinetic parameters, such as
equilibrium constants, Michaelis-Menten values, turnover
rates, or inhibition constants have been collected in data-
bases [10-12], but using them for modelling is not at all
straightforward: the values have usually been measured
under different, often in-vitro conditions, so they may be
incompatible with each other or inappropriate for a cer-
tain model [13,14]. In addition, the second law of ther-
modynamics implies constraints between the kinetic
parameters: in a metabolic system, the Gibbs free energies
of formation of the metabolites determine the equilib-
rium constants of the reactions [15]. This leads to con-
straints between kinetic parameters within reactions [16]
and across the entire network [17,18] – a big disadvantage
for all methods that scan the parameter space, such as
parameter fitting, sampling, and optimisation. Also, if
parameter values are guessed from experiments and then
directly inserted into a model, this model is likely to be
thermodynamically wrong.

We describe here a saturable rate law which we call "con-
venience kinetics" owing to its favourable properties: it is
a generalised form of Michaelis-Menten kinetics, covers
all possible stoichiometries, describes enzyme regulation
by activators and inhibitors, and can be derived from a
rapid-equilibrium random-order enzyme mechanism. To
ensure thermodynamic correctness, we write the conven-

ience kinetics in terms of thermodynamically independ-
ent parameters [18]. A short introduction to kinetic
modelling is given in the methods section; a list of math-
ematical symbols and an illustrative example is also pro-
vided [See Additional file 1]. The companion article [19]
explains how the parameters can be estimated from an
integration of thermodynamic, kinetic, metabolic, and
proteomic data.

Results and discussion
The convenience kinetics
The simple form of equation (1) encourages us to use a
similar formula for other stoichiometries. For a reaction

A1 + A2 + ... ↔ B1 + B2 + ...

with concentration vectors a = (a1, a2, ...)T and b = (b1, b2,
...)T, we define the convenience kinetics

By analogy to the kM values in Michaelis-Menten kinetics,

we have defined substrate constants  and product con-

stants  (in mM); just as above, variables with a tilde

denote the normalised reactant concentrations ãi = ai/

and j = bj/ . If the denominator is multiplied out, it

contains all mathematical products of normalised sub-
strate concentrations and product concentrations, but no
mixed terms containing substrates and products together;
the term +1 in the denominator is supposed to appear
only once, so it is subtracted in the end. If several mole-
cules of the same substance participate in a reaction, that
is, for general stoichiometries

α1 A1 + α2 A2 + ... ↔ β1 B1 + β2 B2 + ...,

the formula looks slightly different:
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The stoichiometric coefficients αi and βj appear as expo-
nents in the numerator and determine the orders of the
polynomials in the denominator.

Reaction velocities do not only depend on reactant con-
centrations, but can also be controlled by modifiers. For
each of them, we multiply eqn. (3) by a prefactor

for an activator and

for an inhibitor. The activation constants kA and inhibi-
tion constants kI are measured in mM, and d is the concen-
tration of the modifier.

Convenience kinetics represents a random-order enzyme 
mechanism
Like many established rate laws (first of all, irreversible
Michaelis-Menten kinetics [20]), convenience kinetics can
be derived from a molecular enzyme mechanism. We
impose three main assumptions: (i) the substrates bind to
the enzyme in arbitrary order and are converted into the
products, which then dissociate from the enzyme in arbi-
trary order; (ii) binding of substrates and products is
reversible and much faster than the conversion step; (iii)
the binding energies of individual reactants do not
depend on other reactants already bound to the enzyme.

We shall demonstrate how the convenience rate law is
derived for a bimolecular reaction

A + X ↔ B + Y

without enzyme regulation. The reaction mechanism
looks as follows:

The letters A, X, B, Y denote the reactants, E0 is the free
enzyme, and EA, EX, EAX, EB, EY, and EBY denote complexes
of the enzyme and different combinations of reactants.
We shall denote their concentrations by brackets (e.g.,
[EA]), the total enzyme concentration by E, and the con-

centrations of small metabolites by small letters (e.g., a =
[A]).

The reaction proceeds from left to right; the free enzyme
E0 binds to the substrates A and X in arbitrary order, form-

ing the complexes EA, EX, and EAX. The binding of A can be

described by an energy, the standard Gibbs free energy

 that is necessary to detach A

from the complex EA. The dissociation constant  = (a

[E0])/[EA] describes the balance of bound and unbound A

in chemical equilibrium and can be computed from the
Gibbs free energy (in kJ/mol)

with RT ≈ 2.490 kJ/mol.

We now make a simplifying assumption: the binding
energy of A does not depend on whether X is already
bound. With analogous assumptions for binding of X and

with the abbreviations , , the equilib-

rium concentrations of the substrate complexes can be

written as [EA] = ã [E0], [EX] = [E0], [EAX] = ã [E0]. By

analogy, we obtain expressions for the product complexes

on the right hand side: [EB] = [E0], [EY] = [E0], [EBY] =

[E0]. The total enzyme concentration E is the sum

over the concentrations of all enzyme complexes

We next assume a reversible conversion between the com-
plexes EAX and EBY with forward and backward rate con-

stants  and ; this reaction step determines the

overall reaction rate. Its velocity reads

which is exactly the convenience rate law (2). The deriva-

tion has shown that the turnover rates  stem from the

conversion step, while the reactant constants kM are actu-
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ally dissociation constants, related to the binding energies
between reactants and enzyme. The terms in the denomi-
nator represent the enzyme complexes in the reaction
scheme shown above. Equation (8) also shows why the
term -1 in formulae (2) and (3) is necessary: the two prod-
uct terms in the denominator represent all complexes
shown in the reaction scheme. However, when summing
up the terms from both sides, we counted the free enzyme
E0 twice, so we have to subtract it once.

The same kind of argument can be applied to reactions
with other stoichiometries; let us consider a reaction with
the left-hand side 2 A + X ↔ ...

The substrate complex EAAX gives rise to the first term

ã2  in the numerator, with the stoichiometric coeffi-

cient in the exponent. In the denominator, each term cor-
responds to one of the enzyme complexes, yielding

where the dots still denote the terms from the right-hand

side. The shape of the two factors, (1 + ã + ã2) and (1 + ),
corresponds to the rows and columns in the above
scheme.

The activation and inhibition terms in the prefactor can
also be justified mechanistically: in addition to binding
sites for reactants, the enzyme contains binding sites for
activators and inhibitors. Only those enzyme molecules
to which all activators and none of the inhibitors are
bound contribute to the reaction mechanism; all other
enzyme molecules are inactive. Again, we assume that the
Gibbs free energies for binding do not depend on whether
other modifiers are bound, and they determine the kA and
kI values as in eqn. (6).

To define a convenience kinetics for irreversible reactions,

we assume that all product constants  – and thereby

the overall equilibrium constant, as will be explained
below – go to infinity. In the enzymatic mechanism, bind-
ing between products and enzyme becomes energetically

very unfavourable. As a consequence, all j in eqn. (3)

vanish and we obtain the irreversible rate law

The reactant constants denote half-saturation 
concentrations
Besides being a dissociation constant, the kM value in
Michaelis-Menten kinetics (1) has a simple mathematical
meaning: it denotes the substrate concentration that leads
to a half-maximal reaction velocity if the product is
absent. A similar rule holds for the substrate and product
constants in convenience kinetics. Let us first assume that
all stoichiometric coefficients are ±1; if the product con-
centrations vanish (bj = 0), then rate law (2) can be factor-
ised into

If in addition, all substrate concentrations except for a cer-
tain am are kept fixed, the rate law reads

For am → ∞, the fraction approaches 1, while for am = 

it yields 1/2. In particular, if all other substrates are
present in high amounts, we obtain the half-maximal
velocity, just as in Michaelis-Menten kinetics.

What if the stoichiometric coefficient is larger than one?
Applying the same argument for αm = 2, we obtain the
velocity

At am = , the ratio is 1/3, so the reaction rate is 1/3 of

the maximal rate. Extending this argument to other stoi-

chiometric coefficients αi, we can conclude: at am = ,

excess of all other substrates, and vanishing product con-
centrations, the reaction rate equals the maximal reaction

rate divided by 1 + αi.

Convenience kinetics for entire biochemical networks

To parametrise an entire metabolic network with stoichi-
ometric matrix N and regulation matrix W (for notation,
see methods section), it is practical to arrange the kinetic
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parameters in vectors and matrices. The enzyme concen-
tration of a reaction l reads El, and the turnover rates are

called . Each stoichiometric interaction (where nil ≠ 0)

comes with a value , while activation (wli = 1) and

inhibition (wli = -1) are quantified by values  and ,

respectively. The kM, kA and kI values for non-existing inter-
actions (where nil = 0 or wli = 0) remain unspecified or can

be assigned a value of 1, i.e., a logarithmic value of 0.

With metabolite concentrations arranged in a vector c, the
convenience kinetics can now be written as

with the abbreviation . For ease of notation

here, we defined the matrices N+ = ( ), N- = ( ), which

respectively contain the absolute values of all positive and
negative elements of N. The matrices W+ and W- are
derived from W in the same way.

Let us add some remarks, (i) It is common to describe
some of the metabolite concentrations by fixed values
rather than by a balance equation. In the present frame-
work, these metabolites are included in the concentration
vector c and in the structure matrices N or W. (ii) A reac-
tion is always catalysed by a specific enzyme; we describe
isoenzymes by distinct reactions. (iii) If the sign of a regu-
latory interaction is unknown, we may consider terms for
both activation and inhibition. (iv) To describe indirect
regulation, e.g. by transcriptional control, the production
and degradation of enzymes has to be modelled explicitly
by chemical reactions.

Thermodynamic dependence between parameters
The convenience kinetics (14) has a major drawback: its
parameters are constrained by the second law of thermo-
dynamics. The equilibrium constant of reaction l is
defined as

where ceq is a vector of metabolite concentrations in a
chemical equilibrium state. By setting eqn. (3) to zero, we
obtain the Haldane relationship [16] for the convenience
kinetics,

In the notation of eqn. (14) and by taking the logarithm,
the Haldane relationship can be expressed as

For each reaction, this relationship constitutes a con-
straint for the kinetic parameters within the reaction. In
addition, each equilibrium constant obeys

where  is the Gibbs free energy of formation of

metabolite i (see methods). Equations (17) and (18)
imply that parameters in the entire network are coupled;
an arbitrary choice can easily violate the second law of
thermodynamics, which is a severe obstacle to parameter
optimisation and fitting.

Thermodynamically independent system parameters
To circumvent this problem, we introduce new, thermo-
dynamically independent system parameters [18]. For
each substance i, we define the dimensionless energy con-
stant

with Boltzmann's gas constant R ≈ 8.314 J/(mol K) and
given absolute temperature T. For each reaction l, we
define the velocity constant

as the geometric mean of the forward and backward turn-
over rate, measured in s-1. From now on, we shall use the
energy constants and velocity constants as model param-
eters and treat the equilibrium constants keq and the turn-
over rates kcat as dependent quantities: the equilibrium
constants are computed from eqn. (18), and kcat values are
chosen such that equation (17) is satisfied. Using equa-

tions (17) and (18), we can write the turnover rates 

as [See Additional file 1]
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Altogether, the convenience kinetics of a metabolic net-
work is characterised by the system parameters listed in
table 1. If a reaction network is displayed as a bipartite
graph of metabolites and reactions, each of the nodes and
each of the arrows in the graph is characterised by one of
the parameters, as shown in Figure 1. In addition, each
node can carry an enzyme concentration El or a metabolite
concentration ci; as these concentrations can fluctuate in
time, we shall call them state parameters rather than sys-
tem parameters. 

By taking the logarithm in both sides of eqn. (22), we
obtain a linear equation between logarithmic parameters;
this handy property also holds for other dependent
parameters, as shown in table 2. We can express various
kinetic parameters in terms of the system parameters: let θ
denote the vector of logarithmic system parameters and x
a vector containing various derived parameters in loga-
rithmic form. It can be computed from θ by the linear rela-
tion

The sensitivity matrix  is sparse and can be constructed

easily from the network structure and the relations listed
in table 2 [See Additional file 1].

By inserting the expression (22) for  into (14), we

obtain a rate law in which all parameters can be varied
independently, remaining in accordance with thermody-
namics. In its thermodynamically independent form, the
convenience kinetics reads

with the abbreviations  and . Spe-

cial cases for some simple stoichiometries are listed in
table 3.

Energy interpretation of the parameters
All system parameters can be expressed in terms of Gibbs
free energies: the kM, kA, and kI values represent binding
energies, and the energy constants kG are defined by the
Gibbs free energy of formation. Finally, we can also write
the velocity constants as

k k k k

k

k k

k k

l l i li
n

i

l

i li
n

i

i li

il

il

± = ( )

=

∏

∏
−

cat V G M

V

G M

G

 ( )

( )

(

/∓ 2 21

MM)

/

n

i

il
+

∏

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

( )

±1 2

22

x( ) .θ θθ= ( )Rx  23

Rx
θ

k l±
cat

v E h c k h c k

k

c k

l l m lm
w

m lm
w

m

l

li
n

i
li
M

lm lm

il

=

×

+ −

−

∏

∏

A
A

I
I

V

( , ) ( , )

( )−−

= =

−

+

+

−

∏

∑

n
li
n

i
li
M n

li
m

m

n

li
m

m

n

il il il

il i

c k

c c

/ /( )

( ) ( )

2 2

0 0

ll

ii

+

∑∏∏ −

( )

1

24

c c kli i li= / M k k kli i li
M G M=

k G RTV e str= ( )− −Δ ( ) /( ) .
0 1 25

Table 1: Model parameters for convenience kinetics

Parameter Symbol unit item in graph energy interpretation

Energy constant 1 metabolite metabolite formation

Velocity constant 1/s reaction transition state

Michaelis-Menten constant mM arrow reaction – substrate substrate binding

Activation constant mM arrow reaction – activator activator binding

Inhibition constant mM arrow reaction – inhibitor inhibitor binding

Metabolite concentration ci mM metabolite

Enzyme concentration El mM reaction

The system parameters (top) are thermodynamically independent. Their numerical values can be written as exp(G/RT) where G denotes either a 
Gibbs free energy or a difference of Gibbs free energies. The corresponding molecular processes are listed in the last column. In contrast to the 
system parameters, enzyme and metabolite concentrations (bottom) can easily fluctuate over time; we call them state parameters.
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To illustrate the meaning of the energy , we con-

sider again the bimolecular enzymatic mechanism: in
transition state theory [15], the rate constants between the
substrate and product complex are formally written as

where the quantities G(0) denote Gibbs free energies of for-
mation for the substrate complex EAX, the product com-

plex EBY, and a hypothetical transition state Etr that has to

be crossed on the way from EAX to EBY. By inserting eqn.

(26) into the definition (20) and defining an energy bar-

rier , we obtain eqn.

(25).
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Table 2: Dependent kinetic parameters

Quantity Symbol unit Formula

Gibbs free energy of formation kJ/mol

Gibbs fr. en. for substrate binding kJ/mol

Equilibrium constant -

Turnover rate 1/s

Maximal velocity mM/s

The logarithms of dependent parameters (and also the Gibbs free energies of formation) can be written as linear functions of the logarithmic system 
parameters. Equilibrium constants can have different physical units depending on the reaction stoichiometry.
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System parameters for convenience kineticsFigure 1
System parameters for convenience kinetics. The homoserine kinase reaction (HK, dotted box) transforms homoserine 
and ATP into O-phospho-homoserine and ADP (solid arrows). Threonine inhibits the enzyme (dotted arrow). Each node and 
each arrow carries one of the system parameters: each metabolite is characterised by an energy constant kG, the reaction by a 
velocity constant kV, and each arrow by a kM or kI value. The system parameters are thermodynamically independent and can 

assume arbitrary positive values. The turnover rates  for forward and backward direction can be computed from the sys-

tem parameters.
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Independent equilibrium constants as system parameters

We introduced the energy constants  as model param-

eters for two reasons: first, they provide a consistent way
to describe the equilibrium constants; secondly, if Gibbs
free energies of formation are known from experiments,
they can be used for fitting the energy constants and will
thus contribute to a good choice of equilibrium constants.
However, if no such data are available, the second reason
becomes redundant, and a different choice of the system
parameters may be appropriate: instead of the energy con-
stants, we employ a set of independent equilibrium con-
stants. If the stoichiometric matrix N has full column
rank, then the equilibrium constants are independent
anyway because for given keq, eqn. (18) can always be sat-

isfied by some choice of the ; in this case, the equilib-

rium constants can be directly used as model parameters.
Otherwise, we can choose a set of reactions with the fol-
lowing property: their equilibrium constants (collected in
a vector kind) are thermodynamically independent, and
they determine all other equilibrium constants in the
model via a linear equation

The choice of independent reactions and the computation

of  are explained in the methods section. Given the

equilibrium and velocity constants, the turnover rates can
be expressed as

or equivalently as

and be inserted into eqn. (14).

The convenience kinetics resembles other rate laws
To check whether the convenience kinetics yields any
unusual results, we compared it to two established rate
laws, namely the ordered and ping-pong mechanisms for
bimolecular reactions. In both mechanisms, binding and
dissociation occur in a fixed order:
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Table 3: Convenience rate laws for common reaction stoichiometries

Reaction formula Rate law Turnover rates Irreversible

A ↔ B

A + X ↔ B

A + X ↔ B + Y

2 A ↔ B

2 A ↔ B + Y

2 A + X ↔ B

The rate laws follow from the enzyme mechanism and reflect the reaction stoichiometry; for each case, the thermodynamically independent 

expression of the turnover rates and the irreversible form are also shown. We use the shortcuts  and  for metabolite 

A and analogous shortcuts for the other metabolites. For brevity, the prefactors for enzyme concentration and enzyme regulation are not shown.
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Besides the turnover rates and kM values, their kinetic laws
also contain product inhibition constants. For the com-
parison, we made the simplifying (yet biologically realis-
tic) assumption that these inhibition constants equal the
respective kM values, which yields the following rate laws
[8]

In contrast to the convenience rate law (8), the denomina-
tors contain mixed terms between substrates and prod-
ucts, and in the ping-pong kinetics, the term +1 is missing.
The ordered mechanism yields smaller reaction rates than
the ping-pong and the convenience kinetics because its
denominator is always larger. To compare the three rate
laws, we sampled metabolite concentrations and kM val-
ues from a random distribution and computed the result-
ing reaction velocities. Parameters and concentrations

were independently sampled from a uniform distribution
in the interval [0.001, 1000] and from a log-uniform dis-
tribution on the same interval. Figure 2 shows scatter plots
between reaction velocities computed from the different
rate laws. For the uniform distribution, the results from
convenience kinetics resemble those from ordered and
ping-pong kinetics; they are about as similar as the
ordered and ping-pong kinetics. With the log-uniform dis-
tribution, the correlations between all three kinetics
become smaller, and ping-pong kinetics is more similar to
convenience than to ordered kinetics. We conclude that
erroneously choosing convenience kinetics instead of the
other kinetic laws is just as risky as a wrong choice
between the two other mechanisms.

Parameter estimation

The parameters in convenience kinetics – the independent
and the resulting dependent ones – can be measured in
experiments. The linear relationship (23) makes it partic-
ularly easy to use such experimental values for parameter
fitting: given a metabolic network, we mine the literature
for thermodynamic and kinetic data, in particular Gibbs
free energies of formation, reaction Gibbs free energies,
equilibrium constants, kM values, kI values, kA values, and
turnover rates, and merge their logarithms in a large vector
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Comparison of ordered, ping-pong, and convenience kineticsFigure 2
Comparison of ordered, ping-pong, and convenience kinetics. Kinetic parameters and reactant concentrations were 
drawn from random distributions; each of the rate laws yields different reaction velocities. Top: concentrations and parameters 
were drawn from a uniform distribution. The scatter plots show the results from convenience versus ordered kinetics (left, lin-
ear correlation coefficient R = 0.94), convenience versus ping-pong kinetics (centre, R = 0.98), and ping-pong versus ordered 
kinetics (right, R = 0.98). The similarity between convenience and ping-pong kinetics is higher than between ping-pong and the 
ordered kinetics. Bottom: a log-uniform distribution yields different distributions and smaller correlations, but a similar qualita-
tive result. Again, the plots show convenience versus ordered kinetics (left, R = 0.73), convenience versus ping-pong kinetics 
(centre, R = 0.90), and ping-pong versus ordered kinetics (right, R = 0.84).
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x*. The vector can contain multiple values for a parame-
ter, it can contain thermodynamically dependent parame-
ters, and of course, many parameters from the model will

be missing. We try to determine a vector θ of logarithmic
system parameters that yields a good match between the

resulting parameter predictions x (θ) and the data x*.

Solving x* ≈ θ for θ by the method of least squares

yields an estimate of the system parameters. Using eqn.
(23) again, consistent values of all kinetic parameters can
be computed from the estimated system parameters. Con-
tradictions in the original data are resolved; in addition,
we can employ a prior distribution representing typical
parameter ranges to compensate for missing data. A more
general estimation procedure, which can also integrate
measured metabolic concentrations and fluxes, is
described in the companion article [19].

Discussion
Convenience kinetics can be used for modelling biochem-
ical systems in a simple and standardised way. In contrast
to ad-hoc rate laws such as linlog or generalised mass-
action kinetics, the convenience kinetics is biochemically
justified as a direct generalisation of the Michaelis-Menten
kinetics; it is saturable and allows for activation and inhi-
bition of the enzyme. The parameters kM, kA, and kI repre-
sent concentrations that lead to half-maximal (or in
general, (1 + αi)-1 -maximal) effects: the kM values also
indicate the threshold between low substrate concentra-
tions that lead to linear kinetics and high concentrations
at which the enzyme works in saturation.

The convenience kinetics represents a rapid-equilibrium
random-order enzyme mechanism. When all substrates
are bound, they are converted in a single step into the
products, which then dissociate from the enzyme. The kM,
kA, and kI values represent dissociation constants between
the enzyme and the reactant or modifier, while kV repre-
sents the velocity of the transformation step. The system
parameters also provide a sensible basis for describing
variability in cell populations: the Gibbs free energies of
formation depend on the composition of the cytosol, for
instance its pH and temperature, and can be expected to
show small, possibly correlated variations. The remaining
parameters reflect interaction energies, which depend on
the enzyme's amino acid sequence; we can expect that
these energies vary between cells, and probably more
independently than, for instance, the forward and back-
ward turnover rates.

The convenience kinetics does not differ strikingly from
established kinetic laws: in a comparison with the ordered
and ping-pong mechanisms, the convenience kinetics
resembled the ping-pong mechanism, and the similarity

between them was greater than that between the ordered
and ping-pong mechanisms. Mathematically, the three
rate laws differ in their denominators: in convenience
kinetics, we find all combinations of substrate concentra-
tions and all combinations of product concentrations, but
no mixed terms containing both substrate and product
concentrations. The single terms reflect the reactant com-
plexes formed by the enzyme.

The second concern of this paper was the incorporation of
thermodynamic constraints: in pathway-based methods
[21-23], proper treatment of the Gibbs free energies yields
constraints on the flux directions; in our kinetic models, it
leads to linear dependencies between the logarithmic
parameters. To eliminate these constraints, we express the
equilibrium constants keq by Gibbs free energies of forma-
tion or we choose a set of independent equilibrium con-
stants. This trick is of course not limited to the
convenience kinetics: independent parameters and equa-
tions of the form (23) can also be used with many other
kinetic laws, in particular those that share the denomina-
tor of the convenience rate law; also other modes of acti-
vation and inhibition can be treated in the same manner
as long as the modifiers do not affect the chemical equi-
librium.

The choice of rate laws and parameter values is a main
bottleneck in kinetic modelling. Standard rate laws such
as the convenience kinetics can facilitate the automatic
construction and fitting of large kinetic models. For tran-
scriptional regulation, a general saturable law has been
proposed [24]. For metabolic systems, the convenience
kinetics may be a mathematically handy and biologically
plausible choice whenever the detailed enzymatic mecha-
nism is unknown. Estimates of model parameters can be
obtained by integration of kinetic, metabolic, and pro-
teomic data as described in the companion article [19].

Conclusion
In kinetic modelling, every chemical reaction has to be
characterised by a kinetic law and by the corresponding
parameters. The convenience kinetics applies to arbitrary
reaction stoichiometries and captures biologically rele-
vant behaviour (saturation, activation, inhibition) with a
small number of free parameters. It represents a simple
molecular reaction mechanism in which substrates bind
rapidly and in random order to the enzyme, without ener-
getic interaction between the binding sites. The same
holds for the dissociation of products.

For reactions with a single substrate and a single product,
the convenience kinetics equals the well-known Michae-
lis-Menten kinetics. By introducing a set of thermodynam-
ically independent system parameters, we obtained a
form of the rate law that ensures thermodynamic correct-
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θ
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ness and is notably suited for parameter fitting and opti-
misation.

Methods
Basic notions for metabolic models
The structure of a metabolic network is defined by the lists
of metabolites and reactions and by two structural matri-
ces, N and W. The coefficients nil contained in the stoichi-
ometric matrix N describe how many molecules of type i
are produced in reaction l; negative elements describe
consumption of molecules. The elements of the regula-
tion matrix W describe enzyme regulation between
metabolites i and enzymes l: wli = 1 indicates activation, wli
= -1 represents inhibition, and wli = 0 no interaction.

In the setting of deterministic differential equations, the
substance concentrations in a biochemical system follow
the balance equations

The vectors c, v, and k contain the metabolite concentra-
tions (in mM), reaction velocities (in mM/s), and system
parameters, respectively. External or buffered metabolites
with fixed concentrations are contained in the parameter
vector k.

To relate activation and inhibition (as stated in W) to the
reaction kinetics, we first assume a hypothetical kinetic
law without regulation; in this law, the reaction velocity
depends only on the substrate and product concentra-
tions. In the real rate law, a metabolite is an activator if (i)
it increases the rate although it is not a reactant, or (ii) it
increases the rate more strongly than it would by just
being a reactant. Inhibition is defined analogously.

Thermodynamical properties
The kinetic laws vl(c, k) are constrained by fundamental
thermodynamic laws that relate the metabolite concentra-
tions in steady state to molecular energies [15]. A single
reaction event of reaction l changes the Gibbs free energy
of the system by

where the sum runs over all metabolites and μi denotes
the chemical potential of metabolite i (in kJ/mol). In an
ideal mixed phase at pressure P and absolute temperature
T, the chemical potential of substance i with concentra-
tion ci reads

where  denotes the chemical potential of the pure

substance at infinite dilution, and R ≈ 8.314 J/(mol K) is
Boltzmann's gas constant. In (34), the ci are dimension-

less numbers denoting concentrations in mM. In real
mixed phases, there would be an additional term +RT ln

 with the activity coefficient fi. We neglect this term,

assuming an ideal mixed phase without mixture effects on
volume or energy; we also neglect effects of changing pres-
sure or electric charges.

The equilibrium constant of reaction l is defined as

where ceq is the vector of metabolite concentrations in a
chemical equilibrium state. According to the second law
of thermodynamics, the equilibrium state of a chemical
system is characterised by a minimum of the Gibbs free
energy. This implies that each chemical reaction in equi-
librium satisfies ΔGl = 0. From eqs. (33), (34), and (35)
follows

where  is called the standard

reaction Gibbs free energy and the concentrations are
measured in mM. It can also be expressed as

in terms of the Gibbs free energies of formation  for

a standard state, typically P = 1.015 bar and T = 298.15 K.
Equations (36) and (37) constitute the relation (18)
between equilibrium constants and the Gibbs free ener-
gies of formation.

Selection of independent equilibrium constants

Dependencies between equilibrium constants can be
treated in a similar manner to the linear dependencies
that constitute the conservation relations between metab-
olites [25]. To choose a set of reactions with independent
equilibrium constants – for brevity, we shall call them
independent reactions – we collect a maximal number of
linearly independent columns of N and join them in a

d
dt

Nc v c k= ( ) ( ) , . 32

ΔG nl il
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matrix . The chosen columns correspond to the inde-
pendent reactions, and their choice need not be unique.

By construction,  has full column rank, and we can split

N into a matrix product N = , by analogy to the split-
ting N = L NR that is used in metabolic control analysis to

remove dependent metabolites.

To be thermodynamically feasible, the equilibrium con-
stants have to satisfy eqn. (18) or, in vector form,

ln keq = -NT ln kG  (38)

for at least one choice of the vector kG. Let us first assume
that kG is given; then the equilibrium constants of the
independent reactions read

ln kind = - T ln kG,  (39)

and with the definition

we can write

Hence, eqn. (27) is satisfied and the matrix  is

known. It remains to be shown that the equilibrium con-
stants contained in kind are indeed thermodynamically
independent; or in other words, that for any vector ln kind,
there exists a vector kG such that eqn. (39) holds; and this

is indeed the case because T has full row rank.
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