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Abstract
Background: So far, none of the existing methods on Murray's law deal with the non-Newtonian
behavior of blood flow although the non-Newtonian approach for blood flow modelling looks more
accurate.

Modeling: In the present paper, Murray's law which is applicable to an arterial bifurcation, is
generalized to a non-Newtonian blood flow model (power-law model). When the vessel size
reaches the capillary limitation, blood can be modeled using a non-Newtonian constitutive
equation. It is assumed two different constraints in addition to the pumping power: the volume
constraint or the surface constraint (related to the internal surface of the vessel). For a seek of
generality, the relationships are given for an arbitrary number of daughter vessels. It is shown that
for a cost function including the volume constraint, classical Murray's law remains valid (i.e. ΣRc =
cste with c = 3 is verified and is independent of n, the dimensionless index in the viscosity equation;
R being the radius of the vessel). On the contrary, for a cost function including the surface
constraint, different values of c may be calculated depending on the value of n.

Results: We find that c varies for blood from 2.42 to 3 depending on the constraint and the fluid
properties. For the Newtonian model, the surface constraint leads to c = 2.5. The cost function
(based on the surface constraint) can be related to entropy generation, by dividing it by the
temperature.

Conclusion: It is demonstrated that the entropy generated in all the daughter vessels is greater
than the entropy generated in the parent vessel. Furthermore, it is shown that the difference of
entropy generation between the parent and daughter vessels is smaller for a non-Newtonian fluid
than for a Newtonian fluid.

Introduction
Since several decades, many studies have been carried out
on the optimal branching pattern of a vascular system.
Based on the simple assumption of a steady Poiseuille
blood flow, the well known Murray's law [1] has been

established. It links the radius of a parent vessel R0 (imme-
diately upstream from a vessel bifurcation) to the radii of
the daughter vessels R1 and R2 (immediately downstream
after a vessel bifurcation) as R0/R1 = R0/R2 = 2-1/3. From
Murray's analysis, the required condition of minimum
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power occurs when Q ∝ R3 where Q denotes the volumet-
ric flow. This relation, called "cube law", is determined
assuming that two energy terms contribute to the cost of
maintaining blood flow in any section of any vessel: (i)
the pumping power and (ii) the energy metabolically
required to maintain the volume of blood which is
referred to as "volume constraint". A generalization of this
relation can be proposed as Q ∝ Rc where c is determined
from the condition of minimum power by assuming
other constraints (for instance surface constraint yields Q
∝ R2.5 [2]). Under the condition c = 3, the shear stress on
the vessel walls is uniform and independent of vessel
diameter [3]. Several studies have been carried out to
determine the value of c [4-8] which usually ranges
between 2 and 3. The influence of the value of c from 2 to
4 has also been investigated [9]. The in vivo wall shear
stress in an arterial system has been measured [10]. It was
found that mean wall shear stress was far from constant
along the arterial tree, which implied that Murray's cube
law on flow diameter relations could not be applied to the
whole arterial system. According to the authors, c likely
varies along the arterial system, probably from 2 in large
arteries near the heart to 3 in arterioles. A method allow-
ing for estimation of wall shear rate in arteries using the
flow waveforms has been developed [11]. This work
allowed to determine the time-dependent wall shear rates
occurring in fully developed pulsatile flow using Womer-
sley's theory. They found a non-uniform distribution of
wall shear rates throughout the arterial system.

Following the cubic law, Murray [12] proposed the opti-
mal branching angle. Optimally, the larger branch makes
a smaller branching angle than the smaller branch. This
work was extended to non-symmetrical bifurcations [13].
The arterial bifurcations in the cardiovascular system of a
rat have been investigated [14]. The results were found to
be consistent with those previously reported in humans
and monkeys. Murray's optimization problem has also
been reproduced computationally using a three dimen-
sional vessel geometry and a time-dependent solution of
the Navier-Stokes equations [15].

From Murray's law, some relationships have been pro-
posed between the vessel radius and the volumetric flow,
the average linear velocity flow, the velocity profile, the
vessel-wall shear stress, the Reynolds number and the
pressure gradient [9]. In the same way, based on the Poi-
seuille assumptions, scaling relationships have been
described between vascular length and volume of coro-
nary arterial tree, diameter and length of coronary vessel
branches and lumen diameter and blood flow rate in each
vessel branch [16,17].

It is also possible to determine Murray's law using other
approaches. A model have been suggested based on a

"delivering" artery system of an organ characterized, (i) by
the space-filling fractal embedding into the tissue and (ii)
by the uniform distribution of the blood pressure drop
over the artery system [18]. The minimalist principles
were not used but the result remains the same. Murray's
energy cost minimization have been extended to the pul-
satile arterial system, by analysing a model of pulsatile
flow in an elastic tube [19]. It is found that for medium
and small arteries with pulsatile flow, Murray's energy
minimization leads to Murray's Law.

Surprisingly, so far, none of the existing methods on Mur-
ray's law deal with the non-Newtonian behavior of blood
flow although, the non-Newtonian approach for blood
flow modeling looks more accurate. Blood is a multi-com-
ponent mixture with complex rheological characteristics.
Experimental investigations showed that blood exhibits
non-Newtonian properties such as shear-thinning, viscoe-
lasticity, thixotropy and yield stress [20-22]. Blood rheol-
ogy has been shown to be related to its microscopic
structures (e.g. aggregation, deformation and alignment
of red blood cells). The non-Newtonian steady flow in a
carotid bifurcation model have been investigated [23,24].
The authors showed that in that case, viscoelastic proper-
ties may be ignored. The fact that blood exhibits a viscos-
ity that decreases with increasing rate of deformation
(shear-thining or so called pseudoplastic behavior) is thus
the predominant non-Newtonian effect. There are several
inelastic models in the literature to account for the non-
Newtonian behavior of blood [25,26]. The most popular
models are the power-law [27,28], the Casson [29] and
the Carreau [30] fluids. The power-law model is the most
frequently used as it provides analytical results for many
flow situations. On the usual log-log coordinates, this
model results in a linear relation between the viscosity
and the shear rate. Blood viscosity have been measured by
using a falling-ball viscometer and a cone-plate viscome-
ter for shear rate from 0.1 to 400 s-1 [31]. For both tech-
niques, the authors found that measured values are
aligned on a straight line suggesting that the power-law
model fits experimental data with sufficient precision.

From the literature review, it can be established that none
of the existing studies deal with the minimalist principle
along with non-Newtonian models. The combination of
both aspects will be studied and are presented hereafter.
For a seek of generality, the relationships will be given for
an arbitrary number of daughter vessels.

Non-Newtonian model of blood flow
Consider the laminar and isothermal flow of an incom-
pressible inelastic fluid in a straight rigid circular tube of
radius R and length l as shown in Fig. (1). For steady fully-
developed flow, we make the following hypotheses on the
velocity components:
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where we have used standard cylindrical coordinates such
that the z-axis is aligned with the pipe centerline. It means
that the only nonzero velocity component is the axial
component which is a function of the distance to the pipe
centerline only.

The equation of motion may be written as

where p denotes the pressure and σrz is the only nonzero
deviatoric stress tensor component. It follows that the
pressure is independent from both r and θ. Moreover ∂p/
∂z is a constant which we will denote as -Δp/l identified as
the pressure drop over the length l. Integrating the third
component of the equation of motion, we have:

where K is a constant. As the stress remains finite at r = 0,
the constant K must be set to 0. We thus obtain:

where σw is the shear stress evaluated at the wall. For a
purely viscous fluid, the shear stress σrz reads:

where  is the generalized viscosity and  is the

effective deformation rate which is given here by

.

Let us consider the power-law constitutive equation pro-
posed by Ostwald [27] and De Waele [28] given by:

It features two parameters: dimensionless flow index n
and consistency m with units Pa.sn. On log-log coordi-
nates, this model results in a linear relation between vis-
cosity and shear rate. The fluid is shear-thinning like
blood (i.e. viscosity decreases as shear rate increases) if
n<1 and shear-thickening (i.e. viscosity increases as shear
rate increases) if n > 1. When n = 1 the Newtonian fluid is
recovered and in that case parameter m represents the
constant viscosity of the fluid. This model is very popular
in engineering work because a wide variety of flow prob-
lems have been solved analytically for it.

Combining Eqs. (2), (3) and (4) and using the condition
of no slip at the wall, we obtain the following velocity
field:

It can be noted that the Poiseuille parabolic velocity pro-
file is recovered for n = 1. For a shear-thinning fluid, the
velocity profile becomes blunter as n decreases. The flow
rate is:

The pressure drop for the flow can be evaluated from Eqs.
(2) and (6) to be:

The previous relation can be put in the form:
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which reduces in the Newtonian case to the classical

Hagen-Poiseuille relation .

Extension of Murray's Law
Let us express Eq. (7) for a vessel k included in a tree struc-
ture, it comes:

In a more general manner (also suggested in [2]), Eq. (9)
may be written as:

where Ψκ is function of the length lk of the vessel k and the
properties of blood, Qκ is the mass flow rate of blood and
Rκ is the radius of the vessel k. The parameters a and b are
only function of the fluid properties. From Eq. (8), these
parameters can be identified for a power law fluid as:

Introduce a cost function Φk, as a linear combination of
two quantities: the pumping power Qk·Δpk and the energy
cost to maintain the blood volume π·lk·R2

k, it yields:

where Ak is a cost factor for pumping and Bk is a sort of
maintenance cost of the blood volume. In other words,
the metabolic rate of energy required to maintain the vol-
ume of blood. The cost function can be written as:

where Bk' = Bk·π·lk and Ak' = Ak·Ψk.

The derivative of this expression with respect to the radius
at constant mass flow rate and channel length gives the
value of an extremum:

The second derivative of the cost function is

which is found to be always positive because b>0, and so
are Ak' and Bk'. As a result, the extremum is a minimum.

According to Eq. (13), the relation between the radius Rk
and the mass flow rate Qk is as follows:

It is noteworthy that if the constraint is not the energy cost
to maintain the blood volume but that of the internal area
of the vessel (2 π·lk·Rk), we get:

This expression may be useful when one wants to include
mass and/or heat transfer through the vessel wall. Actu-
ally, when the vessel diameter decreases, blood catch up
with a non-Newtonian fluid and the heat and mass trans-
fer through the vessel wall becomes more and more signif-
icant.

Now consider a parent vessel (0) divided into a finite
number of vessels (1,..., j) as shown in Fig. (2). Conserva-
tion of mass yields the following relation:

Combining Eqs. (17) and (15), we get:

Equation (18) is the generalization of the cube law. In
case of laminar Newtonian flow (a = 1 and b = 4, thus c =
3), the classical cube law is recovered. Note that whatever
the value of n in the Poiseuille case, c is equal to 3.

The ratio of two consecutive vessels (parent and daughter)
is thus written as:
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Expression (19) is the generalization of Murray's law and
was also proposed by [32]. For instance, if one assumes a
Poiseuille flow and two daughter vessels one gets the well
known result:

Relation (19) takes into account a general form of the
pressure drop (not necessarily a Poiseuille flow), a finite
but not fixed number of daughter vessels (but not neces-
sarily equal to two) and a possible unequal distribution of
the flow in each daughter vessel. Two interesting parame-
ters may thus be calculated:

- The bifurcation index αi represents the relative caliber
of the symmetry of the bifurcation:

- The area ratio (expansion parameter) β which is the
ratio of the combined cross-sectional area of the
daughters over that of the parent vessel. Values of β
greater than unity produce expansion in the total
cross-sectional area available to flow as it progresses
from one of the tree to the next. It can be written as:

The following relations are then deduced:

Until now, all equations are formulated with a parent ves-
sel that divid into a finite number of daughter vessels
(1,..., j). However, since a parent vessel divide into two
daughter vessels in animals and humans, further equa-
tions will be formulated with j = 2.

Meaning of the results
In this section, we will examine the meaning of the results
obtained in the general case. Particularly, we will focus on
the variation of each parameter with the radius of the ves-
sel.

Volumetric flow
As established above, see Eq. (15), the volumetric flow
rate is proportional to the radius to the power c when
minimizing the cost function:

Velocity of flow
The volumetric flow is proportional to Rc and the cross-
area of a vessel is proportional to R2, thus the flow velocity
(v) is expressed as:

Velocity profile
The maximum velocity, denoted by vmax, is attained at the
center of the vessel. It can thus be obtained by setting r to
0 in Eq. (5).

The mean velocity <v> is defined as the ratio between the
flow rate (Eq. (6)) and the vessel cross section area:

From these expressions, the velocity profile is independ-
ent of the radius of the vessel and is given by the following
relation:
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Schematic of a bifurcation: parent vessel 0 divided 
into j daughter vessels.
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As a result, the velocity profile is only function of the fluid
properties and remains the same whatever the radius.

Vessel wall shear stress
The vessel wall shear stress may be expressed as:

In the particular case of c = 3, the vessel wall shear stress
remains unchanged all along the vascular system.

If c<3, when blood flows from the parent to the daughter
vessels, the vessel wall shear stress increases because the
vessel radii decrease in the flow direction. On the con-
trary, if c>3, the vessel wall shear stress decreases because
the vessel radii increase in the flow direction.

Reynolds number
The Reynolds number (Re) is proportional to the radius R
multiplied by the flow velocity v. According to the relation
obtained above for the velocity of flow, it comes:

Since c is often greater than two, the Reynolds number
will always increases in the direction of the blood path.

Pressure gradient
The pressure gradient is proportional to Qa/Rb, i.e. Rca/Rb

since Q ∝ Rc. The relation between the pressure drop and
the vessel radius is then:

Conductance and resistance
In a Murray system, ΣRc is constant. In addition, the resist-
ance of the fluid is proportional to R-b. We thus obtain:

and the reciprocal of resistance is the conductance defined
as:

Cross sectional area
ΣRc is constant in a Murray system and the cross sectional
area of vessels is proportional to ΣR-2. As a consequence,
the cross sectional area is:

Entropy generation
Entropy generation has several origins: heat transfer, mass
transfer, pressure drop... Entropy generation depends on
the internal physical phenomena encountered in a proc-
ess. In the case of an isothermal flow, entropy generation
exists, can be quantified, and is related to mass transfer
and pressure drop. In our case, entropy generation (S')
may be obtained by dividing the cost function (based on
the surface constraint) by temperature, which is assumed
uniform and constant here (T = 310.15K) [2]. The volume
constraint cannot be used in that case because the cost of
blood maintenance is a process which is external to the
system. The minimum entropy generation is thus reached
at the minimum of the cost function. In case of surface
constraint, the expression of the entropy generation is
defined as:

where Ak" = Ak·Ψk/T and Bk" = Bk·2·π·lk/T. Combining
with Eq. (10), Expression (25) reduces to

In case of two daughter vessels, the link between the
entropy generation upward and downward the arterial
bifurcation is defined as:

For the Newtonian case, c = 2.5 and  = 1.52. For the

non-Newtonian case, n = 0.74 for instance and  = 1.50.

Whatever the fluid, as  >1, the entropy generated in all

the daughter vessels is greater than the entropy generated
in the parent vessel. Furthermore, this result means that
the difference of entropy generation between the parent
and daughter vessels is smaller for a non-Newtonian fluid
than for a Newtonian fluid. This behaviour can be related
to the velocity profile, which is blunter for a non-Newto-
nian fluid, as shown by Eq. (5).

Illustrating example
Egushi and Karino [31] measured blood viscosity as a
function of shear rate using the classical cone-plate vis-
cometer and obtained
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Thanks to a falling-ball viscometer, they obtained:

Table 1 shows the effect of n on the c parameter for both
constraints. When the cost function involves the volume
constraint, parameter c equals three whether the fluid is
described by the Newtonian law or by a power-law model.
In that case, Murray's law remains valid for a shear-thin-
ning fluid like blood. The optimal ratio between a parent
vessel radius and daughter radii is the same whether the
fluid is Newtonian or not. In contast, parameter c depends
on the value of n when the cost function involves the sur-
face constraint. The optimal ratio of parent vessel radius
to daughter radii thus depends on the fluid properties. It
is found that decreasing n leads to a drop of parameter c.
In conclusion, the more shear-thinning the fluid is, the
lower the optimal ratio. c thus ranges from 2.42 to 3,
depending on the constraint, which corresponds to the
typical range of c measured experimentally and reported
in the literature [4-8].

Table 2 summarizes the influence of index n on different
parameters. For example, when assuming a volume con-
straint, the Reynolds number varies as the radius to power
two. It means that whatever the fluid model, the Reynolds
number follows the same law. For a surface constraint,
decreasing n leads to a decrease in the exponent of the
radius. In other words, a shear-thinning fluid the Rey-
nolds number varies less with the vessel radius, all other
parameters being kept constant. In addition, the flow
resistance is proportional to R to the power c' where c' is

n = ±0 81 0 03. . .

n = ±0 74 0 02. . .

Table 2: Influence of n on different parameters

Parameters Newtonian
n = 1

Non-Newtonian
n = 0.81

Non-Newtonian
n = 0.74

ΣR3 ΣR2.5 ΣR3 ΣR2.45 ΣR 3 ΣR 2.43

Volumetric flow R3 R2.5 R3 R2.45 R3 R2.43

Velocity of flow R R0.5 R R0.45 R R0.43

Vessel wall shear stress 1 R-0.5 1 R -0.55 1 R -0.57

Reynolds number R2 R1.5 R2 R1.45 R2 R1.43

Pressure gradient R -1 R -1.5 R -1 R-1.45 R-1 R -1.42

Conductance R R1.5 R0.43 R0.98 R0.22 R0.79

Resistance R-1 R-1.5 R-0.43 R-0.98 R-0.22 R-0.79

Cross sectional area R-1 R-0.5 R-1 R-0.45 R-1 R-0.43

Entropy generation R2 R2 R2 R R2 R

βand 
1.26 1.52 1.26 1.51 1.26 1.50%b

Table 1: Influence of n on the c parameter for the two different 
constraints.

Nominal value of n n Volume constraint Surface constraint

c C

1 1 3 2.5

0.81 0.78 3 2.44

0.81 3 2.45

0.84 3 2.46

0.74 0.72 3 2.42

0.74 3 2.43

0.76 3 2.43
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always negative. This result agrees with the fact that the
greatest part of the resistance of the arterial tree is in the
smallest vessels.

Conclusion
Blood is a multi-component mixture with complex rheo-
logical characteristics. Experimental investigations have
shown that blood exhibits non-Newtonian properties
such as shear-thinning, viscoelasticity, thixotropy and
yield stress. Blood rheology is shown to be related to its
microscopic structures (e.g. aggregation, deformation and
alignment of blood cells and plattelets). Shear-thinning is
the predominant non-Newtonian effect in bifurcations of
blood flows.

In this study, we have proposed for the first time an ana-
lytical expression of Murray's law using a non-Newtonian
blood flow model (power law model), assuming two dif-
ferent constraints in addition to the pumping power: (i)
the volume constraint and (ii) the surface constraint. Sur-
face constraint may be useful if one wants to include heat
and/or mass transfer in the cost function, specially in cap-
illaries. For a seek of generality, the relationships have
been given for an arbitrary number of daughter vessels.
Note that there is an alternative formulation of the con-
strained optimization problem using the Lagrange multi-
pliers, as discussed in [32]. However, using this approach,
the results presented in this paper would not have been
modified.

It has been showed that for a cost function including the
volume constraint, classical Murray's law remains valid
(i.e. ΣRc = cste with c = 3 is verified). In other words, the
value of c is independent of the fluid properties. On the
contrary, for a cost function including the surface con-
straint, different values of c may be calculated depending
on the fluid properties, i.e. the value of n. The fluid is
shear-thinning if n<1 and shear-thickening if n>1. When n
= 1 the Newtonian fluid is recovered. In the present study,
we have used two different blood values of n found in the
literature, namely n = 0.81 and n = 0.74. In summary, it
has been found that c varies from 2.42 to 3 depending on
the constraint and the index n. For the particular Newto-
nian model, the surface constraint leads to c = 2.5.

Entropy generation has several origins: heat transfer, mass
transfer, pressure drop, etc. The cost function (based on
the surface constraint) can be related to entropy genera-
tion by dividing it by the temperature. It has been demon-
strated that the entropy generated in all the daughter
vessels is greater than the entropy generated in the parent
vessel. Furthermore, it is shown that the difference of
entropy generation between the parent and daughter ves-
sels is smaller for a non-newtonian fluid than for a New-
tonian fluid. This behaviour can be related to the velocity

profile, which is blunter for a non-Newtonian fluid, as
shown by Eq. (5).

Based on the literature review and on our work, we pro-
pose in the following, further possible investigations:

- The effect of singularities on the cost function has hardly
ever been investigated. Few works exist on this aspect [33]
and Tondeur et al. (Tondeur D, Fan Y, Luo L: Constructal
optimization of arborescent structures with flow singular-
ities. Chem. Eng. Sci. 2009, submitted.). However, the
effect of the singularities on the entropy generation might
not be negligible. This contribution should be added in
the cost function in the future.

- In reality, heat and mass might be transfered through the
vessel wall, leading to resistance that should be included
in the cost function. Indeed, gases, nutrients and meta-
bolic waste products are exchanged between blood and
the underlying tissue. Substances pass through the vessels
by active or passive transfer, i.e. diffusion, filtration or
osmosis. Moreover, pathologic states such as edema and
inflammation might increase such phenomena.

- It is accepted that pulsatile blood flow is more realistic
than steady-state flow. The cost function should also
include the effect of pulsatile flow in an elastic tube.

- Blood is essentially a two-phase fluid consisting of
formed cellular elements suspended in a liquid medium,
the plasma. The corpuscular nature of blood raises the
question of whether it can be treated as a continuum, and
the peculiar makeup of plasma makes it seem different
from more common fluids. In particular, when the vessel
radius decreases down to the smallest capillaries, the con-
tinuum approach diverges from the reality. Treating blood
as a non-continuum fluid should be a possible next step.
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