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Abstract

In order to achieve a better understanding of multiple infections and long latency in
the dynamics of Mycobacterium tuberculosis infection, we analyze a simple model.
Since backward bifurcation is well documented in the literature with respect to the
model we are considering, our aim is to illustrate this behavior in terms of the range
of variations of the model’s parameters. We show that backward bifurcation disap-
pears (and forward bifurcation occurs) if: (a) the latent period is shortened below a
critical value; and (b) the rates of super-infection and re-infection are decreased. This
result shows that among immunosuppressed individuals, super-infection and/or
changes in the latent period could act to facilitate the onset of tuberculosis. When
we decrease the incubation period below the critical value, we obtain the curve of
the incidence of tuberculosis following forward bifurcation; however, this curve
envelops that obtained from the backward bifurcation diagram.

Background
Infectious diseases in humans can be transmitted from an infectious individual to a

susceptible individual directly (as in childhood infectious diseases and many bacterial

infections such as tuberculosis) or by sexual contact as in the case of HIV (human

immunodeficiency virus). They can also be transmitted indirectly by vectors (as in den-

gue) and intermediate hosts (as in schistosomiasis). According to the natural history of

diseases, an incubation period followed by an infectious period has to be considered a

common characteristic. Numerous viral infections confer long-lasting immunity after

their infectious periods, mainly because of immunological memory [1]. However, in

many bacterial infections, antigenically more complex than viruses, the acquisition of

acquired immunity following infection is neither so complete nor confers long-lasting

immunity. Hence, in most viral infections, a single infection is sufficient to stimulate

the immune system and elicit a lifelong response, while multiple infections can occur

in diseases caused by bacteria.

The simplest quantitative description of the transmission of infections is the mass

action law; that is, the likelihood of an infectious event (infection) is proportional to

the densities of susceptible and infectious individuals. Essentially, this law oversimpli-

fies the acquisition of infection by susceptibles from micro-organisms excreted by

infectious individuals into the environment (aerial transmission), or present in the

epithelia (infection by physical contact) or the blood (transmission by sexual contact or

transfusion) of infectious individuals.
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In this paper we deal with the transmission dynamics of tuberculosis. Tuberculosis

(TB) is caused by Mycobacterium tuberculosis (MTB), which is transmitted by respira-

tory contact. This presents two routes for the progression to disease: primary progres-

sion (the disease develops soon after infection) or endogenous reactivation (the disease

can develop many years after infection). After primary infection, progressive TB may

develop either as a continuation of primary infection (fast TB) or as endogenous reacti-

vation (slow TB) of a latent focus. In some patients, however, disease may also result

from exogenous reinfection by a second strain of MTB. There are reports of exogenous

reinfection in the literature in both immunosuppressed and immunocompetent indivi-

duals [2]. Martcheva and Thieme [3] called the exogenous reinfection ‘super-infection’.

To what extent simultaneous infections or reinfections with MTB are responsible for

primary, reactivation or relapse TB has been the subject of controversy. However,

cases of reinfection by a second MTB strain and occasional infection with more than

one strain have been documented. Shamputa et al. [4] and Braden et al. [5] investi-

gated that in areas where the incidence of TB is high and exposures to multiple strains

may occur. Although the degree of immunity to a second MTB infection is not known,

simultaneous infection by multiple strains or reinfection by a second MTB strain may

be responsible for a portion of TB cases.

A very special feature of TB is that the natural history of the disease encompasses a

long and variable period of incubation. This is why a super-infection can occur during

this period, overcoming the immune response and resulting in the onset of disease.

When mathematical modelling encompasses the natural history of disease (the onset of

disease after a long period since the first infection) together with multiple infections

during the incubation period to promote a ‘short-cut’ to disease onset, a so-called

‘backward’ bifurcation appears (see Castillo-Chavez and Song [6] for a review of the lit-

erature associated with TB models). Another possible ‘fast’ route is due to acquired

immunodeficiency syndrome (AIDS) [7-9].

Our aim is to understand the interplay between multiple infections and long latency

in the overall transmission of TB. Another goal is to assess how they act on immuno-

suppressed individuals. Since the backward bifurcation is well documented in the lit-

erature, we focus on the contributions of the model’s parameters to the appearance of

this kind of bifurcation.

This paper is structured as follows. In the following section we present a model that

describes the dynamics of the TB infection, which is analyzed in the steady state with

respect to the trivial and non-trivial equilibrium points (Appendix B). In the third

section we assess the effects of super-infection and latent period in TB transmission.

This is followed by a discussion and our conclusions.

Model for TB transmission
Here we present a mathematical model of MTB transmission. In Appendix A, we

briefly present some aspects of the biology of TB that substantiate the hypotheses

assumed in the formulation of our model.

There are many similarities between the ways by which different infectious diseases

progress over time. Taking into account the natural history of infectious disease, in

general the entire population is divided into four classes called susceptible, latent
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(exposed), infectious and recovered (or immune), whose numbers are denoted, respec-

tively, by S, E, Y and Z.

With respect to the acquisition of MTB infection, we assume the true mass action

law, that is, the per-capita incidence rate (or force of infection) h is defined by h =

bY/N, where b is the transmission coefficient and N is the population size. Hence the

development of active disease varies with the intensity and duration of exposure. Sus-

ceptible (or naive) individuals acquire infection through contact with infectious indivi-

duals (or ill persons in the case of TB) releasing infectious particles, where the

incidence is hS. After some weeks, the immune response against MTB contains the

mycobacterial infection, but does not completely eradicate it in most cases. Individuals

in this phase are called exposed, that is, MTB-positive persons.

The transmission coefficient b depends among a multitude of factors on the contacts

with infectious particles and duration of contact. Let us consider this kind of depen-

dency as

 = k ,

where k is the constant of proportionality, ω is the frequency of contact with infec-

tious particle, c is the duration of contact and ϱ is the amount of inhaled MTB. It is

accepted that persons with latent TB infection have partial immunity against exogen-

ous reinfection [10]. This means that super-infection can occur among exposed indivi-

duals, but to be successful the inoculation must involve more mycobacteria than the

primary infection. We assume that multiple exposure can precipitate progression to

disease, according to a speculation [11]. Let us, for simplicity, assume that the mini-

mum amount of inoculation needed to overcome the partial immune response is given

by a factor P, with P > 1 (P = 1 means absence of immune response, while if P < 1,

primary infection facilitates super-infection, that is, increases the risk of active disease

and acts as a kind of anti-immunity). In terms of parameters we have ϱe=Pϱ, and we

assume that all other factors (ω and c) are unchanged. This assumption gives the

super-infection incidence rate as ph, where p = 1/P (hence 0 <p < 1, if we exclude

anti-immunity) is a parameter measuring the degree of partial protection, and h is the

per-capita incidence rate in a primary infection. The lower the value of p, the greater

the immune response mounted by exposed persons, which is the reason why much

more inoculation is required in a posterior infection to change their status (P is high).

Susceptible individuals as well as latently infected persons can progress to disease in

a primary infection. If the level of inoculation is lower, the immune response is quite

efficient and primary infection ensues in the latently infected person. However, if the

inoculation is increased, say above a factor P’ (p’ = 1/P’), this amount can overcome

the immune response and lead to primary TB. In terms of parameters we have ϱs=P’ϱ,
and we assume again that that all other factors (ω and c) are unchanged. Naturally we

have p’ < 1, because naive susceptible individuals are inoculated with ϱ amount of

MTB to be latently infected. It is true that susceptible individuals are likely to be at

greater risk of progressing to active TB than latently infected individuals; hence, to be

biologically realistic, we must have p < p’.

According to the natural progression of the disease, after a period of time g-1, where
g is the incubation rate, exposed individuals manifest symptoms. Among these indivi-

duals, we assume that super-infection results in a ‘short cut’ to the onset of disease
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owing to a huge number of inoculated bacteria, instead of completing the full period of

time g-1. Individuals with TB remain in the infectious class during a period of time δ-1,

where δ is the recovery rate. In the case of TB, the recovery rate can be considered to

include antituberculous chemotherapy, which results in a bacteriological cure. The pre-

sence of memory T cells protects treated individuals for extended periods. Finally, let

us assume that recovered (or MTB-negative) individuals can be reinfected according to

the incidence rate qh, where the parameter q, with 0≤q≤1, represents a partial protec-

tion conferred by the immune response. The interpretation of q is quite similar to the

parameter p. Note that q = 0 mimics a perfect immune system (immunological mem-

ory is everlasting) that avoids reinfection (we have a susceptible-exposed-infectious-

recovered type of model), while q = 1 (immunological memory wanes completely)

describes the case where the immune system confers no protection (we have a suscep-

tible-exposed-infectious-susceptible type of model), in which case we can define a new

compartment W that comprises the S and Z classes of individuals (W = S+Z). For

intermediate values, 0 <q < 1, the model considers a lifelong and partial immune

response, because we do not allow the return of individuals in the recovered class to

the susceptible class, but they can be re-infected. The case q > 1 represents individuals

who have previously had TB disease are may be at high risk of re-infection leading to

future disease episodes [11].

Cured (MTB-negative) individuals are also at risk of progressing to active TB in an

infective event with a higher level of inoculation. As we argued for susceptible and

latently infected individuals, this event is described by the parameter q’. Because

relapse to TB requires more inoculation in cured persons than infection in latently

infected persons, we must have q’ < q.

On the basis of the above assumptions, we can describe the propagation of MTB

infection in a community according to the following system of ordinary differential

equations

dS

dt
p S S

dE

dt
S q Z p Z E

dY

dt
p S q Z p E

= − +( ) −

= + − − +( )

= + +

  

    

  

1 ’

’ ’ −− + +( )

= − +( ) −

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

  

  

Y

dZ

dt
Y q q Z Z’ ,

where all the parameters are positively defined, and the terms p’hS and q’hZ are,

respectively, primary progress to TB in susceptible persons, and direct relapse into

infection in individuals cured of TB. The parameters μ and a are the natural and addi-

tional constant mortality rates and j is the overall input rate, which describes changes

in the population due to birth and net migration. To maintain a constant population,

we assume that the overall input rate j balances the total mortality rate, that is, j =

μN+aY, where N is now the constant population size, N = S+E+Y+Z. In the literature,

primary TB is considered a proportion of total incidence, that is, (1-l)hS, where l is a

proportion, instead of (1 + p’)hS (see, for instance, [6,12]).
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Using the fact that N is constant, we introduce the fractions (number in each com-

partment divided by N) of susceptible, exposed, infectious and recovered individuals as

s, e, y and z, respectively. Hence the system of equations can be rewritten:

ds

dt
y p ys s

de

dt
ys q yz p ye e

dy

dt
p ys

= + − +( ) −

= + − − +( )

= +

   

    



1 ’

’ qq yz p ye e y

dz

dt
y q q yz z

’

’ ,

     

  

+ + − + +( )

= − +( ) −

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

(1)

where s+e+y+z = 1. This system of equations describes the propagation of infectious

disease in a community with constant population size, that is, dN
dt

= 0 . The set of

initial conditions G supplied to this dynamical system is

G s e y z= ( )0 0 0 0, , , .

Notice that the equation related to the recovered individuals can be decoupled from

the system by the relationship z = 1-s-e-y.

The system of equations (1) is not easy to analyze because of several non-linearities.

Instead, we deal with a simplified version of the model, disregarding primary progres-

sion to TB and relapse to TB among cured individuals. The system of equations we

are dealing with here is

ds

dt
y ys s

de

dt
ys q yz p ye e

dy

dt
p ys e

= + − −

= + − − +( )

= + − + +

   

    

    

  

( )

= − −

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

y

dz

dt
y q yz z.

(2)

In the Discussion we present the reasoning behind these simplifications. Our aim is

to assess the effects of super-infection and re-infection in a MTB infection that pre-

sents long period of latency.

The analytical results of system (2) are restricted to an everlasting and perfect

immune response (q = 0, since the immune system mounts cell-mediated response

against MTB, leaving an immunological memory after clearance of invading bacteria),

and to a quickly waning immune response (q = 1, absence of immune response). For

other values of q, numerical simulations are performed. As pointed out above, when q

= 1, we can define a new compartment w, where w = s+z, combining persons who are

susceptible (s) with those who are MTB negative but do not retain immunity (z), to

yield a reduced system given by
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dw

dt
y yw w

de

dt
yw p ye e

dy

dt
p ye e

= + +( ) − −

= − − +( )

= + − + +

    

   

    (( )

⎧

⎨

⎪
⎪
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⎩

⎪
⎪
⎪ y .

(3)

The system of equations (3) describes super-infection (p) precipitating the onset of

disease after a long period of latency (g), and reinfections (q) among MTB-negative

individuals whose immunological memory wanes. This system was used by [13], with

a = 0, to describe TB transmission taking into account the ‘fast’ and ‘slow’ evolution

to the disease after first infection with MTB: the parameter g represents the ‘slow’

onset of disease, while super-infection (parameter p) is used as a descriptor of ‘fast’

progression to TB. Immunosuppressed individuals may have increased g, and this is

another fast progression to TB.

Our intention is to assess the effects of varying the model’s parameters in the back-

ward bifurcation. We analyze the system (2) in steady states.

Assessing the effects of multiple infections and latent period on MTB
infection
The analysis of the model is given in Appendix B, where all equations referred to in

this section are found. On the basis of those results, we assess the role played by

super-infection (described by p), reinfection (q) and long latent period (g-1) in the

dynamics of MTB infection. We discuss some features of the model and numerical

results are also presented.

First, we analyze p~0, absence of super-infection. The results from this approach will

be compared with the next two cases. Secondly, we assess the case g~0, that is, the
onset of TB occurs after a period longer than the human life-span. This case deals

with human hosts developing a well-working immune response. Finally we return to

the case g > 0 and p > 0 in order to elicit TB transmission.

Modeling TB without super-infection

Here super-infection is not considered by letting p = 0 (this is the limiting case P®∞,

or p®0) in the system of equations (2). One of the main features of microparasite

infections [14] is that exposed individuals enter the infectious class after a period of

time, and super-infection does not matter during this period. Mathematical results are

readily available (see for instance [15]) so we reproduce them briefly here.

This case (p = 0 and g > 0) has, in the steady state, the trivial equilibrium point P0 =

(1,0,0,0) which is stable when R0 < 1, otherwise unstable, as shown in Appendix B.

With respect to the non-trivial equilibrium point, we present two special cases: q = 0

and q = 1.

When q = 1, a unique positive root exists for the polynomial Q y( ) , given by

equation (B.7), where the coefficients, given by equation (B.8) are, letting p = 0,
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,

with b0 and R0 given by equations (B.3) and (B.2), respectively. In this case, the solu-

tion y1 ,

y R1 0 1=
+( ) + +( )

+ + +( ) −( )    
    

,

is positively defined for R0 > 1.

Figure 1 shows the fraction of infectious individuals y1 as a function of the trans-

mission coefficient b. For b > b0 the disease-free community is the unique steady state

of the dynamical system. At b = b0 we have the trivial equilibrium y1 0= and, there-

after, for b > b0, we have a unique non-trivial equilibrium y . This point increases with

b to the asymptote lim



   →∞

∞
= = + + +y y1 1 .

In the absence of the re-infection among recovered individuals, q = 0, we have

y R0 0 1=
+( ) + +( )
+ + +( ) +⎡⎣ ⎤⎦

−( )     
      

,

Figure 1 The fraction of infectious individuals y as function of transmission coefficient b, when q = 1.
We present a qualitative bifurcation diagram in the case g≠0 and p = 0.
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reaching the asymptote lim



     →∞

∞
= =

+ + +( ) +
y y0 0 . As expected, the

case without re-infection presents lower incidence than that with re-infection [16]:

y y1 0> , and both cases have the same bifurcation value.

Let us make a brief remark about b0, the threshold of the transmission coefficient b,
which is one of the main results originating from the mass action law. Substituting the

threshold value b0, given by equation (B.3), into equation (B.2), we have

R0
0

= =
+( ) ×

+ +( )




 


  

,

which gives the average number of infections resulting from one infectious individual

(see [1] for details). However, the total contact rate can be expressed as b = b* N,

where b* is the per-capita contact rate. Substituting b by b*N in the definition of R0,

we can re-write it as

R
N

N0
0

= ,

where N0, the critical (or threshold) size of the population, given by

R0 =
+( ) + +( )    

 * , (4)

is the minimum number of individuals required to trigger and to sustain an

epidemic.

Let us suppose that a constant population size N is given. In this situation, b must be

greater than the threshold contact rate b0 to result in an epidemic. Conversely, let us

assume that the per-capita contact rate  * is given, but the population size varies. In

this situation, an epidemic is triggered only when the threshold population size N0 is

surpassed. Note that the critical population size N0 decreases as the per-capita contact

rate b* increases.

Modelling absence of natural flow to TB

Let us assess the influence of super-infection (p > 0) on the transmission of infection,

when the latent period is very large (biologically g ® 0, but mathematically we con-

sider g = 0). We are dealing with the case where the infected individuals remain in the

exposed class until they either catch multiple infections or die.

In the steady state of the system of equations (2), we have the trivial equilibrium

point P0 = (1,0,0,0), which is always stable, as shown in Appendix B.

With respect to the non-trivial equilibrium point, letting g = 0 in equation (B.8) with

lim



→

→ ∞
0 0 , we present two special cases: q = 0 and q = 1.

When q = 1, we have zero or two positive equilibria, which are the roots of the poly-

nomial Q y( ) given by equation (B.7), where the coefficients are
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a p

a p

a

2

1 1

0

=
= −( )
= + +( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

    ,

and b1 is, from equation (B.9), letting g = 0,

   1 1
1= + +( ) +

⎛

⎝
⎜

⎞

⎠
⎟

p
.

The polynomial Q y( ) has two positive roots y1
+ and y1

− , with

y
p

1
1

1
22

1 1
4±

=
−( ) ± −

+ +( )
−( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 


   

 
,

when  > c
1 , where  c

1 , from equation (B.13) with y = 0, is the turning value given

by

     c p
1

1
4= + + +( ) .

These positive roots collapse to a unique y1
* given by

y
p

p

1

1

4

2
4

*
=

+ +( )

+ + +( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   

    

at  = c
1 . For  < c

1 there are no positive real roots.

Figure 2 shows the fraction of infectious individuals y1
± as a function of the transmis-

sion coefficient b. For  < c
1 the disease-free equilibrium is a unique steady state of the

dynamical system. At  = c
1 , the turning value, there arises a collapsed non-trivial equili-

brium y1
* , called the turning equilibrium point P* [17], which is given by P* = (s*, e*, y*,

z*). Thereafter, for  > c
1 , two distinct branches of equilibrium values emerge from the

same y1
* . Hence,  c

1 is the threshold value since it separates the region where we have

eradication of the disease (  < c
1 ) from the region where it becomes endemic (  > c

1 ).

The large equilibrium y1
+ increases with b, reaching the asymptote lim

→∞

+
=y1 1 , while the

small equilibrium y1
− decreases with b, reaching the asymptote lim

→∞

−
=y1 0 .
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Let us consider the interval  > c
1 . In this interval we have, besides the stable equi-

librium point P0, two other equilibrium points P s e y z− − − − −
= ( )1 1 1 1, , , and

P s e y z− + + + +
= ( )1 1 1 1, , , , which are represented, respectively, by the lower and upper

branches of the curve in Figure 2. The unstable equilibrium point P- is called the

‘break-point’ [17,15], which separates two attracting regions containing one of the

equilibrium points P0 and P+. In other words, there is a surface (or a frontier) separat-

ing two attracting basins generated by the coordinates of the equilibrium point P-, e.g.

f s e y z1 1 1 1 0
− − − −( ) =, , , , such that one of the equilibrium points P0 and P+ is an attractor

depending on the relative position of the initial conditions G s e y z= ( )0 0 0 0, , , sup-

plied to the dynamical system (2) with respect to the surface f [18]. The term ‘break-

point’ was used by Macdonald to denote the critical level for successful introduction of

infection in terms of an unstable equilibrium point. The ‘break-point’ appears because

super-infection is essential for the onset of disease in the absence of natural flow to

the disease. When the transmission coefficient is low, relatively many infectious indivi-

duals must be introduced to trigger an epidemic; however, this number decreases as

b increases.

In the absence of the re-infection among recovered individuals, q = 0, we have for

the polynomial Q y( ) , given by equation (B.7), the coefficients

a p

a p

a

2

1 1

0
2

= +( )
= −( )
= + +( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

  

    ,

Figure 2 The fraction of infectious individuals y as function of transmission coefficient b, when q = 1.
We present a qualitative bifurcation diagram in the case g = 0 and p≠0.
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where b1 is the same as for the case q = 1. Hence, when  > c
0 , where  c

0 is

      c p
0

1
4= + +( ) + +( ) ,

we have two positive roots y +
0 and y −

0 given by

y
p

0
1

1
22

1 1
4±

=
−( )

+( ) ± −
+( ) + +( )

−( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  
  

    

 
.

Note that at  = c
0 the positive roots collapse to a unique y0

* ,

y
p

p

0

1

4

2
4

*
.=

+( ) + +( )

+( ) + +( ) + +( )⎡

⎣
⎢

⎤

⎦
⎥

     

       

The large equilibrium y0
+ increases with b, reaching the asymptote lim




 →∞

−
= +y0 ,

while the small equilibrium y −
0 decreases with b, reaching the asymptote lim

→∞

−
=y0 0 .

In comparison with the case q = 1, we have  c c
1 0< , and y y1 0

+ +
> and y y1 0

− −
< for

every b, and y y1 0
* *

> . This fact shows that re-infection acts: (1) to increase the inci-

dence; (2) to diminish the region of attraction of the trivial equilibrium point; and (3)

to decrease the turning value of the transmission coefficient.

Summarizing, when g = 0 and p > 0, the bifurcation diagram shows that: (a) for

 < c
q , q = 0,1, the trivial equilibrium P0 is the unique attractor; and (b) for  > c

q ,

we have two basins of attraction containing the stable equilibrium points P0 and P+,

separated by a surface generated by the coordinates of the unstable equilibrium

P s e y z ii i i i
− − − − −

= ( ) =, , , , ,0 1 . The break-point P- never assumes negative values.

Model for TB transmission

When p = 0, the forward bifurcation is governed by the threshold b0. When g = 0, we

have the turning value  c
q and the ‘break-point’ P- governing the dynamics, originating

the hysteresis-like effect [19]. The dynamics of MTB transmission encompassing both

super-infection and long latency are better understood as a combination of the pre-

vious results. We also take reinfection (q) into account, but analytical results are

obtained for q = 0 and q = 1. We assumed that the ‘fast’ progress to the disease is due

to super-infection (p > 0), while the ‘slow’ progress is due to a long period of time in

the exposed class (g > 0). Notice that the threshold transmission coefficient b0, given

by equation (B.3), decreases when incubation rate g increases: lim



→

= ∞
0 0 and
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lim


   
→∞

= + +( )0 . If the time of natural flow from exposed to infectious class

increases (g decreases), the threshold 0 increases and, as a consequence, the infection

encounters more resistance to becoming established in a community (b must assume a

high value in order to surpass b0).
In the previous two subsections, we showed particular sub-models. Here we use

results from Appendix B, stressing that when: (a) g>g+ and (b) g<g+ and (c) p<p0, the

dynamical behaviour is similar to that case without superinfection. Hence, we deal

with the case g<g+ and p>p0.

Let us consider g<g+ and p>p0 (the acquired immune response is not very strong). In

this case, the polynomial Q y( ) , given by equation (B.7), has in the range

  c
q < < 0 a large stable equilibrium y +

0 and a small unstable equilibrium y −
0 . This

behaviour accords with the result obtained with g = 0. However, when b >b0, the very

slow natural flow from exposed to infectious class affects the ‘break-point’. Even when

conditions g<g+ and p>p0 are satisfied, if the transmission coefficient surpasses the

threshold value b0, then the value of the ‘break-point’ P- becomes negative, and the

unique positive solution is an attractor. Therefore, as expected, when g≠0 and R0 > 1,

we have only one positive solution. Figure 3 shows this behaviour.

The backward bifurcation diagram shown in Figure 3 is a combination of the

diagrams shown in Figures 1 and 2. When  < + but the immune response is low

(p >p0), super-infection, which occurs during the incubation period (g-1) and promotes

a ‘short-cut’ to the onset of disease, is effectively an ally to supply enough infectious

individuals to trigger an epidemic. When the transmission coefficient is small

(  < c
q ), super-infection does not matter because the number of infectious individuals

is much lower than the critical number (see Discussion). But as b increases, more

infectious individuals arise by natural flow from the exposed class and approach the

Figure 3 The fraction of infectious individuals y as function of transmission coefficient b, when q = 1.
We present a qualitative bifurcation diagram in the case 0 < g < g+ and p > p0.
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critical number. The remaining infectious individuals, who become fewer with increas-

ing b, are furnished by super-infection. For this reason the dynamical trajectories

depend on the initial conditions and the ‘break-point’ decreases with increasing b.
However, when b >b0, super-infection does not matter, because the natural flow from

exposed to infectious class is sufficient to surpass the critical number. When the trans-

mission coefficient surpasses the threshold value b0, the ‘break-point’ P- becomes nega-

tive, meaning that the dynamical trajectories no longer depend on the initial

conditions. Nevertheless, this behaviour is not observed when p <p0 (strong immune

response), because the additional infectious individuals are not enough to attain the

critical number and the epidemic fades away.

We present numerical results to illustrate the TB transmission model, using the

values of the parameters given in Table 1, which are fixed unless otherwise stated. The

value for the threshold transmission coefficient is b0 = 5.2676 years-1, from equation

(B.3).

From the values given in Table 1 we calculate, for q = 0: the critical parameter b1 =

6.1335 years-1, from equation (B.16), the critical proportion P0 = 1.014, and the critical

incubation rate g+ = 0.0099 years-1, from equation (B.17). Note that for  > + , which

implies p0 > 1, we have b1 >b0, for which reason  c
0 and Rp are not real numbers (see

equation (B.18) for  c
0 ). For q = 1 we have: the critical parameter b1 = 4.5710 years-1,

from equation (B.9), the critical proportion p0 = 0.6281, from equation (B.10), the criti-

cal incubation rate g+ = 0.01588 years-1, from equation (B.12), the lower bound for the

transmission coefficient  c years1 1= −4.7343 , from equation (B.13), and the turning

value Rp = 0.8988, from equation (B.15). In this case we have backward bifurcation,

and we have y1 0 01725
*

.= from equation (B.14).

Figure 4 shows the equilibrium points (for q = 1), the solutions of the polynomial

Q y( ) given by equation (B.7), as a function of the transmission coefficient b. The

curve on the right (labelled 1) corresponds to the case g <g+ and p >p0, while the curve

on the left (labelled 2) to g = g+ (at g = g+ we have p0 = 1 and b0 = 4.0679 years-1). At

g = g+, and above this critical value, the backward bifurcation disappears. We observe

hysteresis in the backward bifurcation diagram (curve 1): b is decreased below the

threshold value b0 but disease levels do not diminish until b<b c.

The bifurcation diagram shown in Figure 4 reveals some important features with

respect to backward bifurcation, which occurs when g <g+ (and p >p0). However,

Table 1 The values assigned for the model’s parameters

Parameters Values Units

μ 0.016 years-1

a 0.01 years-1

g 0.01 years-1

δ 2.0 years-1

b 4.9 years-1

p 0.8 –

q 1.0 –
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increasing only the parameter g (to enhance this behaviour, we let g = g+), the fraction

of infectious individuals y1( ) is greater than the large value ( y1

+ ) corresponding to

the case g <g+. As we have pointed out, when g increases, b0 decreases, so R0 increases

for fixed b. For this reason the curve with respect to the number of infectious indivi-

duals corresponding to a fixed g, say  , always envelops all curves obtained with g

lower than  , when all other parameters are fixed.

Comparing results obtained from q = 0 and q = 1, we conclude that there is a critical

value for q, named qc, below which we have no backward bifurcation. Let us determine

this value. For each q, the equation Q y* ,( ) given by (B.5) with the coefficients

given by equation (B.6), is such that a3
* does not depend on b, while a a2 1

* *, and a0
*

do. Hence, we will write it as Q y* ,( ) . When g <g+ and p >p0, at  = c
q we have a

single positive solution yq
* , from which two positive solutions arise in the range

  c
q < < 0 . According to Figure 4 (curve 1), we observe that

d

dy

 = 0

Figure 4 The fraction of infectious individuals y as function of transmission coefficient b. The curve
on the right (labelled by 1) corresponds to the values given in Table 1 (resulting in g <g+); and for the
curve on the left (labelled by 2), we changed only g, g = 0.01588 years-1 (resulting in g = g+). In the curve
representing the backward bifurcation, the solid line corresponds to the stable branch ( y

+ ) and the
dotted line to the unstable branch ( y

− ). Here we have q = 1 and p >p0. In this case backward bifurcation
occurs over a narrow range (  c

1 4 7343= . and b0 = 5.2676 both in years-1).
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at  = c
q . To determine  c

q , we differentiate both sides of the equation

Q y* ,( ) = 0 by y , resulting in

d

dy
Q y* , ,( ) = 0

or

d

dy
Q y

y
Q y Q y

d

dy
* * *, , , . 




( ) = ∂
∂ ( ) + ∂

∂ ( ) = 0

But at  = c
q , we have

d
dy
 = 0 , so ∂

∂ ( ) = Q yq c
q* *

, 0 . We must search for a

positive solution of the system

a y a y a y a

a y a y a

3

3

2

2

1 0

3

2

2 1

0

3 2 0

* * * *

* * *

  

 

( ) + ( ) + ( ) + =

( ) + ( ) + =

⎧

⎨
⎪

⎩⎩
⎪

(5)

in terms of  , y( ) . The solution is  c
q

qy,
*( ) .

When q assumes its positive critical value, qc, we must have  c
q = 0 and y qc

*
= 0 ,

and the algebraic system (5) becomes a0 0* ( ) = and a1 0* ( ) = . At   = =c
q
c

0 ,

we have a0 0 0* ( ) = , and qc can be found from a1 0 0* ( ) = , that is,

q
p

c =
+( ) +( ) +⎡⎣ ⎤⎦ − + +( )         



2

2 .

Using the values of the parameters given in Table 1, we obtain qc = 0.5542. There-

fore, for 0 ≤ ≤q qc , the backward bifurcation disappears. Additionally, we can deter-

mine the value of g, say gmin, such that qc = 0. Again, using the values of the

parameters given in Table 1, we obtain gmin = 0.008405 years-1. Hence, if g <gmin, we

have qc < 0 and backward bifurcation exists for all values of q. When g = 0.008405

years-1, lower than the value given in Table 1, we have b0 = 5.8828 years-1. In this

case, we found  c
0

0= and qc = 0, resulting in y0 0
*

= . When q = 1, we have b1 =

4.569 years-1, p0 = 0.5275, Rp = 0.8132, and y1 0 0225
*

.= .

Considering the values given in Table 1, except g = 0.008405 years-1, let us obtain

the solution  c
q

qy,
*( ) for each q. In Figures 5.a and 5.b we show, respectively,  c

q

and y q
* as functions of q. We apply the Newton-Raphson method to solve the alge-

braic equation (5). As an initial guess to solve the nonlinear system, we used previously
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calculated values at q = 0:  c years0 0 15 8828= = −. and y0 0
*

= . As q increases,  c
q

decreases and y q
* increases. Re-infection enlarges the range of b in which backward

bifurcation in may occur.

Let us change only the value of the incubation rate in Table 1 obtained according to the

following reasoning. Let us assume that the probability of a latently-infected person pro-

gressing to TB at age a follows an exponential distribution, or p e a= − −1  (for the sake of

simplicity, we assume primary infection at birth). If we assume that the probability of endo-

genous reactivation at life expectancy (for instance, a = 100 years) is 10%, then we estimate

g = 0.0011 years-1 (for 5%, we have g = 0.00051 years-1). Hence, let us set g = 0.001 years-1,

lower than gmin. In this case we have b0 =34.442 years-1. The new evaluations for q = 0 are:

b1 = 4.716 years-1, p0 = 0.0664, g+ = 0.0099 years-1,  c years0 15 1107= −. , Rp = 0.1484, and

y0 0 03862
*

.= . For q = 1, we have: b1 = 4.560 years-1, p0 = 0.0625, g+ = 0.01588 years-1,

 c years1 14 9438= −. , Rp = 0.1435, and y1 0 03884
*

.= . In this set of parameter values, we

have qc = -190.2, and backward bifurcation occurs for all values of q. In the best scenario

(q = 0), we have Rp = 0.1484, showing an extremely dangerous epidemiological situation

promoted by both super-infection and reinfection (the threshold b0 is very high).
Let us compare the results obtained using the values given in Table 1 with the set of

values at which we decrease only the value of the incubation rate tenfold, that is, g = 0.001

years-1. We obtain: b0 = 34.442 years-1, increasing around six and half times; p0 = 0.0664

(when q = 0), decreasing around fifteen times; and  c
1 (for q = 1) varies little, but Rp

decreases more than six times. Increasing the incubation period diminishes the risk of TB

transmission, but the ‘short-cut’ to TB promoted by super-infection makes the transmis-

sion of MTB practicable for some range of values of the transmission coefficient (b0 =

5.2676 years-1 corresponding to Table 1, and  c years0 15 1107= −. in this case with q = 0).

Backward bifurcation occurs in the interval   c
q < < 0 . b0 does not depend on p

and q, but  c
q does. Let us study how the lower bound (  c

q ) and the length

Figure 5 We show the critical transmission coefficient  c
q (a) and y q

*
(b) as a function of q. Using

the values of the parameters given in Table 1, except g = 0.008405 years-1, we have qc = 0, and y0
* . In

this set of values the backward bifurcation exists for all q.
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(  0 < c
q ) of occurrence of backward bifurcation depend on the incubation rate g. In

Figure 6 we illustrate this using the values given in Table 1. For q = 0 and q = 1 we

calculate the lower bound  c
q , and the threshold that does not depend on q. When q

= 0, we have the least likelihood of backward bifurcation: (a) for this reason we have

 c c
0 1> for each g, and (b) we have the lowest value for g, say gmin, above which

backward bifurcation disappears and forward bifurcation dominates the dynamics

(Figure 6.a). Figure 6.b shows that the range of b at which we have two positive solu-

tions (backward bifurcation) increases quickly for g = 0.002 years-1, and blows up for g
< 0.001 years-1. The lowest value above which the backward bifurcation is substituted

by forward is gmin = 0.0128 years-1 for q = 1 (  0
1 14 55= = −
c years. ), and gmin =

0.00838 years-1 for q = 0 (  0
0 15 891= = −
c years. ).

In Figure 7 we illustrate the backward bifurcation when the immune system mounts a

strong response. We use the values given in Table 1, except p = 0.01. The backward

bifurcation occurs for very low incubation rate, and the lower bound of the transmission

coefficient (  c
q ) is practically constant but situated at a higher value (200 years-1). This

value is more than approximately 40 times the lower bound observed in the previous

case (Figure 6.a). Once eradication of TB is achieved when  < c
q , a strong immune

response, by administrating an appropriate stimulus to immune system, can easily eradi-

cate MTB transmission. The lowest value above which the backward bifurcation is sub-

stituted by forward is gmin = 0.0001595 years-1 for q = 1 (  0
1 1205= = −
c years ), and

gmin = 0.0001595 years-1 for q = 0 (  0
1 1207= = −
c years ).

Figure 6 The threshold (b0) and lower bound (  c
q , for q = 0 and 1) transmission coefficients as a

function of the incubation rate g, using values given in Table 1. b0 (multiplied by a factor 100) and

 c
1 are decreasing functions, while  c

0 is an increasing function, with   0
0 1> >c c . When q = 1,

they assume the same value (  0
1 1= = −
c years4.55 ) at g = 0.0128 years-1, and for q = 0, they

assume the same value (  0
0 1= = −
c years5.891 ) at g = 0.00838 years-1 (a). At a given g, the

difference between b0 and  c
1 (or  c

0 , which is practically the same) corresponds to the range of b at
which two positive solutions are found (b).

Yang and Raimundo Theoretical Biology and Medical Modelling 2010, 7:41
http://www.tbiomed.com/content/7/1/41

Page 17 of 37



Figure 8 shows the dynamical trajectories considering the values given in Table 1

(    1
1

0< < <c ). Figures 8.a and 8.b illustrate the case in which the dynamical tra-

jectories are well defined disregarding the initial conditions. In this case, the initial

conditions ( s s e e y y z z0 1 0 1 0 1 0 11= = = +( ) =
− − − −
, , , , where ε = 0.001) deviate

slightly from the unstable non-trivial equilibrium, which has coordinates P- =

(0.5236,0.2786,0.00298,0.1949)and divides two attracting regions. From Figure 4, it is

easy to conclude, before numerical simulation, that the trajectories achieve a non-

Figure 7 The threshold (b0) and lower bound (  c
q , for q = 0 and 1) transmission coefficients as a

function of the incubation rate g, using p = 0.01; all other values are those given in Table 1. b0,
 c

0 and  c
1 are decreasing functions, with   0

0 1> >c c . When q = 1, they assume the same value
(  0

1= c = 205 years-1) at g = 0.0001595 years-1, and for q = 0, they assume the same value (  0
0= c

= 207 years-1) at g = 0.000158 years-1 (a). At a given g, the difference between b0 and  c
1 (or  c

0 , which
is practically the same) corresponds to the range of b in which two positive solutions are found (b).

Figure 8 The dynamical trajectories using values given in Table 1. In (a) the initial conditions supplied
are G s e y z= ×( )− − − −

1 1 1 10 999, , . , ; and in (b), G s e y z= ×( )− − − −
1 1 1 11 001, , . , . In the former case,

the initial conditions are contained in the region of attraction of P0, while in the latter, P+. Here we have q
= 1, g < g+, p > p0 and b >b0.
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trivial equilibrium point P+ if y y0 11= −( ) −
 and a trivial equilibrium P0 otherwise.

However, if the initial conditions deviate markdly from P-, we cannot identify the

attracting point unless a numerical simulation is performed. In general, we have a

boundary formed by the coordinates of the break-point, or a surface satisfying the

equation f s e y z1 1 1 1 0
− − − −( ) =, , , , that divides two attracting regions containing P0 and

P+. Hence, in special cases, such as the example shown in Figure 8, we can predict the

outcome, which is not the case for general initial conditions G = (s0, e0, y0, z0) supplied

to the dynamical system (2). The dependency on initial conditions disappears when

 1
1< c (the attractor is the trivial equilibrium point P0) and b <b0 (the attractor is

the unique P+).

Figure 8 was obtained using the set of values given in Table 1. In this case we have

R0 = 0.93, lower than one but greater than Rp = 0.8999, which is the reason for pre-

senting trajectories depending on the initial conditions. Moreover, the initial condition

for infectious persons y0 is 0.002977 (Figure 8.a) or 0.002983 (Figure 8.b), which is

lower than y1 0 01725
*

.= (at b = b1). This set of initial conditions showed a very long

time delay before the stable equilibrium point was achieved (that is, the plateau of the

curve), in which case constant population size is not a good approximation. However,

using the same initial conditions, and changing only the transmission coefficient yield-

ing R0 = 2 (b = 10.535 years-1), the equilibrium point (plateau of the curve) is achieved

earlier, at around 4.5 years, and for R0 = 5 (b = 26.338 years-1), at 1.2 years (figures

not shown).

Figure 8 was generated for a sufficiently weak immune response. If we change only

the value of p in Table 1, such that it is diminished below its critical p0, p = 0.5, the

attracting region contains the trivial equilibrium point P0, independently of the initial

conditions (figure not shown). In this case we do not have the backward bifurcation.

On the other hand, if we change only the value of the transmission coefficient in

Table 1, so as to surpass the threshold value, i.e. b = 6.0 years-1 (b > b0), we have only

one attracting region and, independently of the initial conditions, the dynamical system

goes to the asymptotic equilibrium P+ (figure not shown). When the transmission coef-

ficient exceeds its critical value the attracting region of P0 disappears (the ‘break-point’

P- becomes negative), except when the initial conditions are G = (1,0,0,0).

Summarizing, forward bifurcation generally predominates in the analysis of the sys-

tem of equations (2). However, when the natural progression of the infection is very

slow and the rate of super-infection is high, we observe the hysteresis effect (backward

bifurcation). Additionally, the initial conditions supplied to the dynamical system affect

the trajectories only in the range   c
1

0< < . As we have pointed out (in the case

q = 1, absence of immune response), when  < + (very slow onset of disease) and

p > p0 (high rate of super-infection owing to weak immune response), we have two

positive solutions in the interval   c
q < < 0 . Another important parameter is rein-

fection. When the immune response enhances the response against MTB among cured

persons, there is a critical immune response, qc, below which the backward bifurcation
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disappears (q < qc). Hence, the general conditions for backward bifurcation are: (1)

 < + (long period of latency); (2) p > p0 (weak immune protection); and (3) q > qc

(weak immunological memory). Note that qc can assume a zero value depending on

the values assigned to the model’s parameters. As we have shown above, when g =

0.008405 years-1, lower than the value given in Table 1,  c
q = 0 and y0 0

*
= because

qc = 0, implying that the backward bifurcation always occurs for all ranges of q.

Discussion
With respect to the model described by system (2), Lipsitch and Murray [20] claimed

that the existence of multiple equilibria depends on unrealistic assumptions about the

epidemiology of TB. They argue that, if (1) the probability that a contact between an

infectious person and a susceptible person will lead to disease is  
 + , and (2) the

corresponding expression is bp for the contact between an infectious person and a

latently infected person, then p < +


  . The reason behind this is that latent infec-

tion provides some immunity to reinfection. However, because p0 > +


  , the condi-

tion p > p0 implies p > +


  , a contradiction.

Note that the model described by system (2) is treated as an approximation of the

general model given by system (1), which eliminates the unrealistic assumptions about

the epidemiology of TB pointed out in [20]. The approximations to simplify the gen-

eral system are the following. When s << e and z << e, which is true for g~0 and b >>

1, we have p ys q yz p ye’ ’  + << . In addition, if we deal with the limiting conditions

p ’ << 1 and q ’ << 1 , then (supposing the latter approximation is corroborated)

1 +( ) ≈p ys ys’   and q q yz q yz+( ) ≈’   , remembering that q q’ < and q can

exceed unity. The above suppositions are reasonable, if, for instance, g = 0.001 years-1,

in which case we obtained b0 = 34.442 years-1 and p0 = 0.0664, and we can choose suf-

ficiently large b and small p (remembering that p < p’). Moreover, we showed that

backward bifurcation exists for all values of q for that value of g. For g = 0.0001 years-1

(corresponding to 1% of endogenous reactivation of TB at a = 100 years) and q = 1 we

obtain b0 = 326.186 years-1 and p0 = 0.00625.

In developing countries, the above assumptions are quite valid. Let us understand

that system (2) is an approximation of system (1) when primary TB and relapse to TB

of cured individuals are negligible in comparison with super-infection. Hence, the

unrealistic system (2) provides us with approximate results of biologically feasible mod-

elling, and our results must be interpreted with caution.

The so-called backward bifurcation occurs over a very narrow range of incubation

rate g, that is,  < + , with  + < . Additionally, we must have high levels of super-

infection (owing to a weak immune response, satisfying p > p0) and reinfection (owing

to a waning immunological memory, satisfying q > qc). The main aspects of backward

bifurcation are (i) the dependency of the trajectories on the initial conditions supplied
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to the dynamical system   c
q < < 0 , and (ii) the lack of positive equilibrium for

 < c
q , with  c

q < 0 . However, the trajectories of the dynamical system do not

depend on the initial conditions when the threshold transmission coefficient b is above

the threshold b0: for b ≥ b0, the unstable branch assumes negative values. In all other

cases, that is, (i) g < g+ and p ≤ p0 and (ii) g ≥ g+, we observe a forward bifurcation at

R0 = 1.

With respect to g+, it seems natural that one of the conditions necessary to yield

backward bifurcation is g < g+. When g > μ, or g-1 < μ-1, the onset of disease occurs

during the average survival time of humans and, as a consequence, infectious indivi-

duals accumulate because of the natural history of disease, for which reason super-

infection only increases the incidence, and the dynamics is ruled only by b0 (or R0),

the threshold value. However, if an infectious disease presents a very long period of

incubation, larger than the average survival time of the host (μ-1), then it seems rea-

sonable that super-infection changes the dynamics: the dynamical trajectories depend

on the initial conditions for low values of the transmission coefficient relative to the

critical value b0. Hence super-infection acts as a ‘short cut’ to increase the number of

infectious individuals and, when the critical number is surpassed, an epidemic is trig-

gered at high level (hysteresis).

Let us understand the role of the initial conditions supplied to the dynamical system

in the range   c
q < < 0 , for g < g+ and p > p0.

In a primary infection, low transmission rate (we are considering that   c
q < < 0 ,

that is, R0 < 1) implies that a small number of susceptible individuals are transferred to

the exposed class. In the absence of super-infection, the number of infectives is not

sufficient to maintain the disease. The threshold theory establishes that the disease

fades away regardless of the number of infectious (or latent) individuals introduced in

the community because b is below the critical level (b0) to trigger and maintain an epi-

demic. Notice that the first infection has as target all the susceptible individuals, while

the second infection needs to target only the exposed individuals. However, super-

infection among individuals dammed in the exposed class increases the number of

infectious individuals because of the ‘short cut’ to onset of disease. For this reason, if a

few infectious individuals (y0) are introduced into a community free of disease, so that

it is above the critical number given by the equation (4), then an epidemic will be trig-

gered and a long-term level of epidemic will be maintained. The is possible because

the additional increase in the number of infectious individuals due to super-infection is

essential to surpass the critical number, which is unreachable by natural flow from the

exposed to infective class alone. For this reason the trajectories of the dynamical sys-

tem depend on the initial conditions supplied to it. Notice that the critical number of

infectious individuals being introduced into a community decreases as the transmission

coefficient increases, and, when b ≥ b0, the natural flow from the exposed to infective

class is sufficient to yield a number infectious individuals above the critical value.

The occurrence of backward bifurcation is situated in a very restrictive range of the

incubation period. This period must exceed the human life-span, in which case

the number of individuals with TB disease must be very low. However, according to

Figure 4, lowering the incubation period (g-1) is more dangerous than the behaviour
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due to super-infection: the increase in g decreases b0 (g from 0.0001 to 0.01 results in

b0 from 326.186 to 5.2676 and  c
1 from 4.9593 to 4.7343, all in years) and the curve

relating to forward bifurcation envelops the curve corresponding to backward bifurca-

tion. Notice that  c
1 is quite unchanged, while b0 is decreased drastically. However, we

must be aware of the maintenance of TB (in a very low incidence) even when the

transmission coefficient is lower than its threshold value. The increasing trend in the

world of diabetes, which induces moderately immunocompromising conditions [21],

can change TB incidence among elders.

The increased incidence of AIDS has led to the resurgence of TB in regions where

this disease was considered eradicated. MTB infection is now considered as an indica-

tor of HIV infection [22,23], and TB can be considered the main opportunistic disease

for AIDS. However, in developing countries, owing to the endemic character of TB

[24], there is no well established correlation between AIDS and TB.

In many developed countries, TB transmission, which was considered controlled

until the advent of AIDS, has re-emerged [6]. One explanation is the shortening of the

incubation period due to immunosuppression as a consequence of AIDS. According to

this point of view, when g is increased, the threshold transmission coefficient b0 is

decreased, according to equation (B.3). If the transmission coefficient b is low, then

lowering b0 can be sufficient to ensure that the basic reproduction ratio R0 is greater

than one. Hence, we expect that TB should be maintained at low prevalence. When

the onset of TB due to AIDS does not explain the epidemiological findings fully, in

this case super-infection [25] should be an agent enabling a ‘short cut’ to the quick

onset of TB disease. Let us consider developed countries where TB is controlled, and

assume that g < g+. If we consider that g is increased due to AIDS, but is not sufficient

to decrease b0 below b, as we did before, then another way to explain the re-emer-

gence of AIDS is to evoke super-infection acting as a ‘short cut’ to the onset of TB. In

this situation, if AIDS is able to generate sufficient TB diseased individuals, then even

at a low transmission level, but in the range  c
q , 0

⎡
⎣

⎤
⎦ , the disease must be maintained

at endemic level, according to the backward bifurcation. We stress that re-infection

decreases  c
q (Figure 5.a), which is another source for the re-emergence of TB.

Let us consider the parameters values given in Table 1. In Table 2 we present the

special values of the transmission coefficients (b0 and  c
q ) considering four values of

g. We also calculated for a strong immune response, that is, p = 0.01. In this case,

Table 2 For different values of g, we present the threshold (b0) and lower bound (  c
q ,

for q = 0 and 1) of the transmission coefficients (all in years-1)

p = 0.80 p = 0.01

g b0  c
0  c

1  0
0− c  0

1− c  c
0  c

1  0
0− c  0

1− c
0.01 5.2676 – 4.7343 – 0.5333 – – – –

0.001 34.442 5.1107 4.9438 29.3313 29.4982 – – – –

0.0001 326.19 4.9763 4.9594 321.2137 321.2306 208.07 208.82 118.12 119.37

0.00001 3243.6 4.9626 4.9609 3238.6374 3238.6391 208.24 208.11 3035.4 3035.5

In the last two columns we present the range over which backward bifurcation occurs (  0 − c
q ). For g = 0.001

years-1, we have no backward bifurcation for q = 0 (  c
0 does not exist). We considered p = 0.8 and p = 0.01, and the

values of other parameters are those given in Table 1.
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when g = 0.00016 years-1, we have b0 = 204.626 years-1 and a slightly higher b1 =

204.642 years-1, hence backward bifurcation disappears.

In Figure 9 we present the bifurcation diagram in the case of a strong immune

response, that is, p = 0.01. We consider two values of g (in years-1): 0.0001 (backward

bifurcation) and 0.00016 (forward bifurcation, with b0 = 204.626 years-1, and below

this value the negative values were changed to zero), shown in Figure 9.a. In Figures 9.

b and 9.c we zoom near, respectively, the lower bound (  c years1 1208 82= −. ) and

threshold (b0 = 326.19 years-1, and above this value the negative values were changed

to zero) transmission coefficients with respect to the backward bifurcation. When b =

326.19 years-1, corresponding to the threshold in the backward bifurcation, in the case

of the forward bifurcation we have R0 = 1.59. At this value of R0 we have a nearly

37.6% prevalence of active TB. Notice that the curve of forward bifurcation envelops,

but is practically coincident with, the stable branch (large equilibrium point) of the

backward bifurcation. On the other hand, the unstable branch (small equilibrium

point) of the backward bifurcation is situated near zero prevalence. The trivial equili-

brium is unstable in the forward but stable (below b0) in the backward bifurcation.

When p = 0.8 (see Figure 4), a weak immune response, we have for two values of g (in
years-1): 0.01 (backward bifurcation) and 0.0129 (forward bifurcation, with b0 =

4.53887 years-1). When b = 5.2676 years-1, corresponding to the threshold in the

Figure 9 The bifurcation diagram (a) in a strong immune response, that is, p = 0.01, for two values
of g (in years-1): 0.0001 (backward bifurcation, labelled 1) and 0.00016 (forward bifurcation, with b0
= 204.626 years−1 , labelled 2). We give, in (b) and (c) respectively, a zoom near the lower bound
(  c years1 1= 208.82 − ) and threshold (b0 = 326.19 years-1) transmission coefficients with respect to the
backward bifurcation.
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backward bifurcation, in the case of the forward bifurcation we have R0 = 1.16. How-

ever, when b = 326.186 years-1, corresponding to the threshold in the backward bifur-

cation with g = 0.0001 years-1, in the case of the forward bifurcation with g = 0.0129

years-1 we have R0 = 71.87.

The immune response is affected by many factors, among them nutritional status,

health conditions and genetic factors. As we have shown in Figures 4 (weak immune

response) and 9 (strong immune response), a weakening of the immune response facil-

itates the appearance of backward bifurcation in the sense of shortening the incubation

period (see Table 2). Moreover, a shortening of the incubation period due to immuno-

suppression, for instance, tends to eliminate this kind of bifurcation. However, back-

ward bifurcation is not a catastrophic behaviour because of these major aspects: a

small increase in the incubation rate results in forward bifurcation, which envelops the

curve of backward bifurcation, and the unstable branch (small positive solutions) is in

general so low that is confounded with the zero value.

Conclusions
The model proposed here is an approximation of the general model that takes into

account primary TB, according to system (1). A simplified model taking into account a

very long latent period and super-infection in the exposed class (MTB positive) and

reinfection of recovered individuals (MTB negative) was analyzed. Using the results

obtained from this restrictive model, our main purpose was to understand better the

dynamics of MTB transmission. Specifically, the occurrence of backward bifurcation

was assessed in terms of the parameters g, p and q, because this kind of bifurcation

causes hysteresis-like behaviour. (Analytical results were obtained for q = 0 and q = 1.)

Backward bifurcation is encountered when the latent period is very large, that is, g < g
+, a very low incubation rate. For instance, this kind of bifurcation occurs, considering

the values given in Table 1, when  < =’ .0 0128 , where  ’ .< =+ 0 01588 (years-1).

Additionally, we must have a weak immune response, that is,p > p0, and quickly waning

immunological memory,q > qc. Varying the re-infection (q) from 0 to 1 resulted in small

variations with respect to g in  c
1 , i = 0,1 (Figure 6), the lower bound of the transmis-

sion coefficient b at which backward bifurcation occurs. Small variations with respect to

g in  c
q are also found by varying super-infection (p) from 0.8 to 0.01; however, the

order of magnitude of  c
q is increased (from 5 to 200, in years-1).

The long latency of MTB-positive persons plays a major role in MTB infection. From

Figure 6, obtained using values given in Table 1, we conclude that:

(1) If latency is extremely long (for instance, g< 0.001 years-1, which roughly corre-

sponds to the probability of endogenous reactivation being less than 10% at age 100

years) then super-infection is needed to move latently infected persons more quickly

into active TB, to maintain TB. Otherwise, virtually everyone would die naturally

before they progressed and they would not transmit their TB. In this situation back-

ward bifurcation promoting the hysteresis effect can maintain TB at an endemic level.

(2) If latency is not so long (for instance, g > 0.001 years-1), backward bifurcation can

occur. However, the range of transmission coefficients over which this kind of bifurca-

tion can occur is small, and any external effects (for instance, immunosuppression due
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to diabetes or AIDS) that shortens the latent period can result in TB propagation at

higher endemic levels than that predicted by backward bifurcation (see Figure 4). Addi-

tionally, an increase in the incubation rate decreases the threshold transmission coeffi-

cient (b0), which is an important aspect of MTB transmission. In developing countries,

the decline in TB cases can be understood as b < b0, or near b0. The resurgence of TB

cases after endemic transmission of HIV is due to b being larger than its threshold,

which can be explained by a decrease in b0 that results in R0 > 1.

The model considered here does not produce a backward bifurcation under realistic

conditions. However, understanding it as an approximation to a realistic model, we

observed that this kind of bifurcation is relevant when the latency is very long. Back-

ward bifurcation is indeed an important aspect that must be taken into account by

health authorities when they act to interrupt MTB transmission, but this kind of bifur-

cation is strengthened when the incubation rate is very small. However, when this rate

is not so small, backward bifurcation is not so prominent, and any factor (immunosup-

pression) that leads to an increase in the incubation rate results in a decrease in the

threshold transmission coefficient b0, and potentially can result in R0 > 1. The disap-

pearance of the break-point (the small positive solution assumes negative value) is

another source of difficulty in controlling efforts because intervention must be so effi-

cient in order to treat and isolate all infectious individuals. Moreover, the intervention

must be continued, because the control of TB (trivial equilibrium) is unstable.

The results presented here approximate to the general model given by equation (1),

which will be analyzed in a future paper. We will study the effects of long latency tak-

ing into account primary progression, super-infection and re-infection of MTB

infection.

Appendix A: Biology of TB
Tuberculosis (TB), a chronic infection usually affecting the lungs, claims more lives

worldwide than any other infectious disease. It is caused by bacilli of the Mycobacter-

ium tuberculosis (MTB) complex (M. tuberculosis, M. bovis, M. africanum and

M. microti). MTB infects one third of the world’s population and causes 8 million new

cases of tuberculosis and approximately 2 million deaths each year. The two factors

essential for its rapid spread are crowded living conditions and a population with little

native resistance [26]. Despite a predominantly urban epidemiology, large tuberculosis

outbreaks have also affected small communities [27].

In the vast majority of TB cases, this occurs through the forced expiration when a

sputum smear-positive person coughs, sneezes, sings or speaks, aerosolizing respiratory

droplets of varying size. Each cough for instance generates thousands (around 3000) of

smaller particles in the order of 1 to 5 μm, known as “droplet nuclei”, which contain

from one to three viable mycobacteria; talking for 5 minutes produces an equal num-

ber, and sneezing many more than that [26]. Transmission occurs when as few as one

infectious particle is subsequently inhaled and deposited in the terminal alveoli of

another person. The likelihood of this is a function of the concentration of droplet

nuclei containing viable bacilli and the quantity of infected air that is inhaled. Thus,

transmission is most likely to occur with prolonged contact in poorly ventilated envir-

onments [28].
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In general, approximately 3-4% of infected individuals acquire active tuberculosis

during the first year after tuberculin conversion, and a total of 5% to 15% do so there-

after. These estimates are based on heavy exposures during disease-prone periods of

life. Persons infected with small inocula or during disease-resistant periods probably

have much smaller risks, whereas the risk of progression in immunocompromised per-

sons is greater. The likelihood of active disease developing varies with the intensity

and duration of exposure. Persons with intense exposures are most at risk not only for

infection but also for disease. It seems likely that active TB may ultimately develop in

all persons with acquired immunodeficiency syndrome (AIDS) who are tuberculin

positive [26].

Following transmission, infection occurs when MTB is phagocytosed by an alveolar

macrophage. In the majority of cases the infectious process is arrested by the host’s

generation of a cell-mediated immune response. The sequence of events that ensues

after phagocytosis of mycobacteria by macrophages involves the interaction of different

T-cell subsets and their soluble products, as well as macrophages and other inflamma-

tory cells. Mycobacteria have a variety of mechanisms that allow them to resist killing

by inactivated macrophages, and thus to proliferate, essentially unchecked in this intra-

cellular environment. At the same time, antigenic epitopes of the microorganism are

processed for presentation to and recognition by T cells. This T-cell recognition and

the subsequent release of cytokines leads to a state of macrophage activation and gran-

uloma formation that, in the majority of cases, results in the suppression of mycobac-

terial proliferation. In over 95% of cases this immune response achieves the

containment of MTB but does not completely eradicate it. This leaves the person

infected with bacilli. During this latent phase, clinical manifestations of TB are mild

and nonspecific and generally go undiagnosed [28].

Progression from latent to active disease is dictated by the balance between the viru-

lent properties of the organism and the host defences. Infection remains controlled in

90% of infected persons, who will live their whole lives oblivious to the fact that they

harbour viable mycobacteria. Overall, 5% of patients progress to disease within 2 years

of infection, and another 5% do so during the reminder of their lives. These numbers

are dramatically different in patients who have compromised cell-mediated immune

systems. The likelihood of progression to active disease over the patient’s lifetime is

increased by a factor of 2 to 3 in persons with moderately immunocompromising con-

ditions, e.g. diabetes. However, in patients with advanced human immunodeficiency

virus (HIV) infection, progression to disease within 3 months of infection occurs in as

many as one third of cases and the rate of subsequent progression is 7% to 10% per

year [28].

Pulmonary TB may occur soon after infection (primary tuberculosis) or well after the

primary focus have been contained (reactivation or postprimary disease). In the former

case, failure of the host’s immune response to contain the initial focus of infection

results in progressive disease at the site of initial implantation. Reactivation is the

result of proliferation of organisms in a previously dormant focus of infection, usually

implanted during the primary dissemination phase of the infection, often in the distant

past. In contrast to the primary case, which may occur anywhere in the lung, reactiva-

tion disease most often affects the apical posterior segments of the upper lobes, and is

characterized by chronicity and progressive worsening [28].
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Resistance to exogenous reinfection in the previously infected host is generally so

great that new inocula are destroyed before significant multiplication occurs, with

nearly all cases of active tuberculosis in such patients reflecting reactivation of latent

foci. Although this is probably true in developed countries where the level of contagion

is low, when contagion is high, exogenous reinfection is the rule [29]. Airflow in the

apical posterior areas of the lung is low, but when inhaled droplet nuclei reach that

location, as is more likely with high levels of contagion, bacillary multiplication will be

favoured by the same local factors that enhance multiplication of blood-borne organ-

isms [30,31]. Repeated inhalational exposures to tubercle bacilli maintain a high degree

of tissue hypersensitivity and cellular immunity, making superinfection more difficult;

however, when the airborne inoculum is large, or in immunocompromised hosts,

super-infection can occur [26].

Tuberculosis is the prototype of infections that require a cellular immune response

for their control. Although abundant antibodies are also produced during infection,

these play no apparent role in host defence mechanisms. Two important populations

of CD4 T cells can be identified in the response to mycobacterial infection: Th1 cells

produce interleukin 2 (IL-2) and g-interferon, which act as effector and regulatory ele-

ments in the cellular immune response; and Th2 cells produce IL-4, IL-5, IL-6 and IL-

10, and provide help to B cells in the production of different immunoglobulins and the

regulation of the humoral immune response [28]. The sustained immunity to new

infection that follows natural infection is most likely due to the persistence of viable

tubercle bacilli in the tissues with in vivo boosting. In tuberculin-positive persons,

endogenous foci may reactivate repeatedly, and active CD4 lymphocyte surveillance is

necessary to maintain quiescence [26]. Generally, the induction of T cell memory is

characterized by a number of distinct phases [32]. Following antigen (Ag) priming, Ag-

specific T cells undergo massive proliferation and clonal expansion followed by a con-

centration phase in which the vast majority of the activated cells are eliminated by

apoptosis. During this primary response, memory T cells start to emerge and are main-

tained for extended periods either by retaining Ag, repeated stimulation/boosters, or

homeostatic proliferation, hence providing a pool of cells that can rapidly respond to

subsequent encounters with the pathogen [33].

There are several treatment regimens that have proven efficiencies in excess of 90%.

All of them incorporate the basic principle of using multiple antimicrobial agents for

prolonged periods of time administered under direct observation. The objectives of

antituberculous chemotherapy are to decrease the infectivity of active cases rapidly, to

reduce morbidity and mortality, and to effect a bacteriological cure [28].

Appendix B: Analysis of the equilibrium points
We present an analysis of the model with respect to the equilibrium points taking into

account super-infection (p) and a long period of incubation (g-1).

Disease free equilibrium

The equilibrium point s e y z, , ,( ) corresponding to the disease free (or trivial) steady

state of the dynamical system (2) is given by P0 = (1,0,0,0). To establish the stability of

the equilibrium point P0 we must evaluate the eigenvalues of the Jacobian matrix,

Yang and Raimundo Theoretical Biology and Medical Modelling 2010, 7:41
http://www.tbiomed.com/content/7/1/41

Page 27 of 37



related to system (2), taking into account the coordinates s = 1 and e y z= = = 0 .

Two eigenvalues are easily calculated, giving l1 = l2 = -μ, while the remaining l3 and

l4 are obtained as the roots of the characteristic equation

Λ0 2
1 2 0  ( ) = + + =c c , (B:1)

where, for g > 0, the coefficients c1 and c2 are

c

c R
1

2 0

2

1

= + + +
= +( ) + +( ) −( )

⎧
⎨
⎪

⎩⎪

   

     ,

and the basic reproduction ratio,

R0
0

= 


, (B:2)

with b0 being the threshold transmission coefficient given by


    

0 =
+( ) + +( )

. (B:3)

According to the Routh-Hurwitz criteria the characteristic equation (B.1) has eigen-

values with negative real parts if and only if the coefficients c1 and c2 are positive.

Since all parameters are positive, c2 > 0 always holds; while the sign of c2 depends on

the value assumed by the parameter g. For g > 0, whenever R0 < 1 (or b < b0) then c2
> 0, and the trivial equilibrium point P0 is locally asymptotically stable (LAS); other-

wise, that is, whenever, R0 > 1, P0 is unstable.

However, when g = 0, the coefficients c1 and c2 simplify to

c

c
1

2

2= + +
= + +( )

⎧
⎨
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    ,

and the trivial equilibrium point P0 is always LAS since both inequalities c1 > 0 and

c2 > 0 are satisfied.

Disease at an endemic level

The non-trivial equilibrium point P s e y z= ( ), , , of the system (2), for b≠0, has coordi-

nates given by
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where the fraction of infectious individual at steady state ȳ is obtained as the positive

roots of the equation  y Q y× ( ) =* , 0 , where the third degree polynomial

Q y* ,( ) is

Q y a y a y a y a* * * * *, , , , ,   ( ) = ( ) + ( ) + ( ) +3

3

2

2

1 0
(B:5)
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and  y is the force of infection in the steady state. Note that one of the solution is

y = 0 , such that the trivial equilibrium point P0 exists. When y ≠ 0 , we can obtain

the positive roots y of Q y* ,( ) . The dimension of x is the same as b, that is,

[time]-1, b0 is given by (B.3), and, according to (B.2),

0

0= R .

Next we present analytical results with respect to the equilibrium points and their

stability for two special cases: q = 0 and q = 1.

Determining equilibrium points

For q = 1, one of the roots of the polynomial (B.5) is y = − 
 , a negative solution.

Hence, the equation (B.5) can be reduced to the following second degree polynomial

Q y a y a y a* * * *, , , ,  ( ) = ( ) + ( ) +2

2

1 0 (B:7)

where the coefficients are given by

a p
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For p > 0, b0 is given by equation (B.3) and the parameter b1 is defined as


   

  1 =
+ + +( ) + + +( )

p
. (B:9)

If b1 <b0, then Q y* ,( ) could have two positive roots. When b1 ≥ b0, the polyno-

mial Q y* ,( ) has zero or one positive solution: if R0 < 1 (or b < b0), we have only

the trivial solution P0; otherwise, we have exactly one non-trivial equilibrium point P .

The case p = 0 is dealt with in the main text (case without super-infection).

In order to determine the number of positive solutions of the polynomial Q y* ,( ) ,
given by equation (B.7), we assess the relative positions between b0 and 1 , by analyz-

ing the function

f p
p

p

p
( ) ,≡ − =

+ + +( ) − −
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⎝
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⎞
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⎟ 

   
1 0
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1

where, for g > 0, we have the parameter p0 defined by

p0 =
+ + +( )

+ +( )
    
   

. (B:10)

The case g = 0 is dealt with in the main text (case without natural flow to TB).

Since 0 < p < 1, when p0 ≥ 1, we have b1 ≥ b0. Hence, for 0 < p0 < 1 and p > p0, we

have b1 < b0.
The first condition p0 < 1 can be assessed by the function g(g), obtained as the differ-

ence between the numerator and the denominator of p0, given by

g( ) .         = + + +( ) − + +( ) <2 0 (B:11)

The second degree polynomial g(g) has two real roots, one positive and the other

negative, assigned as g+ and g-, respectively. The positive root, that is, the critical incu-

bation rate g+, is given by
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Therefore, for g <g+ we have g(g) < 0 and p0 < 1; otherwise p0 ≥ 1. At g = g+ we have

g(g+) = 0 and p0 = 1.

We observe that g+ is a very small value [20] because g(g = μ) = μ2 > 0 implies μ > g+. For

instance, retaining only the first three terms of the expansion 1 4+
+ +( )


   , we have

 


  + ≈ −
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1 ,
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and g+ ® μ for δ >> (μ + a).
Let us now assess the second condition, p > p0. Firstly, when p ≤ p0 (weak force of

secondary attack), we have b1 ≥ b0, and the dynamics follows as the case p0 ≥ 1, that

is, if R0 < 1 (or b < b0), there exists only the trivial solution P0; otherwise, we have

exactly one non-trivial equilibrium point.

However, the scenario is completely different for p > p0. In that case b0 > b1 and the

number of positive solutions of the polynomial Q y* ( ) , given by equation (B.7),

depends on the value assigned to b. Thus, the polynomial (B.7) has one positive solu-

tion for b > b0 (a1 < 0 and a0 < 0) and zero or two positive solutions for b1 < b < b0 (

a1 < 0 and a0 > 0). Moreover, for  1 1
c < , such that   1 0

c < < , the equation (B.7)

has exactly two positive roots. At  = 1
c , we have Q x( ) = 0 , where x( ) is the mini-

mum value of the polynomial Q y* ( ) . Hence, the lower bound  c
1 is given by
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with   1
1

0< <c . Therefore, when  < c
1 we have Q y* ( ) > 0 , so there are no

positive solutions for the polynomial (B.7). At  = c
1 there exists a unique positive

solution y1
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while for   1 0
c < < there are two positive solutions for the equation (B.7), which

will be denoted as y1
+ and y1

− , respectively, the large and the small roots. The large

root y1
+ is monotonically increasing with b, while the small root y1

− decreases mono-

tonically assuming zero value at b = b0 and negative values for b > b0. The two equili-

brium points are denoted by P s e y z− − − − −
= ( )1 1 1 1, , , and P s e y z+ + + + +

= ( )1 1 1 1, , , , where

s e1 1
• •
, and z1

• , given by equation (B.4), are calculated with y1
• , where • stands for +

or -. We also define the turning value Rp as

Rp
c= 



1

0

, (B:15)

which is clearly less than 1, showing that an endemic situation can be found even

when R0 < 1. The expressions for y1
+ and y1

− and further results are presented in the

main text.
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In the absence of re-infection among recovered individuals (q = 0), the coefficients of

the polynomial (B.7) are given by

a p

a p

a

2

1
1

0

1

= +( )

= +( ) +( ) + + + +( )⎡⎣ ⎤⎦{ } −
⎛

⎝
⎜

⎞

⎠
⎟

= +

 

        



 *    



( ) + +( ) −
⎛

⎝
⎜

⎞

⎠
⎟

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

1
0

,

where R0 = b/b0, with b0 given by the equation (B.3), and b1 given by


        

1 =
+( ) +( ) + + + +( )⎡⎣ ⎤⎦p

p
, (B:16)

resulting in

 
   

0 1

2

0− =
+ +( ) −( )
p

p p .

In that case, the critical proportion p0 and the critical incubation rate g+ are given by

p0 2

2
1

4

=
+( ) +( ) +⎡⎣ ⎤⎦

+ +( )

=
+ +( )

+( ) +
+ +( )+
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⎝
⎜
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⎧

⎨

⎪
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⎩

⎪
⎪
⎪

1 ,

(B:17)

while  c
0 is now defined as

 
  




  
 c p

p0
1 0 1

2
1 1= +

+( ) +
+( ) −( ) −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. (B:18)

When δ >> (μ + a), we have




+ ≈ −( ) ≈ ×
2

5 1 0 61803. ,

which is lower than the corresponding value for the case q = 1.

Summarizing, when g ≥ g+, there is exactly one positive solution for the polynomial

Q y* ( ) given by equation (B.7). For g < g+ and p > p0, there are two positive solu-

tions in the interval   q
c < < 0 , for q = 1,0. However, for p ≤ p0 a unique positive

solution is obtained when g < g+.
Stability analysis

To proceed with the stability analysis of the non-trivial equilibrium point for the case q

= 1, we use the compartment w, where w = s + z, according to the dynamical system

(3) in terms of the variables (w,e,y). This dynamical system has the non-trivial
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equilibrium point P w e y= ( ), , where the coordinates are

w s z
y

y
= + =

+ +( )
+

  
 

,

e is given by equation (B.4) and y is the solution of the polynomial Q y* ( ) ,
given by equation (B.7).

The Jacobian matrix J related to the system (3), after some re-arrangements, is

J =

− +( ) − −
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+ −
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y p y
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⎥
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⎥
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⎥

.

The characteristic polynomial, corresponding to the Jacobian J evaluated at the non-

trivial equilibrium point P w e y= ( ), , , is given by

Λ    ( ) = + + + =3
2

2
1 0 0b b b ,

where the coefficients are

b p y
e

y

b y p y
e

y
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⎛
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(B:19)

According to the Routh-Hurwitz criteria, this third degree polynomial has all roots

with negative real parts if b2 > 0 (always true for a positive equilibrium point), b0 > 0

and b2b1 - b0 > 0. The last condition, after some calculations, can be written as

b b b p y
e

y
y p y2 1 10 2 1 1− = + +( ) + +

⎛

⎝
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ee
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⎞
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  


1 1 0 ,

showing that whenever b0 > 0, the condition b2b1 - b0 > 0 is automatically satisfied

(that is also true for b1 > 0). This confirms the conjecture provided in [34]. Therefore,

local stability is determined by the sign of b0. Let us study the sign of the coefficient

b0 in equation (B.19). The sign of b0 is determined by the term between square brack-

ets, which can be written as a polynomial equation

Yang and Raimundo Theoretical Biology and Medical Modelling 2010, 7:41
http://www.tbiomed.com/content/7/1/41

Page 33 of 37



F y p y p( ) = +( ) − −( ) + +( ) =      
2

0.

Let us analyze the case g < pμ First, let us determine a positive root of F y y( ) =,  ,

such that yields b0 = 0, by solving

F p p       ( ) = +( ) − −( ) + +( ) =2
0.

When 0 < g <ζ(p), the polynomial F y( ) , has one positive real root θ+, given by




     + = −( ) + +( ) −1
p

p ,

where ζ(p), the positive solution of G(g) = g2 + (μ + g + a)g - pμ(μ + δ + a) = 0, is

an increasing function defined by


    

  
p( ) =

+ +( ) +
+ +( ) −

⎛

⎝
⎜
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⎞

⎠
⎟
⎟2

1
4

1 ,

with ζ(0) = 0 and ζ(1) = g+, given by equation (B.12). In this interval, F y( ) < 0 for

y < + , and F y( ) > 0 for y >  . When g > ζ(p), we have no positive real root, and

F y( ) > 0 . Clearly, F y( ) > 0 for g ≥ pμ. Summarizing, we have

F y
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p p
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⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

We have b0 > 0 whenever F y( ) > 0 . Since 0 ≤ p ≤ 1, we have ζ(p) ≤ g+. It is easy to

show that ζ(p) ≤ pμ. On the other hand, from μ > g+, for sufficiently higher p we have

p μ ≥ g+.
As we have shown in foregoing section, when g < g+ and p > p0, we have two posi-

tive solutions in the interval   c
1

0< < , which were named y1
− and y1

+ , where

y y1 1
− +

< . By the fact that F y( ) changes from negative to positive values at y = + ,

we must position θ+ with respect to y1
− and y1

+ . In order to do this, we evaluate the

second degree polynomial Q y* ( ) , with positive coefficient for  y( )2
and given
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by equation (B.7), at   y = + , and determine Q*  +( ) , which is

Q
p

p p p             +( ) = − −( ) + +( ) −( ) + − −( ) + +( )⎡
⎣

⎤
⎦

1
2 21 ,

where b1 is given by equation (B.9). First, we must have g < pμ, which includes the

range g < g+ for sufficiently higher p. Second, the condition p0 < p < 1 establishes that

b1 < b0, with b0 being given by equation (B.3). Finally, with  c
1 being given by equa-

tion (B.13) and  1
1< c , we have two positive solutions in the interval   1 0

c < < .

When we have two positive solutions, we will show that Q*  +( ) < 0 and

y y1 1
−

+
+

< < , whenever the term between square brackets is positive. Initially, we

rewrite equation (B.13) as

p pc      1
1

2
0 12 2−( ) + = + −( ) ,

and substituting b0 and b1, given by equations (B.1) and (B.9), respectively, we have

p pc      1
1 2 2−( ) + = −( ) + +( ).

Now, in the term between square brackets of Q*  +( ) , we substitute b by its

lower bound 1
c , in order to have

p p

p pc

      

      

−( ) + − −( ) + +( ) ≥

≥ −( ) + − −( ) + +( ) =

1

1
1

2 2

2 2 0 ,

according to the last result. Therefore, for   1 0
c < < , we have Q*  +( ) < 0 .

Hence, F y1 0
−( ) < and F y1 0

+( ) < , which permit us to conclude that the small equi-

librium y1
− is unstable (b0 < 0), and the large equilibrium y1

+ is LAS (b0 > 0).

In the case of a unique non-trivial equilibrium point (g ≥ g+, or g < g+ and p ≤ p0),

we have b0 > 0. Hence the stability of the positive equilibrium point is given by the

basic reproduction number R0 given by equation (B.2): when R0 > 1 (or b >b0), the

non-trivial equilibrium point P s e y z= ( ), , , is LAS. When R0 ≤ 1 (or b ≤ b0), we have

y ≤ 0 , hence b0 ≤ 0.

We established that the so-called backward bifurcation occurs only over a very nar-

row range g < g+, remembering that g+ < μ. Otherwise we have the well-known for-

ward bifurcation based on the threshold value b0. The restriction on the incubation

rate g establishes that the ‘strange (or catastrophic) bifurcation’ [35] occurs only when

the onset of the disease is less frequent than the death of humans, or, in other words,
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the period of time elapsed to progression to the disease is greater than the survival

time of humans.
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