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Abstract

Background: Signal transduction networks represent the information processing
systems that dictate which dynamical regimes of biochemical activity can be
accessible to a cell under certain circumstances. One of the major concerns in
molecular systems biology is centered on the elucidation of the robustness
properties and information processing capabilities of signal transduction networks.
Achieving this goal requires the establishment of causal relations between the
design principle of biochemical reaction systems and their emergent dynamical
behaviors.

Methods: In this study, efforts were focused in the construction of a relatively well
informed, deterministic, non-linear dynamic model, accounting for reaction
mechanisms grounded on standard mass action and Hill saturation kinetics, of the
canonical reaction topology underlying Toll-like receptor 4 (TLR4)-mediated signaling
events. This signaling mechanism has been shown to be deployed in macrophages
during a relatively short time window in response to lypopolysaccharyde (LPS)
stimulation, which leads to a rapidly mounted innate immune response. An extensive
computational exploration of the biochemical reaction space inhabited by this signal
transduction network was performed via local and global perturbation strategies.
Importantly, a broad spectrum of biologically plausible dynamical regimes accessible
to the network in widely scattered regions of parameter space was reconstructed
computationally. Additionally, experimentally reported transcriptional readouts of
target pro-inflammatory genes, which are actively modulated by the network in
response to LPS stimulation, were also simulated. This was done with the main goal
of carrying out an unbiased statistical assessment of the intrinsic robustness
properties of this canonical reaction topology.

Results: Our simulation results provide convincing numerical evidence supporting
the idea that a canonical reaction mechanism of the TLR4 signaling network is
capable of performing information processing in a robust manner, a functional
property that is independent of the signaling task required to be executed.
Nevertheless, it was found that the robust performance of the network is not solely
determined by its design principle (topology), but this may be heavily dependent on
the network’s current position in biochemical reaction space. Ultimately, our results
enabled us the identification of key rate limiting steps which most effectively control
the performance of the system under diverse dynamical regimes.

Conclusions: Overall, our in silico study suggests that biologically relevant and non-
intuitive aspects on the general behavior of a complex biomolecular network can be
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elucidated only when taking into account a wide spectrum of dynamical regimes
attainable by the system. Most importantly, this strategy provides the means for a
suitable assessment of the inherent variational constraints imposed by the structure
of the system when systematically probing its parameter space.

Background
Normal and abnormal cellular states represent macroscopic behaviors emerging from

intricate dynamical patterns (either transient or stationary) of biochemical activity.

These are sustained by a complex web of reaction mechanisms that play the role of

information processing systems, generically referred to as signal transduction networks

[1-3]. In other words, these networks represent the dynamical systems that instruct

cells to enter into specific regimes of biochemical activity, which ultimately determine

the universe of functional states accessible to the cell, such as differentiation, apoptosis,

cell division, etc. [1-3]. Operatively, functional regimes of biochemical activity within a

cell are basically accomplished via direct protein-protein interactions and enzyme-cata-

lyzed reactions (i.e. phosphorylation, RNA synthesis, etc.) triggered in response to

either internal or external stimuli [3,4].

The spectrum of functionalities that a signal transduction network can potentially

perform is inherently constrained by its design principle [5,6], which encapsulates a

series of aggregated components involving diverse regulatory schemes and biochemical

reaction rules modulated quantitatively via internal reaction parameters. This struc-

ture-function puzzle has motivated considerable research efforts in the last decade

aimed at elucidating possible mechanistic bases of fundamental emergent properties

such as robustness, evolvability and epistasis, of highly-modular regulatory systems

[7-13]. Importantly, the investigation of the robustness properties of a signal transduc-

tion network requires heavy emphasis to be made on two fundamental aspects of the

underlying reaction mechanism: an observable/quantifiable dynamical feature (either

transient or stationary) of the system, and one or several perturbable parameters

directly or indirectly involved in the development of the system’s feature being studied.

For instance, important quantitative dynamical features of signal transduction networks

have been proposed as suitable targets for assessing their robustness properties in the

face of random changes in internal reaction parameters [14,15]. Sources of perturba-

tions impinging upon such parameters may stem from environmental vicissitudes

(temperature, pH, etc.), genotypic variation or intrinsic fluctuations (molecular noise)

[16,17].

Recently, several computational studies have yielded interesting numerical evidence

supporting the idea that the robustness properties of highly-dimensional biochemical

reaction networks may be strongly dependent on three fundamental aspects: i) the

reaction topology (network architecture) [7-9], ii) the system’s current position in para-

meter space [18-20], and iii) the dynamic nature of the trajectories displayed by the

reaction species involved [13,20-22]. The robustness properties of a biomolecular net-

work are typically assessed by means of standard sensitivity analysis-based approaches

implementing both local and global perturbation methods [18,23-27]. Robustness is

usually assessed with respect to either observable or hypothetical stationary states and

transient dynamics of just few reaction species in the network [24,28,29]. However, a
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complementary quantitative approach to studying the robustness properties, as well as

information processing capabilities, of a complex reaction network should provide the

means for assessing the extent to which the full dynamical behavior of the system is

reproducible under, for example, kinetic uncertainties. This is because a reaction net-

work may be coupled dynamically in unexpected ways to other important subsystems

not included in the model [11,30], whereby biochemical information exchange among

cellular processes can take place in parallel. Under these considerations, we thus

believe that general properties of a canonical biomolecular network could be revealed

under the following methodological strategies. Firstly, a large ensemble of disparate,

but biologically plausible dynamical trajectories attainable by the network should be

tested for general robustness properties in the face of random perturbations impinging

upon the whole set of reaction parameters; that is to say, the overall robust perfor-

mance of the network should be evaluated in widely scattered regions of its accessible

parameter space. Secondly, the reproducibility of particular ouputs (i.e. experimentally

reported wild-type transcriptional readouts) should be assessed in different regions of

the accessible parameter space via both local and global perturbation strategies.

Addressing these points would pave the way to gaining general insight into systems-

level features of the complex reaction mechanisms endowing the cells with the poten-

tial to reach a wide spectrum of robust behaviors.

In this study, efforts were focused on a comprehensive and unbiased statistical

assessment of the robustness properties and information processing capabilities of a

canonical reaction topology underlying TLR4-mediated signaling events. This signaling

network is temporally deployed in inflammatory cells (i.e. macrophages) in response to

external stimuli. We constructed a deterministic, non-linear dynamic model of this

reaction topology, using an informational basis retrieved from a series of previous

computational studies and review papers providing important clues about mechanistic

reaction steps involved in the process (see the Results and Discussion section below).

We adopted this signaling network as our model system mainly because this functional

module plays a crucial role in the development of innate immune cellular responses

([31-37]). For instance, Toll-like receptors recognize conserved pathogen-associated

molecular patterns such as lipopolysaccharide (LPS), which results in the triggering of

both microbial clearance and the induction of immunoregulatory chemokines and

cytokines. Here, we centered our attention specifically on the immediate cellular

response, in macrophages, triggered by the rapid activation of the canonical MyD88-

dependent and TRIF-dependent reaction cascades upon LPS binding to TLR4. We

probed the robustness properties and information processing capabilities of this cano-

nical network in different points distributed across diverse regions of the biochemical

reaction space. Importantly, the behavior of the network in a given region of the bio-

chemical reaction space was selected so that it was congruent with a hypothetical, but

biologically plausible dynamical regime of molecular activity (see below). Global (non-

orthogonal) and local (orthogonal) perturbation strategies were implemented as a

means of systematically exploring the biochemical reaction space inhabited by the net-

work. Critically, reaction parameters were subjected to random perturbations without

a priori knowledge on their relative importance for the network in the accomplishment

of a given signaling task. Our extensive numerical analyses permitted us the identifica-

tion of global and particular variational constraints in the network. This was achieved
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by means of a detailed characterization of some statistical regularities on the dynamical

performance of the system under kinetic uncertainties (i.e. random fluctuations in

internal reaction parameters). Overall, our simulation results provide convincing

numerical evidence supporting the following idea: a canonical reaction mechanism

underlying TLR4-mediated signaling events is endowed with the intrinsic capacity to

perform information processing in a robust manner, which is remarkably independent

of the signaling task required to be executed. Nevertheless, our statistical analysis indi-

cate that the robust performance of the network is not solely determined by its archi-

tecture (topology), but this may be strongly conditioned by the network’s current

position in biochemical reaction space. Ultimately, our simulation results provide inter-

esting mechanistic insigths into structure-function relationships in the TLR4 signal

transduction network, which enabled the identification of plausible rate limiting steps

that most effectively control the performance of the system under diverse dynamical

regimes.

Information processing and biochemical reaction space of the signal transduction

network

To avoid any confusion or controversy regarding well stated systems biology con-

cepts on cell signaling processes, it is important to make clear our notion of a signal

transduction network as an information processing system, mainly because this may

differ considerably from previous conceptualizations. Nevertheless, we believe our

conceptualization provides a complementary view of the issue. For example, the

notion of information processing applied in the context of intracellular signaling has

traditionally been limited to the mechanistic explanation of how cellular behaviors

are induced via the decodification, and subsequent intracellular propagation, of time

variant/invariant physicochemical signals provided by extracellular stimuli (see for

example [6,38-43]). Our intent here was to extend the scope of this notion, making

it more suitable for systems-level robustness analysis of signal transduction networks.

Our rationale focuses on the following arguments. Given that the emergence of cen-

tral cellular behaviors relies heavily on the robust performance of signal transduction

networks, it follows that the information processing capabilities of these systems are

primarily dependent on internal reaction parameters. In general, such parameters

exhibit a natural tendency to behave like a set of random variables, resulting mainly

from thermal fluctuations in the cell environment, and mutational perturbations in

the genetic encoding of the system. Arguably, the internal reaction parameters of a

signaling network stand for repositories of kinetic information that collectively define

a biochemical reaction space inhabited by the system. Such a reaction space becomes

an essential source of information carefully coupled to extrinsic stimuli that turn out

to be processed according to the set of reaction rules encoded in the architecture of a

signal transduction system, from which a proper cellular phenotype (i.e dynamic pro-

tein activation profiles and/or gene expression patterns) is calculated (see Figure 1).

Ideally, these should represent the basic tasks any information processing system,

such as a signal transduction network, is expected to accomplish in a robust fashion.

Under these considerations, it should be clear that we equate robust information

processing capabilities of a signaling network with its capacity to reproduce particu-

lar (reference) dynamical trajectories of biochemical activity under random
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Figure 1 Biochemical reaction space, and integrated information processing of inputs of diverse
nature. Signal transduction networks inhabit multidimensional biochemical reaction spaces encompassing
repositories of kinetic information, which are integrated along with extracellular stimuli. Such heterogenous
sources of information turn out to be simultaneously processed while being integrated, and a signaling
ouput, which may determine a particular cellular state, must be robustly calculated according to the set of
reaction rules and regulatory schemes encoded in the topology of the network. For simplicity purposes, in
this schematic representation a 3D projection drawn from the multidimensional biochemical reaction
space is illustrated. Each axis (Pi, Pj, Pk) in this lower dimensional 3D space represents a reaction kinetic
parameter (i.e. an enzyme catalitic rate), and collectively define a surface of inputs which are integrated
with extracellulr stimuli, and processed in parallel by the signaling network, from which a given output is
computed. Multiple points distributed across the 3D surface of kinetic inputs are sampled by the signaling
network, which may represent distinctive reaction conditions stemming from thermal fluctuations in the
cell environment, or mutational perturbations in the genetic encoding of the network. Ideally, however,
several points distributed across a hypersurface embedded in the N-Dimensional reaction space are
systematically sampled by a signal transduction network. In this study, while keeping a given extracellular
stimuli constant, the biochemical reaction space is systematically explored around reference operative
points via global and local perturbation strategies. In this way, an unbiassed statistical assessment of the
robust properties and information processing capabilities of a canonical reaction network underlying TLR4
signaling events was performed.
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perturbations in its internal reaction parameters. Importantly, this is assessed

here via standard metrics aimed at evaluating discrepancies between dynamical

trajectories, and by means of rigorous statistical analysis (see the “Models and com-

putational framework” section below). Our methodology can thus be seen as a

coarse-grained strategy to assessing the information processing capabilitites of a

complex reaction network, when monitoring the propagation of kinetic uncertainties

throughout the system. This represents an alternative framework to that recently

proposed methodology relying on Shannon’s entropy (see [44]). Interestingly, that

framework conceives a signaling network as a “communication channel”, for which

the associations between inputs and outputs result from a decomposition of their

mutual information into different components.

Methods
Canonical reaction topology underlying TLR4-mediated signal transduction events

Within a rather short time window, LPS binding to TLR4 triggers two major

intracellular signaling events rapidly propagated through the MYD88-dependent and

TRAM-dependent reaction cascades, which display extensive crosstalking (see Fig-

ure 2). Activation of the MYD88-dependent cascade leads to induction of pro-

inflammatory cytokines such as TNFa by means of JNK, p38, NF-�B and ERK;

whereas the TRAM-dependent cascade predominantly induces the expression of

Figure 2 Canonical reaction topology underlying TLR4-mediated signaling events. This canonical
topology was assembled according to well-documented studies on the reaction steps deployed during
TLR4-mediated signaling in macrophages, in response to LPS stimulation. Our kinetic model accounts for
the reaction dynamics of 76 molecular species, including single species and transiently-formed complexes
resulting from the aggregation of two or more species. Some intermediate species are not illustrated; only
key reaction components are shown. Our kinetic modeling approach is founded on basic principles of
biochemical reaction, accounted for via simple mass action law (both first and second order kinetics) and
generalizations of Michaelis-Menten reaction kinetics.
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chemokines such as the IP-10 protein encoded in the Cxcl10 gene, via the interferon

regulatory factor (IRF) [45]. A relatively limited number of existing dynamic model-

ing studies focus specifically on TLR4-mediated signal transduction. For example,

pioneering simulation works have provided interesting mechanistic insights on

diverse kinetic phenomena observed during temporal deployment of this signal

transduction network, such as time delay responses [46], signaling flux redistribution

[47], and preconditioning behavior [48,49]. Based upon the information provided by

these theoretical studies and the data reported in recent review articles about key

architectural features of this signaling network (see for example [31-37]), we

assembled a well-informed mathematical representation of the complex web of bio-

chemical reactions that are likely to sustain the information processing capabilities

of this signal transduction system. Our modeling framework is grounded on ordinary

differential equations incorporating first and second order reactions for representing

intracellular signaling fluxes, as well as Hill-like saturation kinetics accounting for

highly non-linear reaction schemes taking place at the level of ligand-receptor inter-

actions and transcriptional activation (see “Models and computational framework”

section below, and Additional file 1 for a detailed description of the mathematical

structure of the network model). The total number of reaction species modeled

amounts to 76, including a TLR4 in both a susceptible and an activated form,

MYD88 and TRAM adapters along with their associated molecules, hypothetical

intermediates upstream to TRAM which have been inferred computationally in

[46,47], intermediate and effector kinases (i.e. MKK4/7, JNK, MKK3/6, p38, TpL2,

MKK1/2, ERK), the associated and dissociated forms of NF-�B and I�B, and two

important mRNAs transcribed from the Tnfa and Cxcl10 pro-inflammatory genes

(see Figure 2). We also assumed a time variant concentration of LPS following an

exponential decay profile as an alternative hypothesis to that simulated intrinsically

stable dynamic regime of LPS proposed in a recent study of TLR4 activation kinetics

([48]). Nuclear export and import dynamics from the cytoplasm of some reaction

species were modeled via simple first order kinetics, hence, volume-dependent scaled

coefficients of transport were neglected for simplicity purposes. Moreover, within the

narrow time window simulated, our modeling framework assumes that simple first

order reaction kinetics govern dephosphorylation processes. In this way, dephosphor-

ylation of a substrate was only dependent on its own concentration and the depho-

sphorylation rate. Furthermore, we lumped together into single reaction steps

multisite phosphorylation processes, which might not represent key rate limiting

steps in the cascades included in our model. We therefore have equated multisite

phosphorylation steps with full kinase activation, which might constitute a truly rate

limiting step during signal processing. It is also worth saying that an explicit mathe-

matical representation of the dynamics of ATP was not considered; instead, we

assumed it to be in a steady state. This is standard practice in kinetic modeling and

is implemented for simplicity purposes. Our mathematical representation of the

whole reaction scheme defines a multidimensional biochemical reaction space

encompassing 116 kinetic coefficients (axes), including transition rates between

receptor states (susceptible ⇌ activated), production and degradation rates of recep-

tors, association/dissociation rates among intracelular molecular species, phosphory-

lation/dephosphorylation rates, nuclear import/export rates, maximal transcriptional
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rates, transcriptional efficiencies, Michaeles-Menten constants, cooperative coeffi-

cients, and mRNA degradation rates. Reaction kinetic values for this signaling system

have so far proven extremely difficult to assess under well controlled experimental

conditions. Therefore, our massive amounts of computationally predicted values of

internal reaction parameters for this signaling network might provide a glimpse on

the kinetics of the system under different cellular states. Moreover, despite obvious

simplifying assumptions about the intricacies of the reaction steps involved, our

mathematical representation captures core design principles of the signal transduc-

tion network. This is because our model was validated with dynamic experimental

data (time courses) from wild-type target transcriptional readouts, which have been

shown to be actively modulated, in quantitative terms, by the reaction cascades

accounted for in our proposed scheme (see below). Critically, our simulated time

window was limited to an interval spanning 120 minutes, a time scale during which

critical transient transcriptional readouts are realized as a result of rapidly mounted

innate immune responses ([47]). Furthermore, the transient features exhibited by the

network during such time period emerge primarily as a consequence of intrinsic pro-

cesses guided by the intracellular regulation of TLR4 signaling in response to LPS.

This is opposed to those extrinsic processes triggered by autocrine and paracrine sti-

muli provided by anti-inflammatory cytokines (i.e. IL-10 and TGF-beta), which

Figure 3 Ensemble of hypothetical dynamical trajectories. A wide spectrum of hypothetical but
biologically plausible dynamical trajectories accessible to the reaction network was simulated. An ensemble
encompassing 100 different trajectories accessible in widely scattered regions of biochemical reaction
space were propagated from very particular initial conditions. The figure illustrates a subset of individual
dynamical trajectories displayed by some key reaction species modeled (100 trajectories for each species
are shown). Most of these simulated trajectories were found to be capable of displaying transient or
sustained dynamical features, which have been reported to be typical dynamical behaviors emerging
during crucial intracellular signaling events.
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entails the temporal deployment of complex regulatory schemes such as (+/-) feed-

back control. Presumably, within the narrow temporal window of TLR4 activation in

response to LPS stimulation, which is the focus of our modeling framework, the

initial signaling phase might not be heavily dependent on the complex feedback

dynamics that are subsequently displayed by the NF-�B regulatory module [50].

Such dynamics, instead, should play a major role in reliable control of a delayed

(secondary) signaling phase in response to LPS stimulation (see for example [51]).

Interestingly, the presence of two signaling phases in this crucial immune cellular

process might represent very distinct episodes of signaling fluxes, carrying particular

information, that differentially modulate in quantitative terms the transcriptional

readout of specific gene batteries.

Results
General robustness properties of the signal transduction network in different regions of

the biochemical reaction space

Our first round of numerical experiments was designed with the main goal of explor-

ing the intrinsic robustness properties of the whole integrated reaction network. We

computationally reconstructed a rather limited ensemble of 100 different signaling

regimes or dynamical trajectories (i.e. the set of 76 individual temporal profiles for the

reaction species modeled, which is associated with a given point in parameter space)

attainable by the network (see Figure 3). We randomly explored the parameter space

looking for solutions in which some reaction species undergoing, for example, covalent

modifications (i.e. phospho/dephosphorylation) displayed particular dynamic features

similar to previously simulated, and experimentally reported, signaling outputs. Specifi-

cally, we focused on trajectories displaying biologically plausible dynamical signatures,

such as sustained and transient dynamics of molecular activity with identifiable signal-

ing peaks in some cases. Our simulated reference trajectories were thus required to

match, at least qualitatively, distinct signaling outputs previously reconstructed com-

putationally from experimental data (see for example [14,15,28]). Under these consid-

erations, such an ensemble of reference trajectories can be thought of as being

congruent with a plausible spectrum of cellular states attainable by, for example, a

macrophage, which may be a natural operative condition (i.e. phenotypic plasticity) of

many types of immune cell lineages ([52]). Alternatively, such an ensemble of dynami-

cal trajectories can be seen as a set of widely scattered points in the multidimensional

biochemical reaction space (see Figure 4), with some points being closely related and

defining small neighborhoods in biochemical reaction space. As noted above, we ran-

domly explored the parameter space according to a previously defined range of varia-

tion assigned to each reaction parameter (see Additional file 1 for a detailed

description of parameter ranges); ranges of variation were constrained based on

previous simulation results obtained from random scrutiny of the parameter space

(personal observations, data not shown), and biological intuition. Moreover, each refer-

ence dynamical trajectory was propagated from a particular set of intital conditions

(see Additional file 1 for a detailed description), which were also constrained based on

previous simulation results (personal observations, data not shown) and biological

intuition. Initially, thousands of simulated trajectories were carefully monitored both

manually and systematically in order to assemble our final ensemble of biologically
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Figure 4 Metric relations among reference dynamical trajectories distributed in different regions of
biochemical reaction space. To more clearly appreaciate the possible metric relations among the 100
parameter configurations (reference points) distributed throughout biochemical reaction space that were
selected, we calculated all possible distances (via the metric shown in the top panel) among
configurations. We then fit the empirical distribution to a theoretical Normal distribution with parameters
μ = 6.20 and s = 0.65. With this information at hand, we constructed the graph shown in the bottom
panel. This graph provides an interesting graphical notion of the possible metric relations among
configurations in parameter space. We implemented a decision rule in order to construct the input
adjacency matrix (a binary matrix) of the graph: if any element of the matrix A, aij, containing Log-scale
Euclidean distances (see metric in top right panel) among parameter configurations is aij ⋜ μ - 2 * s then
aij ® 1; otherwise aij ® 0. The calculated graph is meant to illustrate how likely one point in parameter
space (here represented by a node in the graph) can be accessed from another one via multiple
perturbations. For example, pairs of linked nodes indicate that such configurations are relatively close in
biochemical reaction space, and thus, one configuration might be accessed from the other via, perhaps,
few random changes. In top right panel, P(i) and P(k) stand for any parameter configuration i or j included
in the ensemble of trajectories analyzed.
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plausible dynamical trajectories. Comprehensive statitistical analyses were performed

over our limited ensemble of reference trajectories. Ultimately, by following this com-

putational methodology, we were able to conduct a series of well controlled in silico

experiments that allowed us to probe the intrinsic robustness properties of the net-

work, under different hypothetical scenarios of biochemical activity. We implemented

a global (non-orthogonal) perturbation scheme, also known as multiparametric sensi-

tivity analysis (MPSA) (see the “Models and computational framework” section below).

This computational methodology provides the means for conducting efficiently sys-

tematic rounds of perturbations in each of the 100 reference points (reference

parameter configurations) distributed throughout parameter space. Each reference

parameter configuration was subjected to a round of 5000 simulataneous perturbations;

that is to say, 5000 newly assembled parameter configurations surrounding each refer-

ence point in parameter space were generated. To do this, we first performed uncer-

tainty analysis consisting of Monte Carlo simulations based on the efficient Latin

Hypercube Sampling (LHS) scheme, followed by sensitivity analysis, which allowed the

identification of those reaction parameters most critically involved in the global perfor-

mance of the reaction network (see [23,53,54], and the “Models and computational fra-

mework” section below). Importantly, under this framework the robust information

processing capabilities of our model reaction network were properly evaluated by

means of a detailed statistical analysis of the system’s global sentivities. We analyzed

the distributions of the D statistics calculated from Kolmogorov-Smirnov (KS) tests

performed by means of the afortmentioned perturbation approach. Briefly, a KS test is

intended to evaluate the global sensitivity of the system’s output with respect to pertur-

bations targeting individual parameters. This test specifically provides the means for

evaluating the cumulative frequency of the observations (parameter values) as a func-

tion of class, and for calculating the maximum vertical distance between cumulative

frequency distribution curves for m acceptable and n unacceptable cases of any given

parameter θj (see the “Models and computational framework” section below). Figure 5

illustrates a series of box plots summarizing the overall statistical tendency of the D

values calculated for each reaction parameter of the network model, over the ensemble

of 100 dynamical trajectories that were systematically perturbed. Here, it is worth not-

ing that for each perturbation study, the perturbed signaling trajectories were com-

pared only with a corresponding reference trajectory; being such a trajectory a member

of the ensemble of 100 trajectories analyzed. In general, our analysis indicates that the

network is capable of reproducing reference dynamical trajectories of biochemical

activity relatively well when their associated points in parameter space are systemati-

cally perturbed. This can be inferred by observing the excess of small average D-values

associated to each reaction parameter. Interestingly, a notable statistical tendency with

respect to the system’s dynamical behavior was revealed. For example, the signaling

network was found to be moderately and extremely sensitive to random perturbations

in few reaction parameters. For instance, the parameters related to the Dephosphoryla-

tion Rate of the IKK-complex, and the Maximal Transcriptional rates and Transcrip-

tional Efficiencies associated to the Tnfa and Cxcl10 genes can be categorized as

moderately sensitive parameters, with average D-values ranging between 0.09 and 0.11.

On the extreme side of the sensitivity spectrum, we found that the parameters related

to the Production and Degradation rates of the TLR4 Susceptible Form, the Association
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and Dissociation Rates between Phosphorylated IKK-complex and IkB-NFkB, and the

Dissociation Rate between IkB and NFkB, represent extremely critical (sensitive) points

of the proposed reaction mechanism, with average D-values ranging between 0.12 and

0.58. Furthermore, our statistical analysis also revealed that the variability of the

D-values for those parameters categorized as moderately and extremely sensitive were

found to be extremely large, as indicated by both the height of bars and their corre-

sponding whiskers. This result strongly suggests that the robustness properties of the

network can be highly variable depending on its current position in biochemical reac-

tion space. It is also interesting to analyze our simulation results from the viewpoint of

sloppy and stiff multidimensional parameter spaces [11,12]. According to this well-sup-

ported theoretical framework, we may conclude that our proposed reaction scheme

functions as a highly sloppy information processing system capable of performing

robustly, despite undergoing simultaneous random perturbations in its internal reac-

tion parameters. However, some stiff axes were found to be a defining feature of this

multidimensional space, along which random perturbations lead predominantly to dra-

matic changes in the global dynamical behavior of the system. Therefore, such stiff

axes in biochemical reaction space constitute key variational constraints of the pro-

posed reaction mechanism. Following this direction, our simulation results strongly

suggest that those biochemical processes relying on the reaction parameters identified

as critical points of the network, should represent the rate limiting steps that most

effectively control the global dynamical behavior of the system. We thus predict that

such critical reaction steps represent ideal candidates for manipulating the dynamic

activity of the TLR4 signaling network via multi-target therapeutic strategies, which

Figure 5 Spectrum of global sensitivities. D values calculated via our MPSA scheme, described in the
Methods section, are shown, which provide a detailed idea on the sensitivity of the reaction network to
variation in particular parameters, when the remaining parameters were varied simultaneously. Bar plots are
shown for each reaction parameter modeled, summarizing the statistical tendency of the D-values
calculated for each parameter. 116 bars are shown, each associated to a given reaction parameter.
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might provide the means for modulating quantitatively innate immune cellular

responses in an efficient manner.

Variability of key individual dynamical trajectories

Further statistical analyses were performed to characterize the variability of the dyna-

mical trajectory displayed by each individual reaction species modeled, upon systematic

perturbation of the entire biochemical reaction space. We calculated the coefficient of

variation of the discrepancies of individual trajectories from the corresponding refer-

ence trajectory. A simple Euclidean metric was implemented to evaluate such discre-

pancies (see the “Models and computational framework” section below); again, this was

carried out for each reference trajectory included in the final ensemble of 100 trajec-

tories simulated. In this analysis we focused on those dynamical trajectories categorized

as robust/insensitive according to our previous MPSA. This analysis provides primary

information on key variational constraints in the network’s dynamical behavior. Figure 6

illustrates the results of our statistical analysis, wherein a highly heterogenous spec-

trum of variability can be readily appreciated, indicating that not all the dynamical tra-

jectories of individual reaction species tend to vary similarly upon global perturbation

Figure 6 Spectrum of variabilities for individual dynamical trajectories of each reaction species
modeled. Coefficient of variation were calculated for the discrepancies, from reference trajectories, of
individual trajectories displayed by each reaction species modeled in the face of global perturbations.
Results from only a subset of key reaction species are shown. The results shown correspond to those
configurations that were found to be robust to random, simulataneous perturbations.
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of the biochemical reaction space. Notably, the temporal trajectory of some reaction

species was found to be more variable than others. Note for example that the most

upstream (i.e. TLR4 activated form) and the most downstream reaction species (Tnfa
and Cxcl10) along the signaling cascades modeled, exhibited a remarkable tendecy to

vary upon global perturbations. This can be explained by noting that the reaction rules

underlying ligand-receptor and transcriptional kinetics involve highly non-linear

Figure 7 Spectra of total parameter variation. Total parameter variation (T) represents a measure
providing a quantitative notion of the order of magnitude in the variation of a perturbed parameter
configuration obtained from a reference one. Two spectra of T values are illustrated, which were
assembled for both robust and fragile configurations. Each line of vertical points indicates the distribution
of T values calculated when a reference point in parameter space was subject of global perturbations. Note
that each spectrum is composed of 100 distributions of T values.

Gutiérrez et al. Theoretical Biology and Medical Modelling 2010, 7:7
http://www.tbiomed.com/content/7/1/7

Page 14 of 32



processes related to cooperativity interactions and saturation phenomena. Therefore, it

should be expected for multiple combination of perturbations in the kinetic parameters

driving such non/linear reaction processes to exert drastic changes in the dynamical

trajectories of the system. Alternatively, we also found that some intermediate reaction

species along the signaling cascades analyzed exhibit a considerable tendency to vary;

although some notable differences were observed. For example, a large number of spe-

cies associated to the MyD88-dependent signaling pathway, namely, TABTAK, TAB-

TAKp, P38pn, IKKc, IKKcp, NF�B, NF�Bn, TpL2p, were found to vary considerably;

whereas only the reaction species TRAM, in the alternative reaction cascade down-

stream the TLR4, was found to vary significantly. It is tempting to speculate on these

results based on the fact that a larger density of coupled biochemical reactions along

the MyD88-dependent signaling pathway occurs during the time scale considered in

our simulations. From this, it then follows that a stronger dynamical coupling of bio-

chemical reactions (functional dependencies/linkages) through this pathway might lead

to considerably larger effects when multiple perturbations are propagated dynamically.

Comparison of total parameter variation spectra

Finally, we sought to quantify the capacity of the network of absorbing large fluctua-

tions in internal reaction parameters, and in different regions of biochemical reaction

space. We assessed and compared the spectra of total parameter variation (T) for

those configurations that were identified as robust and fragile (sensitive) according to

our previous MPSA. This measure provides a quantitative notion of the order of mag-

nitude in the variation of a perturbed parameter configuration obtained from a refer-

ence one (see the “Models and computational framework” section below). The analysis

was performed in each of the 100 dynamical trajectories previously assembled. In

Figure 7, every vertical line of points illustrated in each panel stands for a distribution

of T values calculated for each reference dynamical trajectory defined by a given point

in parameter space. To test for statistical differences between the two spectra shown in

Figure 7, we ran Mann-Whitney tests between robust and fragile distributions. Of the

100 statistical tests performed, we found that 67% of them yielded p-values < 0.05,

thus indicating that, in general, the two spectra tend to differ significantly. However, a

simple graphical comparison between the two spectra indicates that a similar global

tendency appears to exist (see ranges of variation, for example). In other words, this

seems to suggest that the capacity of the signal transduction network of absorbing ran-

dom perturbations in the whole set of internal reaction parameters may be quite simi-

lar under both robust and fragile conditions. At first glance, this observation appears

counterintuitive, because it would be expected that for those perturbed configurations

categorized as robust/insensitive, small quantitative departures from the reference

parameter configuration should be a prevailing statistical regularity. This observation is

consistent with the idea that the robust dynamical performance of the network should

be more heavily dependent on the direction towards which random perturbations are

induced in the biochemical reaction space, than on the magnitude of the perturbation

itself.
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Robustness of particular input-output maps: effects of local and global perturbations at

the level of individual transcriptional outputs

Upon extensive exploration and statistical characterization of general robustness proper-

ties inferred from hypothetical, but biologically plausible dynamical trajectories displayed

Figure 8 Experimentally reported and simulated transcriptional readouts. Black dashed trajectories
indicate experimentally reported transcriptional activation profiles during a short time window of 120
minutes. Color-coded trajectories stand for simulated trajectories obtained from an extensive exploration of
biochemical reaction space by means of Monte Carlo simulations and a pseudo-random search algorithm.
Experimental data encompassed only 6 time points that were sampled in cell cultures during the time
window of 120 minutes. We performed non-linear interpolation in order to infer the relative expression
levels of each gene every minute during the time window. This strategy allowed us to further constrain
our simulations.
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by the network, we then focused on a detailed analysis of particular input-output maps

embedded in the model reaction scheme.

Specifically, we sought to characterize the robustness of the temporal trajectory of the

two transcriptional readouts incorporated in the signaling network model. Tnfa and

Cxcl10 represent crucial outputs required for the appropriate development of pro-inflam-

matory responses, which are critically modulated by the upstream reaction cascades acti-

vated upon LPS stimulation. Figure 8 shows the temporal profile for the transcriptional

activation of these genes. It is worth emphasizing that our modeling framework only

accounts for transcriptional activation processes during the short time window simulated.

Accordingly, it was assumed that transcriptional activation was mainly driven by the activ-

ity of ERK, P38, NF�B, JNK, and IRF. Consequently, transcriptional repression effects

were deliberately neglected. Before conducting the perturbation experiments, several ran-

dom explorations of the biochemical reaction space were first performed to identify differ-

ent parameter configurations capable of reproducing the reported experimental data

(Figure 8, black-dashed trajectories). Monte Carlo simulations were thus performed taking

as reference the set of kinetic data (both initial conditions and parameter ranges) used for

simulating the ensemble of reference dynamical trajectories previously constructed (see

Additional file 1). Moreover, based on this same reference ensemble of kinetic data, ran-

dom searches through parameter space via a pseudo-random search algorithm (PRSA)

were also performed, as described in [55]. This time, we constructed a small ensemble of

10 reference parameter configurations widely scattered in biochemical reaction space (see

Additional file); each reference parameter configuration was able to reproduce relatively

well, in quantitative terms, the empirical data (Figure 8, color-coded trajectories). We

Table 1 Statistics on overall state senstivities from local perturbation experiments for
the transcriptional output Tnfa. Values shown were averaged over the ensemble of 10
reference parameter configurations evaluated. Mean-D (mean D Statistic); SD-D
(standard deviation of D Statistic)

Parameter ΔP = 10% ΔP = 20% ΔP = 30% ΔP = 40% ΔP = 50% Mean-D SD-D

Kb 0.003369 0.002241 0.001876 0.001177 0.000868 0.001906 0.002154

n 0.001355 0.0007648 0.0006529 0.001581 0.000949 0.001060 0.001100

k21cat 0.001128 0.001713 0.000659 0.000536 0.000595 0.000926 0.001031

k22f 0.001314 0.001137 0.000969 0.000379 0.000388 0.000837 0.001662

k16r 0.001292 0.001043 0.000711 0.000502 0.000401 0.000790 0.001557

k23cat 0.001019 0.001376 0.000464 0.000386 0.000461 0.000741 0.001361

kps 0.001065 0.000997 0.000536 0.000436 0.000414 0.000690 0.001315

k33r 0.001334 0.000744 0.000484 0.000487 0.000373 0.000685 0.001388

k23r 0.000434 0.001110 0.000619 0.000768 0.000299 0.000646 0.000998

k19r 0.001099 0.000706 0.000749 0.000332 0.000288 0.000635 0.001372

k7r 0.001191 0.000658 0.000469 0.000422 0.000324 0.000613 0.001395

k23f 0.001247 0.000569 0.000588 0.000358 0.000284 0.000609 0.001382

k18r 0.000668 0.000753 0.000676 0.000545 0.000345 0.000597 0.000918

k31f 0.000721 0.000701 0.000571 0.000461 0.000453 0.000581 0.001235

k32f 0.000480 0.000857 0.000546 0.000561 0.000429 0.000574 0.000904

k24 0.001064 0.000625 0.000520 0.000304 0.000266 0.000556 0.001329

k35r 0.001483 0.001000 0.000117 0.000105 0.0000739 0.000556 0.001630

ksa 0.000919 0.000725 0.000464 0.000314 0.000251 0.000535 0.001119

k8 0.000638 0.000616 0.000533 0.000559 0.000183 0.000506 0.000873

k14r 0.001026 0.000601 0.000251 0.000245 0.000340 0.000493 0.000748
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focused on this ensemble for conducting local and global perturbation analysis with

respect to the transcriptional activation profiles of the Tnfa and Cxcl10 pro-inflammatory

genes.

Local perturbation analysis of transcriptional outputs

The computational strategy designed for systematically exploring orthogonal (i.e. local)

perturbations in each of the 10 reference points previously sampled is described below

(see the “Models and computational framework” section below). In this analysis, per-

turbations were restricted to those reaction parameters sustaining only signaling fluxes,

while transcriptional parameters were maintained unperturbed. In this way, we were

able to analyze the quantitative effects at the level of transcriptional readouts of small

perturbations impinging upon single reaction kinetics of the upstream signaling cas-

cades. Tables 1 and 2 summarize the calculated overall state sensitivity coefficients for

a range of magnitudes of the perturbations induced (∀ Δ P Î {0.1, 0.2, 0.3, 0.4, 0.5},

see the “Models and computational framework” section below) in each single reaction

parameter. Importantly, the calculated coefficients were found to be remarkably small

in comparison to other calculated values reported in a previous simulation study of the

MAPK signaling module (see [55]). This observation clearly indicates that the reaction

mechanism underlying TLR4-mediated signaling behaves as a robust information pro-

cessing system in the face of small quantitative fluctuations in individual reaction para-

meters. In other words, this inherent robust condition endows the signaling network,

under very particular mutational conditions (i.e point mutations) and within a rather

short time window, with the capacity of converting an external stimuli into highly

reproducible transcriptional readouts. We note that the two transcriptional readouts

Table 2 Statistics on Overall State Senstivities from Local Perturbations Experiments for
the Transcriptional Output Cxcl10. Values shown were averaged over the ensemble of
10 reference parameter configurations evaluated. Mean-D (mean D Statistic); SD-D
(standard deviation of D Statistic)

Parameter ΔP = 10% ΔP = 20% ΔP = 30% ΔP = 40% ΔP = 50% Mean-D SD-D

Kb 0.007726 0.005217 0.006069 0.004233 0.004070 0.005463 0.007836

n 0.005616 0.004478 0.003862 0.003824 0.003714 0.004299 0.007452

k40f 0.002317 0.002146 0.002607 0.002518 0.002238 0.002365 0.006197

k42f 0.003415 0.002004 0.001858 0.001902 0.001834 0.002203 0.004786

k21cat 0.002860 0.002644 0.001749 0.001634 0.001206 0.002019 0.002098

k16r 0.004237 0.002285 0.001129 0.000868 0.000731 0.001850 0.002971

kps 0.003663 0.002090 0.001305 0.001196 0.000839 0.001819 0.002631

k23cat 0.003425 0.002015 0.001266 0.001124 0.000651 0.001696 0.002657

k33r 0.003194 0.002201 0.001196 0.001030 0.000760 0.001676 0.002669

k23f 0.003989 0.002014 0.001034 0.000723 0.000590 0.001670 0.002982

k19r 0.002917 0.001721 0.001572 0.000947 0.000739 0.001579 0.002649

k8 0.002686 0.001737 0.001478 0.000968 0.000540 0.001482 0.002459

k22f 0.002733 0.001615 0.000998 0.001147 0.000826 0.001464 0.002661

k23r 0.002807 0.001821 0.001181 0.000786 0.000697 0.001458 0.002383

k7r 0.002639 0.001675 0.001317 0.000935 0.000648 0.001443 0.002659

k32f 0.001537 0.002349 0.001265 0.001116 0.000824 0.001418 0.001876

k24 0.002710 0.001463 0.001237 0.000729 0.000597 0.001347 0.002629

kas 0.001528 0.002123 0.001111 0.000830 0.000810 0.001280 0.002070

k1r 0.001324 0.001825 0.001397 0.000960 0.000753 0.001252 0.001656

k18r 0.001279 0.001625 0.001444 0.000881 0.000708 0.001187 0.001692

Gutiérrez et al. Theoretical Biology and Medical Modelling 2010, 7:7
http://www.tbiomed.com/content/7/1/7

Page 18 of 32



Figure 9 Global perturbation landscapes of transcriptional readouts. D-values calculated for each
internal reaction parameter modeled, in ten different regions of biochemical reaction space. Each
landscape is composed of 3 axes. The reaction parameter axis accounts for each reaction parameter
directly or indirectly influencing the transcriptional activation of one of the pro-inflammatory genes. In this
way, such axis involves 108 reaction parameters, rather than the whole set of model parameters which
amounts to 116. The parameter configuration axis encompasses the 10 points in parameter space analyzed
that were found to reproduce relatively well the reported transcriptional outputs. The Z axis indicate the
magnitude of the global sensitivities, which are given by the D-values calculated from our global
perturbation analysis.
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considered tend to exhibit the same pattern of sensitivity to most reaction parameters.

Interestingly, however, some parameters were found to be more determinant for one

transcriptional readout than for the other. For example, the temporal expression profile

of Tnfa was found to be relatively more sensitive to variations in k31f (Association Rate

between TLR4I1 and I2), k35r (Dissociation Rate of the Complex TLR4I1I2I3TT from

RIP), ksa (Transition Rate from Susceptible to Active TLR4), and k14r (Dissociation

Rate of the Complex TABTAKp - MKK3/6); whereas the dynamical trajectory of the

transcriptional readout of Cxcl10 exhibited a more pronounced sensitivity to perturba-

tions in k40f (Association Rate of TLR4I1I2I3TTTTBK1 with IRF), k42f (Dimerization

Rate of IRFp), kas (Transition Rate from Active to Susceptible TLR4), and k1r (Dissocia-

tion Rate of MYD88/Mal - TLR4). Although informative, results from local (orthogo-

nal) perturbation analysis provide only limited insight on the variational constraints

and systems-level properties of the signal transduction network. We next performed a

global perturbation analysis to this aim, as described below.

Revealing the global perturbation landscapes of transcriptional outputs

In this analysis, we considered global (non-orthogonal) perturbations systematically

induced on each of the 10 reference points distributed in biochemical reaction space.

We generated 5000 perturbed configurations from each reference point, following our

global perturbation strategy. This set of perturbation experiments were carried out to

characterize the global perturbation landscapes based on well identified input-output

relationships. We thus calculated a large number of D-statistics (obtained via the

MPSA approach) for each simulated transcriptional output. That is, D-statistics were

computed for each parameter in 10 different regions of the biochemical reaction space.

Briefly, the perturbation landscapes illustrated in Figure 9 provide systems-level

insights into the robust properties and information processing capabilities of the net-

work, but this time in terms of particular input-ouput maps embedded in the reaction

system. In these landscapes the reaction parameter axis, which ranges between 1-108,

indicates the set of model parameters influencing directly or indirectly the transcrip-

tional activation of each gene; whereas the parameter configuration axis, ranging

between 1-10, describes the reference ensemble comprising 10 parameter configura-

tions. Remarkable statistical regularities were found when analyzing the perturbation

landscapes. 1) In general, the D-values associated to many parameters can be highly

variable; these were found to be heavily dependent on the parameter configuration

tested. This observation indicates that the reproducibility of particular transcriptional

readouts in the face of global perturbations is strongly dependent on the region in bio-

chemical reaction space occupied by the signal transduction network. For example,

under some parameter regimes the dynamical trajectory of the transcriptional output

may be more sensitive to variation in some parameters than in others. 2) In particular,

the perturbation landscape for Tnfa tend to exhibit and extremely rough topography,

with an excess of large D-values (> 0.3) distributed heterogenously all over the surface;

whereas the landscape associated to Cxcl10 was found to be particularly flat, with just

few regions displaying large D-values (> 0.3). These findings provide convincing statis-

tical evidence supporting the idea that the transcriptional readout of Tnfa should be

remarkably more sensitive in the face of global fluctuations in internal reaction para-

meters than that expected for the transcriptional readout of Cxcl10. Moreover, in the

case of the transcriptional readout of Tnfa, it is notable the way in which D-values
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associated to a given parameter tend to fluctuate depending on the parameter config-

uration, that is, the position in parameter space. Alternatively, most D-values calculated

with respect to the transcriptional readout of Cxcl10 were found to fluctuate only

slightly; in general D statistics exhibit a rather invariable tendency across different

regions of parameter space. Only in few cases (specific points in biochemical reaction

space) considerably large D-values were found in the landscape calculated for Cxcl10.

For instance, the analysis reveal that only a small fraction of the whole set of reaction

parameters appears to most effectively control the transcriptional readout of Cxcl10,

which include the following parameters: k21cat (the Dissociation Rate of I�B-NF�B),

k22f (the Import Rate to Nucleus of NF�B), a2 (Transcriptional Regulatory Strength of

IRFpp* over Cxcl10), b2 (Transcriptional Regulatory Strength of NF�B over Cxcl10), V

A2 (Cooperativity Effects of IRFpp* on Cxcl10), V B2 (Cooperativity Effects of NF�B on

Cxcl10), K b2 (MichaelisMenten-Constant Related to Cxcl10 Transcription), kdCxcl

(Degradation Rate of Cxcl10 mRNA), TmaxCxcl (Max. Transcriptional Rate of Cxcl10),

and rCxcl (Transcriptional Efficiency of the Cxcl10 Promoter). Taken together, these

simulation results point to the idea that the sensitivity/robustness of a given gene

expression pattern should be strongly dependent on the architecture of the signaling

fluxes influencing directly or indirectly its transcriptional activation. Following this line

of arguments, it is interesting to note that the transcriptional activation of Tnfa, within
our short time scale simulated, relies indirectly on the intranuclear activation of ERK,

P38, and JNK, which activates AP1, which in turn activates the transcription of Tnfa
along with NF�B; whereas, the transcriptional activation of Cxcl10 only relies on NF�B

and IRF. Under these considerations, it should be clear that the density of signaling

fluxes exerting control over the activation of Tnfa far exceeds the density of fluxes

influencing the activation of Cxcl10. Our observations thus point to the idea that the

propagation of multiple perturbations along the reaction cascades should differentially

impact the temporal trajectory of the transcriptional readouts of Tnfa and Cxcl10.

Nevertheless, such apparent differences observed in the topography of the perturbation

landscapes are likely to vanish under different molecular scenarios. For example, feed-

back control or systematically correlated perturbations among subsets of parameters

may lead to rather similar perturbation landscapes.

Discussion
The main purpose of this in silico work was to explore whether important system-level

attributes of a complex biomolecular network were strongly conditioned by the type of

signaling tasks (i.e. particular dynamical regimes of molecular activity) simulated. Spe-

cifically, our computational approach permitted us an unbiased statistical assessment

of the robustness properties, as well as the information processing capabilities, of the

canonical reaction mechanism underlying TLR4-mediated signal transduction events.

This was achieved by considering a broad spectrum of plausible dynamical behaviors

displayed by the network (including wild type phenotypes), which are likely encoun-

tered in any cell lineage (i.e. macrophage) under diverse physiological conditions. This

is the rationale behind our work, and we highlight that these considerations have been

largely underappreciated in previous studies of network robustness. Recent investiga-

tions, however, have stressed the importance of assessing the spectrum of variational

constraints (i.e. robustness, evolvability, epistasis, etc.) of complex developmental
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regulatory networks under different hypothetical and observable dynamical regimes

[13,56]. Our work thus differs considerably from recent computational studies wherein

heavy emphasis have been placed on the characterization of robustness of particular

intracellular networks under rather limited biological circumstances [17,18,27,28].

To summarize, our numerical findings strongly suggest that the canonical TLR4 sig-

naling network that drives crucial innate immune cellular responses in macrophages,

should be operative in widely scattered regions of the biochemical reaction space; a

robust property that allows the network to perform complex signaling tasks in a highly

reproducible manner under rather different regimes of molecular activity, and when

facing multiple kinetic uncertainties.

Deliberately, we have restricted our model signal transduction network to a simple

biochemical reaction mechanism. Importantly, the design principle (topology) of the

network was mathematically represented by means of basic reaction schemes defined

in terms of mass action law and Hill saturation kinetics. Accordingly, information pro-

cessing in our model network takes place only through the kinetic coupling of multi-

ple, but rather simple, reaction rules accounting for ligand-receptor interaction,

Figure 10 Rate limiting steps controlling most effectively the global behavior of the canonical
TLR4 signaling network. Schematic representation on rate limiting steps inferred from non-orthogonal
perturbation experiments. The analysis indicates that the global behavior of the TLR4 signaling network is
most effectively control by only few reaction steps along the signaling cascades. It is inferred that global
information processing in the system heavily relies on 8 biochemical reaction processes, which are
quantitatively modulated by just few internal reaction parameters. For instance, the global behavior of the
network was found to be remarkably sensitive to random fluctuations in the reaction parameters
controlling the Production and Degradation Rates of the TLR4 Susceptible Form (kps and kds), the
Dephosphorylation Rate of IKKcp* (k20), the association rate between the IKKcp* and I�B-NF�B (k21f), the
dissociation rate between the IKKcp* and I�B-NF�B, (k21r), and the Dissociation Rate of I�B-NF�B (k21cat). In
addition, the system also showed considerable sensitivity to random changes in kinetic parameteres
involved in transcriptional control.
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association and dissociation events between single or multiple reaction species, import/

export fluxes between cellular compartments, enzyme-catalyzed reactions, and tran-

scriptional control. Elaborated regulatory schemes, such as inhibitory reactions or feed-

back control, were not accounted for in our modeling framework. This is because

within our narrow temporal window, in which immediate immune cellular responses

are elicited, signal propagation is thought to be controlled in its entirety by the intrin-

sic crosstalking of MyD88-dependent and TRIF-dependent reaction cascades (see

[46,47] and references therein). Therefore, within our simulated time window, empha-

sis was not placed on the complex negative feedback control arising within the NF�B

regulatory module, which is triggered by a wide spectrum of pro-inflammatory stimuli

[57]. The many possible roles of negative feedback control deployed by the NF�B regu-

latory module under different cellular contexts have been a central theme of investiga-

tion in intracellular signaling ([51,57]); this issue, however, was beyond the scope of

our study. Nevertheless, we acknowledge that our results on the robustness properties

and information processing capabilities of the TLR4 signaling network are expected to

Figure 11 Rate limiting steps controlling most effectively the transcriptional readouts of Tnfa and
Cxcl10. Schematic representations on rate limiting steps inferred from non-orthogonal perturbation
experiments. The analysis indicates that the two transcriptional outputs modulated by the canonical
signaling network are differentially controlled. It is inferred that the transcriptional readout of Tnfa is
collectivelly controlled by the whole integrated reaction system; whereas the the transcriptional readout of
Cxcl10 is most effectively controlled by only a tiny fraction of the biochemical reactions involved in signal
propagation, which are quantitatively modulated by just few internal reaction parameters. For example, it
was found that the Dissociation Rate of I�B-NF�B (k21cat), the Import Rate to Nucleus of NF�B (k22f), and
the set of parameteres involved in transcriptional activation, seem to most effectively control this signaling
ouput. The bright red arrow is to illustrate that the signaling flow that eventually leads to the
transcriptional activation of Tnfa is tightly controlled by the whole integrated reaction network. The dull
yellow arrow indicates that all reaction steps in the network, except those for which the parameters are
illustrated, are not critically involved in controlling the transcriptional readout of Cxcl10.
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differ considerably under a different mathematical representation of the reaction topol-

ogy, wherein positive/negative feedback regulation taking place at any point along the

signaling cascade were accounted for. This should come as no surprise, since the cru-

cial role of such elaborated regulatory schemes in any signal transduction system has

been well documented (see for example [16,58], and references therein).

Once having clarified the scope of our study, and more specifically the range of

validity of our numerical experiments, we would like to discuss the biological implica-

tions of our major findings. Specifically, our global perturbation analyses provide valu-

able information with respect to plausible variational constraints arising in the system

as a result of its canonical design principle. For example, our simulation results indi-

cate the presence of key rate limiting steps that seem to most effectively control the

dynamical behavior of the signal transduction network. In particular, statistical analyses

from non-orthogonal pertubation experiments clearly show that the global behavior of

the system is tightly controlled by only a tiny fraction of the reaction steps embedded

in the whole reaction mechanism (see Figure 10). On the other hand, our analyses

from global perturbation experiments based on the temporal profiles of transcriptional

activation of the two pro-inflammatory genes modeled (Tnfa and Cxcl10) indicate two

very distinct scenarios of signaling control. Firstly, the control of the transcriptional

readout of Tnfa is surprinsingly distributed throughout the whole reaction network

(see Figure 9, top panel, and Figure 11). Hence, the transcriptional activation of Tnfa
should be tightly kinetically involved by virtue of the signaling fluxes displayed by the

network upon LPS stimulation. Secondly, the control of the transcriptional readout of

Cxcl10 was found to be sparsely distributed in the reaction network, with just few

reaction steps critically involved in this signaling ouput (see Figure 9, bottom panel,

and Figure 11). Taken together, our results provide mechanistic insights on complex

aspects of intracellular signaling in the context of innate immune cellular responses,

which might be universal principles of cellular information processing. Overall, our

numerical experiments agree well with results from a recently published simulation

work [20] indicating that care should be taken when analyzing the robustness proper-

ties of any biomolecular network, as these can be heavily dependent on both the quan-

titative outputs being evaluated, and the current kinetic status of the system (i.e. the

position in biochemical reaction space). Finally, and perhaps most importantly, our

computational study strongly suggests that the development of effective therapeutic

strategies aimed at modulating particular cellular responses, such as metabolic fluxes,

signaling and transcriptional outputs, should place heavy emphasis on the architecture

of the underlying biomolecular systems. Interestingly, congruent with our findings,

accumulating numerical evidence have demostrated that cellular information proces-

sing seems to emerge mainly from highly non-linear dynamics, as well as synergistic/

antagonistic interactions among system’s components, which can not be resolved by

intuitive reasoning alone.

Final remarks

Most systems biology studies centered on the structural and functional organization of

highly-dimensional biomolecular systems point to the general idea that signal transduction

networks should display the inherent capacity of accomplishing specific biological tasks in

a robust manner (see [12] and references therein). Robustness seems to be a natural
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property stemming from the evolved design principle of biomolecular networks [7-9],

which allow them to inhabit sloppy parameter spaces wherein system’s behavior turn out

to be highly sensitive to variation along a few stiff directions, while being remarkably

insensitive to variation along a large number of sloppy axes in parameter space [11,30].

Notably, accurate computational reconstructions of experimentally reported dynamical

behaviors of many signal transduction networks have been successfully achieved

[20,51,55,57]. Interestingly, standard mathematical representations of the reaction topol-

ogy of most signaling network models are typically founded on highly non-linear, but rela-

tively simple, biochemical reaction rules, which despite being an abvious simplification of

the underlying biochemistry have proven successful at providing mechanistic insight

[20,51,55,57]. This is an intriguing observation from an evolutionary standpoint. This sug-

gests, for example, that the underlying mathematical structure of most signal transduction

networks that has been favored over evolution to process in an efficient and robust man-

ner the biochemical information arising in the cell, might simply rely on basic dynamic

rules ([59,60]). Intuitively, the most variable component affecting the temporal variation in

the activity of the molecular species involved in a certain signaling event would be the

number of the contributing reaction velocities to a particular flux. Following this line of

arguments, it is tempting to speculate on the possibility that the deterministic component

of the dynamical trajectories displayed by most signaling networks might have been the

result of selection for simple biochemical reaction rules built, for example, upon mass

action and Hill-like saturation kinetics.

Models and computational framework
The mathematical representation of the canonical reaction network retrieved from the

literature, and the whole set of numerical experiments that are described below were

implemented in Mathematica® 6.0.

Mathematical formulation of the signal transduction network in the language of

dynamical systems

A signal transduction network can be appropriately conceived in dynamical terms,

whose internal regulatory schemes, reaction rules and associated control parameters

underlying the trajectories of the system can be formulated, as a first approximation,

via basic principles of biochemical reaction. Ordinary Differential Equations-based

models grounded on mass action law (first and second reaction kinetic orders) and

Hill saturation kinetics, provide a suitable macroscopic approximation to intracellular

signal transduction dynamics (fluxes), as well as transcriptional phenomena. Under this

modeling formalism, a biochemical reaction network can be described on the basis of

the state space formulation with the following mathematical constructs:

1 A network with n reaction species is represented by the state vector:

(1)

In our case, the TLR4 signaling network model incorporates n = 76 reaction spe-

cies, including receptors, adapters, kinases, transcription factors and mRNAs.
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2 The biochemical reaction parameters controlling the signaling flux through the

network and transcriptional processes of target genes are incorporated in the reac-

tion vector

(2)

With m = 116 internal reaction coefficients for the TLR4 network. Here, Θ encom-

passes a wide spectrum of parameters of different biochemical nature, ranging from

transition rates between receptor states (susceptible ⇌ activated), production and

degradation rates of receptors, association/dissociation rates among intracelular

molecular species, phospho/dephosphorylation rates, nuclear import/export rates,

maximal transcriptional rates, transcriptional efficiencies, Michaeles-Menten con-

stants, cooperative coefficients, and mRNA degradation rates (see Additional file 1

for a detailed description of these parameters and their assigned range of values).

According to the above mathematical expressions, the state space non-linear repre-

sentation of the biochemical reaction network is thus given by:

(3)

(4)

Where f(·) defines a non-linear state transition function accounting for reaction velo-

cities or fluxes (see Additional file 1 for a detailed description of the dynamical sys-

tem), which can be grounded on mass action laws and/or Hill kinetics, according to

the reaction mechanisms modeled (receptor activation kinetics, binding and enzymatic

reactions, or transcriptional dynamics). Y0 represents the vector of initial concentra-

tions for the reaction species at time t0; g(·) defines a measurement function which is

solved numerically; whereas X Î ℜn gives the measurement output vector representing

the concentration of the reaction species at a given point in time. In our case, the

TLR4 signaling network model accounts for 76 dynamic variables (reaction species, Yj

∀ j Î (1, 2, 3, ....,76)), 32 of which were assigned zero initial conditions (see Additional

file 1).

Multiparametric sensitivity analysis (MPSA): a combination of uncertainty and

sensitivity analyses

The MPSA approach was first introduced by Hornberger and Chang [61,62]. This is a

computational strategy specially suitable for characterizing the relative importance of

the parameters of a multidimensional mathematical model. Additionally, a MPSA also

provides the means for the identification of possible correlations within the system

under study. The basic idea of the MPSA method is to generate ensembles of different

input parameter configurations for systematically evaluating the range of responses

(outputs) accessible to a given mathematical model. This can be achieved via Monte

Carlo simulations, in which the model is run iteratively using sets of parameters drawn

randomly from pre-specified distributions. Since the natural distributions of parameter

values for actual biological networks are completely unknown, we thus implemented

uniform probability distributions in our simulations. Since our biochemical reaction
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network inhabits a multidimensional parameter space encompassing 116 biochemical

reaction axes, which needs to be sampled efficiently, we thus implemented a Latin

Hypercube Sampling (LHS) method so as to generate representative ensembles of dif-

ferent parameter configurations in both the immediate and distant vicinity of a refer-

ence point in parameter space. This initial approach is aimed at injecting uncertainty

into the model’s inputs, and has thus been coined the term Uncertainty Analysis [23].

We then made use of these ensembles of parameter configurations obtained from pre-

viously assembled reference points in parameter space, to statistically characterize the

robust properties of the canonical reaction topology underlying TLR4-mediated signal-

ing processes in macrophages; a computational approach known as Sensitivity Analysis

[23-26]. We define a decision rule that allowed for the classification of each model eva-

luation as either acceptable (robust) or unacceptable (nonrobust). Further, statistical

analyses, based on Kolmogorov-Smirnov (KS) tests, were performed on the occurences

of acceptable and unacceptable cases, which are summarized for each model para-

meter. The larger the difference between the cumulative frequencies of the two cases,

which is reflected by large values of the D statistic obtained from KS tests, the more

significant is a given parameter. The MPSA method can be summarized in the follow-

ing steps:

1 Selection of reference parameter configurations (vectors) to be perturbed.

2 Set a relatively large range of variation for each model parameter in order to

account for a wide spectrum of biologically plausible perturbations (i.e. single or

combined mutations, thermal fluctuations, etc.). In our case, a perturbation vari-

able, r, was sampled in this way: r ~ U(-1, 1); a perturbation function was then

applied over a reference parameter i, θi, ref, in order to obtain a newly perturbed

parameter θi, pert = 10r * θi, ref
3 Under this perturbation strategy we initially generated seeds of LHS matrices with

the basic structure as illustrated in Table 3, wherein a row vector stands for a per-

turbed parameter configuration. In this way, the matrix shown represents a set of

Table 3 A seed LHS matrix. IPPC stands for initial perturbed parameter configuration. θi
indicates any reference parameter value i to be perturbed systematically

IPPC/θi θ1, ref θ2, ref ... ... θ116, ref

Vector Θ1 ... ...

Vector Θ2 ... ...

Vector Θ3 ... ...

Vector Θ4 ... ...

Vector Θ5 ... ...

Vector Θ6 ... ...

Vector Θ7 ... ...

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Vector Θ5000 ... ...
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input vectors distributed in parameter space in the vicinity (either immediate or dis-

tant) of a previously defined reference point; this matrix is assembled via the LHS

strategy, and is designed for the systematic evaluation of the model’s output. Note that

in our case 5000 parameter configurations were generated from a previously defined

reference point in parameter space. We constructed ensembles of 100 LHS matrices

for evaluating the robust information processing capabilities of the network in differ-

ent regions of biochemical reaction space. We also constructed an ensemble of 10

LHS matrices in order to test for the robustness properties of the two experimentally

reported transcriptional outputs of the network. Before simulating each previously

assembled seed LHS matrix, however, we permuted the elements of each column of a

matrix as illustrated in Table 4. In this way, permuting the matrices permitted us to

avoid any kind of bias in model evaluations.

4 Each LHS matrix was then simulated, and the corresponding discrepancy func-

tion evaluated, which is of the form:

(5)

With J denoting a reference dynamical trajectory with associated parameter config-

uration Θref, and Θpert being a perturbed version of it obtained from a LHS matrix;

with h Î (1, ..., 5000) being any evaluation of the discrepancy function.

5 This step implied determining whether a given perturbed parameter configura-

tion was acceptable (robust) or unacceptable (sensitive) by comparing the discre-

pancy function value to a given threshold. If the discrepancy function value was

found to be below the threshold value the evaluated parameter configuration was

then classified as acceptable; otherwhise it was classified as unacceptable. Pre-

vious computational works suggest that results from MPSA should not be

affected considerably with the choice of a given discrepancy function [25,53,63].

Table 4 A permuted version of the seed LHS matrix. NAPC stands for newly assembled
parameter configuration. θi indicates any reference parameter value i to be perturbed
systematically

NAPC/θi θ1 θ2 ... ... θ116

Vector Θ1* ... ...

Vector Θ2* ... ...

Vector Θ3* ... ...

Vector Θ4* ... ...

Vector Θ5* ... ...

Vector Θ6* ... ...

Vector Θ7* ... ...

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Vector Θ5000* ... ...
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Here we implemented the average of the discrepancy function as our threshold

value, defined as follows:

D Dthreshold
J

h
h

N

=
=

=

∑1
5000

1

5000

(6)

6 After systematic evaluation of the discrepancy function for each LHS matrix, statis-

tical assessment followed in order to determine whether a given parameter config-

uration was deemed either acceptable or unacceptable. To do this, we applied the KS

test to assess the global sensitivity of the system’s output with respect to perturba-

tions targeting individual parameters. The KS test provides the means for evaluating

the cumulative frequency of the observations (parameter values) as a function of

class, and calculate the maximum vertical distance between cumulative frequency

distribution curves for m acceptable and n unacceptable cases of any given para-

meter θj. This is obtained by calculating the D statistic, which is defined in this way:

(7)

Where S(θj) and represent the cumulative frequency functions corre-

sponding to acceptable and unacceptable cases, respectively, with θj being any

reaction parameter of the signal transduction network. Importantly, this estima-

tor provides a robust quantitative notion for the sensitivity/robustness of the net-

work model to random perturbations of the reaction parameters. The higher the

D-value the more sensitive is the dynamical behavior of the network model with

respect to variation of a given parameter, when the remaining parameters (i.e.

biochemical background of the network) are also varied.

Total parameter variation

The total parameter variation estimator provides a quantitative notion of the order of

magnitude in the variation of a perturbed parameter configuration obtained from a

reference one. This estimator is defined as:

(8)

We calculated all T values for those perturbed parameter configurations that were

deemed either robust or fragile obtained from a reference parameter configuration,

Θref, exhibiting a global dynamical trajectory J (∀ J Î (1, ......., 100))

Local and global perturbation analysis of input-output maps

Here, it is described the global (non-orthogonal) and local (orthogonal) perturbation

strategies with respect to particular inputs of the network. Specifically, we assessed the

reproducibility of the network’s transcriptional outputs (Tnfa and Cxcl10) in the face of

single (local) and multiple simulataneous (global) perturbations targeting the internal

reaction parameters of the network. Local perturbations were quantified via the follow-

ing metric:
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(9)

This can be referred to as an “Overal Senstitivity Index” [17,55], being si(t) defined as

follows:

(10)

With the variable Output representing either Tnfa or Cxcl10, and θj giving any

internal reaction parameter j belonging to a reference parameter configuration Θref.

In this local perturbation experiment we focused only on those reaction parameters

accounting for signaling fluxes from the cell membrane surface down to the nucleus;

that is to say, perturbations targeting transcriptional parameters were not simulated.

On the other hand, to perform global perturbation analysis based on the effects of

multiple induced perturbations at the level of transcriptional readouts, we implemen-

ted the same MPSA described above. However, in this case we followed a different

perturbation scheme. We chose a perturbation variable, r, to be sampled in this way:

r ~ U(- 1, 1); a perturbation function was then applied over a reference parameter i,

θi, ref, in order to obtain a newly perturbed parameter θi, pert = 5r * θi, ref . In this

experiment, we perturbed the entire biochemical reaction space, including internal

reaction parameters related to both signaling fluxes and transcriptional processes,

and assessed the effects of the perturbations at the level of each transcriptional read-

out separately (Tnfa or Cxcl10), via the following discrepancy function:

(11)

This time, our criterion used to categorize a parameter configuration as acceptable or

unacceptable was based on the following threshold value:

(12)

Given in arbitrary units of discrepancy, this threshold was selected upon a detailed

analysis of both the qualitative and quantitative effects of the perturbations on the

temporal dynamics of the transcriptional readouts.

Additional file 1: Mathematical structure of the signal transduction network: kinetic parameters, initial
conditions, and rate equations. This file contains a detailed description of our modeling framework. Ranges of
values for kinetic parameters and initial conditions are given, which were selected according to several
computational strategies described in the main text. Our system of rate equations implemented for simulating
intracellular fluxes and propagation of kinetic uncertainties through the TLR4 signal transduction network, is also
described.
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