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Abstract

Background: It has been established that stochastic effects play an important role in
spatio-temporal biochemical networks. A popular method of representing such
stochastic systems is the Reaction Diffusion Master Equation (RDME). However,
simulating sample paths from the RDME can be computationally expensive, particularly
at large populations. Here we investigate an uncommon, but much faster alternative:
the Spatial Chemical Langevin Equation (SCLE).

Methods: We investigate moment equations and correlation functions analytically,
then we compare sample paths and moments of the SCLE to the RDME and associated
deterministic solutions. Sample paths are generated computationally by the Next
Subvolume method (RDME) and the Euler-Maruyama method (SCLE), while a
deterministic solution is obtained with an Euler method. We consider the Gray-Scott
model, a well-known pattern generating system, and a predator–prey system with
spatially inhomogeneous parameters as sample applications.

Results: For linear reaction networks, it is well known that the first order moments of all
three approaches match, that the RDME and SCLE match to the second moment, and
that all approaches diverge at third order moments. For non-linear reaction networks,
differential equations governing moments do not form a closed system, but a general
moment equation can be compared term wise. All approaches match at the leading
order, and the RDME and SCLE match at the second leading order. As expected, the
SCLE captures many dynamics of the RDME where deterministic methods fail to
represent them. However, areas of the parameter space in the Gray-Scott model exist
where either the SCLE and RDME give qualitatively different predictions, or the RDME
predicts patterns, while the SCLE does not.

Conclusions: The SCLE provides a fast alternative to existing methods for simulation
of spatial stochastic biochemical networks, capturing many aspects of dynamics
represented by the RDME. This becomes very useful in search of quantitative
parameters yielding desired qualitative solutions. However, there exist parameter sets
where both the qualitative and quantitative behaviour of the SCLE can differ when
compared to the RDME, so care should be taken in its use for applications demanding
greater accuracy.
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Background
Spatial-stochastic effects are increasingly found to play important roles throughout a

range of biological scales, from intracellular and intercellular processes, to ecological

and epidemiological scales [1-3]. A widely used approach to study stochastic spatial

dynamics is the Reaction Diffusion Master Equation (RDME), in which space is parti-

tioned discretely into a number of voxels. Diffusion can then occur between different

voxels, and reactions can occur within voxels on the assumption that reactants are

well-mixed.

The RDME is generally analytically intractable. However, there do exist some closed

form solutions for systems involving monomolecular reactions [4]. Mean-field

approaches provide some analytical tools to help understand systems with bimolecular

reactions [5,6], but these do not provide exact solutions. It is possible to generate

sample paths consistent with the RDME using a variety of spatial Stochastic Simulation

Algorithms (SSSAs) [7-9]. While widely used, SSSAs suffer from several drawbacks. For

example, there are spatial resolution limits under which artefacts in particle interac-

tions might occur [10], and also some effects at boundaries might not be accurately

captured [11]. However, a more significant drawback is the fact that SSSAs are event-

driven algorithms. Thus, at large numbers of particles, the number of events per time

step can become very large, and SSSAs become prohibitively slow. While one might

argue that deterministic approaches might suffice in such regimes, it has been shown

that stochastic effects can give rise to important effects here, such as noise-induced

oscillations and patterns [3,12]. There exist alternative algorithms based on the RDME

which are faster in such scenarios, but these sacrifice the exactness of the SSSA [13],

and thus are not guaranteed to faithfully represent the behaviour of the RDME. In this

paper, we investigate one such alternative: the Spatial Chemical Langevin Equation

(SCLE). In the non-spatial setting, the Chemical Langevin Equation (CLE), can be de-

rived from the Chemical Master Equation (CME) [14], which in turn can be derived

from a microscopic description of chemical processes [15]. The CLE and CME can then

be extended to the SCLE and RDME, respectively, by introducing diffusion analogously

to linear reactions. The SCLE consists of a family of stochastic differential equations

(SDEs), which have the advantage that they can be simulated with fixed time steps, thus

shedding the computational overhead associated with the event-driven SSSAs. Further-

more, there are simple schemes available to simulate SDEs. However, very little work

has been done on investigating the SCLE in detail (see [16,17]). Moreover, these studies

do not incorporate diffusion terms in a manner consistent with linear reactions in the

non-spatial case. Since diffusion might be viewed as a linear reaction, it is important to

maintain a consistent formulation between diffusion and linear reactions when introdu-

cing diffusion into existing non-spatial models.

Differences between deterministic and Master Equation approaches have been well-

studied (e.g. [18-20]). However, previous work on comparing Langevin and Master

equations has concentrated on non-spatial settings using the CLE and the CME [21],

and also in non-spatial systems with delay [22]. In particular, it has been found that for

linear reaction networks, that the first two moments of CME and CLE match. It was

also demonstrated numerically that the CME and CLE can give similar moments in a

non-linear reaction with a population of the order of 100 [21], but no formal proof

extrapolating to different scenarios or populations was provided. While the method of
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adding spatial interactions is a straightforward extension involving adding linear inter-

actions to the non-spatial case, there remain some open questions as to the conse-

quences of such an implementation. For example, in a spatial model, it is possible for

populations of some species to be high in some voxels, and low in others. Thus, it re-

mains uncertain as to whether inaccuracies arising from voxels with small populations

will propagate through the system. Furthermore, there is the interesting question as to

how spatial correlation functions might behave in the spatial setting, as there is no such

analogue in the non-spatial case.

In this work, we address the applicability of the SCLE as a substitute for the RDME.

Since a key aspect of spatial models includes spatial correlations of different species, we

investigate moments and correlation functions of the RDME and SCLE, and compare

these with deterministic solutions for general reaction networks. In general, the mo-

ment equations for systems with non-linear reactions do not form a closed set of equa-

tions, and cannot be solved without further assumptions on the underlying distribution

of particle populations [23,24]. However, we can draw conclusions on the moments of

the RDME and SCLE without closing this set of equations, namely by comparing each

corresponding equation term-wise. We provide a thorough numerical investigation of

the Gray-Scott model to investigate whether the SCLE is capable of capturing pattern

formation driven by intrinsic noise.

Results and discussion
Formulation

We construct a space Ξ, partitioned into N disjoint voxels, ξ1, ξ2,…, ξN. Consider a

number, S, of distinct chemical species: X1, X2,…, XS. Each of these can react

according to some reaction, of which there are R in total. We denote the popula-

tion of Xs (s ∈ {1,…, S}) in each ξn ∈ Ξ by u sð Þ
n . We can use these quantities to define

the total population for each ξn ∈ Ξ as un ¼ u 1ð Þ
n ; u 2ð Þ

n ;…;u Sð Þ
n

� �T
(with T denoting

the transpose of the vector) and also the total state of the system as an S x N

matrix U = (u1, u2,…, uN). We allow the state of the system to change by reactions

r ∈ {1,…, R}:

XS
s¼1

αsrXs ������!
a nð Þ
r Uð Þ XS

s¼1

βsrXs ð1Þ

where αsr and βsr are natural numbers defining the stoichiometries of the reaction r,

and a nð Þ
r Uð Þ is the reaction propensity of reaction r occurring within voxel ξn. Note that

we set the propensity functions to be dependent on voxel attributes to allow for flexibil-

ity in our approach, e.g. to consider different sized voxels, or to introduce spatially-

inhomogeneous reaction rates. Using the reactions defined in (1), we can define a

stoichiometric matrix V(r,n), with the same dimensionality as U, such that the occur-

rence of reaction r in voxel ξn causes a change of state from U to U +V(r,n). We denote

the value of V(r,n) at the entry corresponding to species s in voxel x by v r;nð Þ
s;x . Note that

for typical systems, it will be the case that V(r,n) is sparse, i.e. v r;nð Þ
s;x ¼ 0 whenever x ≠ n,

which can be for most values of x. However, it is helpful to define the stoichiometric

matrix on a larger space since it allows for more compact expressions in our
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subsequent analysis. We allow species s to diffuse from ξm to ξn with propensity d sð Þ
m;nu

sð Þ
m ,

where d sð Þ
m;n represents the microscopic diffusion rate of species s from voxel m to voxel n.

The change of total state as a result of such a diffusion event is given by a matrix W sð Þ
m;n ,

which is of the same size as U, has a value of 1 at the position corresponding to u sð Þ
n

and −1 at the entry corresponding to u sð Þ
m , and is zero everywhere else. We refer to the

element of W sð Þ
m;n corresponding to species s’ in voxel x’ by w s;m;nð Þ

s0;x0 . In the proceeding

analysis, for some collection of n (n ∈ℕ) random variables, X1, X2,…, Xn, we denote

the expectation of
Yn
i¼1

Xi by
Yn
i¼1

Xi

* +
and refer to this quantity as an nth order mo-

ment. Furthermore, for random variables X and Y, we define the correlation of X and Y

to be 〈XY〉, which can also be alternatively viewed as a second order moment. We con-

tinue our analysis by considering the RDME, then the SCLE and deterministic

approaches. Immediately after each approach, we present the moment equation

implied by the corresponding approach. For the reader’s convenience, definitions of

the RDME, SCLE and deterministic approaches are found in equations (2), (4) and

(6), respectively. The corresponding correlation functions are in (3), (5) and (7),

respectively.

Correlation functions from master equations

Using the definitions developed in the previous section, we can write out a corre-

sponding RDME for the probability that the system is at some state u at a time t,

i.e. P(U = u, t). We denote this by P(u, t) for brevity. This leaves us with the following

form for the RDME:

∂P u; tð Þ
∂t

¼
XR
r¼1

XN
n¼1

a nð Þ
r u−V r;nð Þ
� �

P u−V r;nð Þ; t
� �

−a nð Þ
r uð ÞP u; tð Þ

� �
XS
s¼1

XN
m¼1

XN
n¼1

d sð Þ
m;n u sð Þ

m −w s;m;nð Þ
s;m

� �
P u−W sð Þ

m;n; t
� �

−d sð Þ
m;nu

sð Þ
m P u; tð Þ

ð2Þ

where the first and second lines represent contributions of reaction and diffusion

events, respectively. To investigate various spatial phenomena, we consider the correl-

ation function of the populations of species x in voxels ξa and ξb, u xð Þ
a u xð Þ

b

D E
. In situa-

tions with non-linear propensities, ODEs describing these correlation functions depend

on higher order correlation functions, which in turn are related to correlation functions

of ever-increasing order. Thus, we consider a general correlation function of order O

represented by
YO
o¼1

u soð Þ
no

* +
where for each o we choose some no ∈ {1,…,N} and so ∈

{1,…, S}. We apply the operator
X
u

YO
o¼1

u soð Þ
no to both sides of (2) to give the follow-

ing ODE (see Additional file 1 for derivation):

d
YO
o¼1

u soð Þ
no

* +

dt
¼
XR
r¼1

XN
n¼1

a nð Þ
r Uð Þ

YO
o¼1

u soð Þ
no þ v r;nð Þ

so;no

� �
−
YO
o¼1

u soð Þ
no

 !* +

þ
XS
s¼1

XN
m¼1

XN
n¼1

d sð Þ
m;nu

sð Þ
m

YO
o¼1

u soð Þ
no þ w s;m;nð Þ

so;no

� �
−
YO
o¼1

u soð Þ
no

 !* + ð3Þ
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where the expression is structured as in (2), and the first and second lines represent

contributions from reaction and diffusion events, respectively. Observe that the leading

order of both
YO
o¼1

u soð Þ
no þ v r;nð Þ

so;no

� �
and

YO
o¼1

u soð Þ
no þ w s;m;nð Þ

so;no

� �
is
YO
o¼1

u soð Þ
no . Consequently, the

moments of the diffusion terms depend only on moments of order O and below. How-

ever, the order of the moments arising from reaction terms depends on the specific

form of a nð Þ
r Uð Þ. If all such reaction propensities are linear or constant, then (3) forms a

closed set of equations. Otherwise, the moments of order O are dependent on moments

of order O + 1 or higher, and thus the set of ODEs in (3) is dependent on an infinite set

of higher order ODEs, and cannot be solved without some extra assumptions on the

process. For our purposes, we do not seek to solve (3), but only compare each ODE

generated by (3) term-wise to corresponding ODEs obtained from the SCLE. This then

provides some insight into how the spatial correlations compare between these

approaches.
Correlation functions from Langevin and deterministic equations

We consider the Langevin and deterministic regimes together in this section, since

their analytical treatment is similar. Using the same established definitions from

the case of the RDME, we can write out a set of SDEs for each chemical species

in each voxel. Taken together, these provide a Langevin representation, which we

take to be a counterpart to the RDME of the previous section. To arrive at such

representations, one can either start from the Chemical Langevin Equation in the

non-spatial setting (as in [21]) and introduce diffusion between voxels analogously

to linear reactions. An alternative way to arrive at Langevin representations is to

proceed directly by an expansion of the RDME [25]. Note that such representa-

tions assume that the population of various quantities are continuous variables, as

opposed to the RDME approaches which preserve discreteness. The SCLE consists

of the following coupled SDEs for the population of molecules of each species so
in each voxel ξno :

du soð Þ
no ¼

XR
r¼1

XN
n¼1

a nð Þ
r Uð Þv r;nð Þ

so;no

� �
þ
XS
s¼1

XN
m¼1

XN
n¼1

d sð Þ
m;nu

sð Þ
m w s;m;nð Þ

so;no

� � !
dt

þ
XR
r¼1

XN
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a nð Þ
r Uð Þ

q
v r;nð Þ
so;nodW

nð Þ
r

� �
þ
XS
s¼1

XN
m¼1

XN
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d sð Þ
m;nu

sð Þ
m

q
w s;m;nð Þ
so;no dW sð Þ

mn

� �

ð4Þ

where each W nð Þ
r is a Wiener process used to represent noise in the occurrence of reac-

tion r in voxel ξn . Similarly, each W sð Þ
mn incorporates the stochastic nature of diffusion

of species s from voxel m to voxel n. We refer to the collection of SDEs represented by

(4) as the SCLE.

An expression for an ODE describing
YO
o¼1

u soð Þ
no

* +
follows by applying Ito’s Lemma to

(4) (see Additional file 1):
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d
YO
o¼1

u soð Þ
no

* +

dt
¼
XR
r¼1

XN
n¼1

XO
o¼1

a nð Þ
r Uð Þv r;nð Þ

so;no

Y
o0 ¼ 1
o0≠o

O

u so0ð Þ
no0

� �0
BB@

1
CCA

þ 1
2

XO
o¼1

XO
p¼1

anr Uð Þv r;nð Þ
so;no v

r;nð Þ
sp;np

Y
o0 ¼ 1
o0≠o
o0≠p

O

u so0ð Þ
no0

� �
0
BBBBB@

1
CCCCCA

0
BBBBB@

1
CCCCCA
+

þ
XS
s¼1

XN
m¼1

XN
n¼1

XO
o¼1

d sð Þ
m;nu

sð Þ
m w s;m;nð Þ

so;no

Y
o0 ¼ 1
o0≠o

O

u so0ð Þ
no0

� �0
BB@

1
CCA

þ 1
2

XO
o¼1

XO
p¼1

d sð Þ
m;nu

sð Þ
m w s;m;nð Þ

so;no w s;m;nð Þ
sp;np

Y
o0 ¼ 1
o0≠o
o0≠p

O

u so0ð Þ
no0

� �
0
BBBBB@

1
CCCCCA

0
BBBBB@

1
CCCCCA
+

*

*

ð5Þ

where we have structured the expression in the same way as in (3), with the contribu-

tion from reaction and diffusion appearing in the first and second lines, respectively.

The expression becomes clearer when seen in terms of binomial expansions of various

terms in (3). The reaction terms in (5) are identical to the leading two orders of the

reaction terms appearing in the expansion of (3). The same holds for the diffusion

terms. Thus, each of the infinite set of ODEs representing correlation functions from

the RDME and SCLE match up to the second leading order.

For the deterministic model, we consider the SCLE without any contribution from

Wiener terms. That is, for each so in voxel ξno , we consider the following deterministic

representation:

du soð Þ
no ¼

XR
r¼1

XN
n¼1

a nð Þ
r Uð Þv r;nð Þ

so;no

� �
þ
XS
s¼1

XN
m¼1

XN
n¼1

d sð Þ
m;nu

sð Þ
m w s;m;nð Þ

so;no

� � !
dt ð6Þ

The ODEs describing correlation functions and moment equations from (6) can be
easily calculated, since in the deterministic scenario, expectation and products com-

mute, i.e.,
YO
o¼1

u soð Þ
no

* +
¼
YO
o¼1

u soð Þ
no

D E
. However, to facilitate comparison with the RDME

and SCLE, we consider ODEs of the same form as (3) and (5). The result follows

directly from the derivation of (5) (see Additional file 1 for details):

d
YO
o¼1

u soð Þ
no

* +

dt
¼
XR
r¼1

XN
n¼1

XO
o¼1

a nð Þ
r Uð Þv r;nð Þ

so;no

Y
o0 ¼ 1
o0≠o

O

u so0ð Þ
no0

� �0
BB@

1
CCA

* +

þ
XS
s¼1

XN
m¼1

XN
n¼1

XO
o¼1

d sð Þ
m;nu

sð Þ
m w s;m;nð Þ

so;no

Y
o0 ¼ 1
o0≠o

O

u so0ð Þ
no0

� �0
BB@

1
CCA

* + ð7Þ
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which lends itself to the same interpretation as (5). The deterministic representation only

accounts for leading order terms of the correlation functions and moment equations.
Implications of moment equations

From equations (3), (5) and (7), we can make some analytical and also some heuristic

predictions on the behaviour of the RDME, SCLE and deterministic approaches. First

note that all moment equations match at the leading order, and the RDME and SCLE

match at the second leading order.

In the case of linear networks (i.e. a nð Þ
r Uð Þ is linear in U for all r and n), we have that

all three approaches give rise to a set of moment equations, which are closed, and can

thus be solved. Since all three approaches agree at the leading order, the mean popula-

tion of all three approaches match. Similarly, since the RDME and SCLE match at sec-

ond leading order, we can conclude that the variance of populations between the

RDME and SCLE agree for linear networks, while the same cannot be said for deter-

ministic approaches. Since all three approaches deviate at the third leading order, we

anticipate that the three approaches will not agree at the level of third order moments

and higher. These results have previously been considered in the non-spatial case [21],

and their extension to the spatial case in this work is to be expected, since diffusion in

space can be considered as a linear reaction in itself.

In the case that there are second order or higher terms of species populations appearing

in a nð Þ
r Uð Þ for some r and n, then the equations (3), (5) and (7) do not form a closed set,

since each equation of order O is dependent on orders of O + 1 or higher. Thus, in the

system of (infinite) ODEs describing these moments, there will be terms where all three

approaches disagree, since they match at most at the leading two orders. Thus, moments

of populations with non-linear reaction propensities cannot be expected to match. These

arguments also hold when applied to the spatial correlation functions within the system,

since spatial correlation functions can be defined in terms of moments.

In the limit of large populations, each ODE is dominated by its leading order terms,

and thus one can expect moments and correlation functions to match for systems with

very large populations. At smaller populations we anticipate that the SCLE should pro-

vide a better approximation to the RDME than a comparable deterministic approach,

since the RDME and SCLE match at two leading order terms, whereas a deterministic

approach only matches at the leading order term. However it is as yet unclear at what

numbers the SCLE and RDME might give similar moments. This problem is com-

pounded by the fact that in spatial scenarios, it is possible for some areas of space to

have large populations, with others having small populations, such as the case in

Turing patterns. Thus, we proceed with a numerical investigation.
The Gray-Scott model

On comparing the ODEs governing spatial correlation functions for the RDME, SCLE

and deterministic approaches, it is clear that the same spatial correlations should not

be expected from the three approaches, but it is uncertain when one approach should

well-approximate the other. To provide an application with which we can illustrate the

potential and limitations of each approach, we consider the Gray-Scott model [26], a

widely used pattern generating system. While it was originally intended as a model of
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glycolysis [27], it has been shown that the model can generate several different patterns

within a narrow parameter range [28], and that intrinsic noise can drive these patterns

[12]. As such, it provides a good framework with which to probe differences between

the three approaches.

For this we consider two reacting species, U and V. Denote the population of U and

V in voxel ξi by Ui and Vi, respectively. The Gray-Scott model is characterised by the

following reactions occurring within each ξi ∈ Ξ:

U þ 2V→3V
V→P
U→Q
∅→U

ð8Þ

with reaction propensities within each voxel being k1UiVi(Vi − 1)/Ω2, k2Vi, k3Ui and

k4Ω, respectively. The Ω term serves as a parameter to vary the system size. We con-

duct numerical experiments in a 2D Cartesian square. Each side of the square consists

of L (L ∈ℕ) square voxels, each with length h, giving the system a total length of Lh

per side. We refer to the diffusion constants of U and V as DU and DV, respectively.

Thus, the diffusion propensities of U and V from voxel ξi to neighbouring voxels are

given by DUUi/h
2 and DVVi/h

2, respectively. In order to conduct numerical experi-

ments, it is helpful to parameterise the reaction rates. Thus, we define the reaction

rates in terms of two parameters k and F, and define k1 = 1, k2 = F + k, k3 = F and k4 = F.

This parameterisation has been chosen so as to be consistent with previous studies of

the Gray-Scott Model [12,28]. For all numerical investigations, we take Ω = 250, DU =

2 × 10− 5, DV = 1 × 10− 5, h = 0.01 and L = 50. For initial conditions, we use U = 250 and

V = 0 everywhere, except in a centred box of 3×3 voxels, where we use U = 0 and

V = 250. We operate in arbitrary length and time units in order to maintain

consistency with previously published studies, which have followed this strategy. In

order to simulate sample paths from the RDME, we implemented the next subvo-

lume method [29]. To generate comparable paths from the SCLE and the deter-

ministic approaches, we implemented the Euler-Maruyama method [30] and an

Euler method, respectively. As expected, the SCLE simulations were executed much

faster than corresponding RDME simulations. The typical computational time to

simulate 2500 time units from the RDME was on the order of two days, whereas

the corresponding time from the SCLE was on the order of half an hour (with a

time step of 0.1 time units), as computed using MATLAB R2013a running on a

3.2 GHz Intel Xeon processor. Reducing the time step on the Euler-Maruyama and

Euler methods to 0.025 time units was found to have no impact on the results.

In the area of parameter space where all three approaches generated patterns, typical

patterns from the SCLE resembled something between the RDME and deterministic

approaches (see Figure 1). That the qualitative patterns are not necessarily the same is

not surprising, given one cannot expect the same correlation functions from all three

approaches.

However, it is not always the case that the three approaches predict the existence of

patterns for the same parameters (see Figure 2). We observe three different scenarios:

1) All three approaches predict patterns, 2) Only the RDME and SCLE predict patterns

and 3) Only the RDME predicts patterns. Such a result might be expected from the



a2 a3a1

b2 b3b1

c2 c3c1

Figure 1 Qualitatively different sample paths in the Gray Scott model depending on simulation
method/numerical solution. A selection of patterns generated by the Gray-Scott model from the RDME
(panels numbered 1), SCLE (panels numbered 2) and deterministic equations (panels numbered 3).
Parameters used are as specified in the text, other than: a) k = 0.055, F = 0.025, b) k = 0.0625, F = 0.055 and c)
k = 0.065, F = 0.04. All patterns are shown after a simulation time of 950 time units. Simulation time steps for
the SCLE and deterministic approaches were 0.1 time units. The same results were found to hold with time
steps reduced to 0.0025 time units.
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analytical expressions themselves. The region of parameter space where the RDME and

the SCLE match is sizeable, and only in a few of the investigated parameters did the

RDME predict patterns where the SCLE did not (see Figure 3). Our numerical results indi-

cate that the RDME and SCLE give qualitatively similar results in the vast majority of the

parameter space, however, there are cases where it can give qualitatively different results.

A predator–prey system with a safe haven

To investigate first and second moments of a non-linear reaction system numerically,

we consider a modified predator prey system in a space of 5 by 5 voxels, where prey

are safe from predation in a small area. Such models can provide insight into the wider

impact of implementing conservation schemes in local areas. We denote prey and

predator species by A and B, respectively, and write their populations in voxel i as Ai

and Bi, respectively. The following reactions occur in every voxel:

A→2A
Aþ B→2B
A→∅
B→∅

ð9Þ



a2a1 a3

b1 b2 b3

Figure 2 The absence of patterns in the Gray Scott model depending on used simulation method/
numerical solution. Simulation output from the RDME (panels numbered 1), SCLE (panels numbered 2)
and deterministic equations (panels numbered 3) showing where the RDME predicts patterns but SCLE and
deterministic approaches do not (subplots a), and cases where the RDME and SCLE predict patterns but the
deterministic approach does not. Parameters are as specified in the text, with the addition of a) k = 0.06,
F = 0.02 and b) k = 0.06, F = 0.025. Simulation time steps for the SCLE and deterministic approaches were 0.1
time units. The same results were found to hold with time steps reduced to 0.0025 time units.
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Figure 3 Regions of parameter space where the RDME, SCLE and deterministic models predict
patterns. Regions where all three approaches generated patterns are given in red. Regions where only the
RDME and SCLE generated patterns are given in yellow. Regions where only the RDME generated patterns
are given in light blue. Dark blue symbolises that no patterns were found. Simulation time steps for the
SCLE and deterministic approaches were 0.1 time units. The same results were found to hold with time
steps reduced to 0.0025 time units. All other parameters are as indicated in the text.
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with corresponding propensities of k1Ai, k2AiBi, k3Ai and k4Bi, respectively. In

voxel (1,1), we set k2 = 0, signifying that prey are safe from predators in this voxel.

Furthermore, both A and B diffuse between voxels with the same diffusion rate

kdiff.

Sample paths from the RDME were generated by using the next subvolume

method. Corresponding paths from the SCLE and deterministic approaches were

generated by using the Euler-Maruyama and Euler methods, respectively. The

population of B in voxels (1,1), (3,3) and (5,5) are shown in Figure 4, which shows

first and second moments estimated from 10,000 realizations. The following pa-

rameters were used in the presented simulations: k1 = 1, k2 = 0.02, k3 = 0.25, k4 = 1,

and kdiff = 0. Initial conditions of 100 individuals of A and 100 individuals of B

were set in every voxel. At all times, values of the SCLE were found to interpolate

those of the RDME and deterministic approaches. For example, at 10 seconds, the

values of the second moment of B in voxel (1,1) from the RDME, SCLE and deter-

ministic approaches was 85100, 84200 and 81800 rounded to three significant fig-

ures, respectively.
Discussion
We conducted an investigation of the SCLE both analytically and numerically, with an

emphasis on comparing moments, correlation functions and qualitative behaviour to

the RDME and deterministic approaches. We show that for systems with linear

reaction networks, the SCLE provides correct descriptions of first and second order

moments, but not for third moments and higher. For non-linear cases, it cannot be

guaranteed that the moments match.
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Figure 4 A spatial predator prey system with a safe haven. First moments (top row) and second
moments (bottom row) of the predator–prey system described in (9). Voxels (1,1), (3,3) and (5,5) are
shown in subplots a, b and c, respectively. Parameters used are k1 = 1[A]−1 s−1, k2 = 0.02[A]−1[B]−1 s−1

k3 = 0.25[A]−1 s−1, k4 = 1[B]−1 s−1 kdiff = 0.5[A]−1 s−1 for A and kdiff = 0.5[B]−1 s−1. Initial conditions are 100 individuals
of A and B in every voxel. Time steps for the SCLE and deterministic approaches were 0.001 seconds. RDME
results are shown as blue lines. SCLE and deterministic results are shown as red and black dots, respectively.
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In such non-linear scenarios, ODEs describing moments and correlation functions do

not form a closed system of equations, but depend on higher order moment equations.

Thus, these systems are not solvable without further assumptions being imposed on

the system [23,24]. However, by comparing each equation term-wise, we showed that

the RDME and SCLE match at the leading and second-leading orders, whereas deter-

ministic approaches match only at the leading order. The implications of this depend

on the specific reaction propensities in the network of interest. For linear networks, the

RDME and SCLE match at the first and second moments, whereas deterministic

approaches only represent first moments accurately. For non-linear networks, little can

be said conclusively. These results are summarised in Table 1. Ascertaining the

population size where this would lead to qualitative differences could not be performed

analytically, so a numerical investigation was performed instead.

Spatial studies of a predator–prey system showed that the SCLE can provide first and

second order moments which closely match those of the RDME for populations on the

order of 100 individuals (see Figure 4). These findings reinforce what was previously in-

vestigated in non-spatial settings [21]. The moments of the SCLE were found to

interpolate between that of deterministic approaches and the RDME in all numerical

investigations.

To demonstrate the applicability of the SCLE in capturing phenomena driven by

intrinsic noise, we considered simulations of the Gray-Scott model [26,31]. While the

qualitative solutions between the RDME and SCLE were typically similar, there were

cases where they differed (see Figures 1 and 2). In particular, there were even some

regions of parameter space where patterns might be observed in the RDME, but not in

the SCLE (see Figures 2 and 3). Where the RDME, SCLE and deterministic approaches

all predicted patterns, it was interesting to note that the resulting patterns obtained

from the SCLE appeared to be an intermediate between patterns associated with the

RDME and the PDE solutions.

Such results were conducted for populations of the order of a few hundred particles.

In smaller populations, it is clear from equations (3), (5) and (7) that we cannot expect

the moments nor correlation functions to match. It has recently been shown in the

non-spatial case the CLE can be interpreted to give complex values for non-linear reac-

tions at small populations [32], thus making it problematic to compare sample paths

from master equations and Langevin equation at small populations, since it would

involve comparing real and complex numbers with one another. In the spatial case, an-

other artefact might appear in the SCLE: the fact that the SCLE admits continuous val-

ued population sizes means that the notion of a particle being contained entirely within

one voxel might be lost.
Table 1 A term by term comparison of the SCLE and deterministic approaches with the
RDME, and implications for the corresponding moments

SCLE Deterministic

Highest order matching moment (linear reactions) 2nd Moment 1st Moment

Highest order matching moment (higher order propensities) None None

Highest order matching term in moment ODEs
(any propensity and moment)

2nd Leading Order Leading Order

The table summarises the terms matching between equations (3), (5) and (7).
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A key advantage the SCLE has over the RDME approach is computational efficiency.

In executing the simulations in making Figures 1 and 3, the computational time re-

quired was on the order of days for simulations from the RDME, whereas analogous

simulations were completed in the order of hours from the SCLE. The computational

savings can be even more significant for larger systems, since SSSAs scale in computa-

tional speed according to a polynomial of the population size, whereas the speed of the

Euler-Maruyama method is independent of the population size. As such, the main

benefit of the SCLE is reached in the region where it gives the best accuracy, making it

especially suitable for stochastic simulation on the macroscopic scales and parameter

sweeps.

Conclusions
We demonstrated that the SCLE captures many qualitative and quantitative character-

istics of the RDME, which deterministic models fail to represent. The SCLE was found

to be significantly faster to simulate than the RDME. Qualitative differences in behav-

iour of the RDME to the SCLE occurred for specific parameter settings, but such

occurrences were uncommon. Analytical results demonstrate that the SCLE matches

the RDME most at large population sizes. Thus, we anticipate that the SCLE should

provide a strong framework for the simulation of reaction–diffusion systems with many

particles.
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