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Abstract

Background: Mathematical models of diseases may provide a unified approach for establishing effective treatment
strategies based on fundamental pathophysiology. However, models that are useful for clinical practice must
overcome the massive complexity of human physiology and the diversity of patients’ environmental conditions. With
the aim of modeling a complex disease, we choose sepsis, which is highly complex, life-threatening systemic disease
with high mortality. In particular, we focused on septic shock, a subset of sepsis in which underlying circulatory and
cellular/metabolic abnormalities are profound enough to substantially increase mortality. Our model includes
cardiovascular, immune, nervous system models and a pharmacological model as submodels and integrates
them to create a sepsis model based on pathological facts.

Results: Model validation was done in two steps. First, we established a model for a standard patient in
order to confirm the validity of our approach in general aspects. For this, we checked the correspondence
between the severity of infection defined in terms of pathogen growth rate and the ease of recovery defined
in terms of the intensity of treatment required for recovery. The simulations for a standard patient showed
good correspondence. We then applied the same simulations to a patient with heart failure as an underlying
disease. The model showed that spontaneous recovery would not occur without treatment, even for a very
mild infection. This is consistent with clinical experience.
We next validated the model using clinical data of three sepsis patients. The model parameters were tuned
for these patients based on the model for the standard patient used in the first part of the validation. In
these cases, the simulations agreed well with clinical data. In fact, only a handful parameters need to be
tuned for the simulations to match with the data.

Conclusions: We have constructed a model of septic shock and have shown that it can reproduce well the
time courses of treatment and disease progression. Tuning of model parameters for each patient could be
easily done. This study demonstrates the feasibility of disease models, suggesting the possibility of clinical use
in the prediction of disease progression, decisions on the timing of drug dosages, and the estimation of time
of infection.
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Background
Sepsis is a highly complex, life-threatening systemic dis-
ease caused by infection and has a high mortality rate.
The number of sepsis patients is estimated to be around
27 million per year globally, of whom approximately 8
million people die, and the number of sepsis patients is
increasing [1]. The disease is sometimes referred to as
the most common but least recognized disease [2]. In the
most severe form of sepsis, called septic shock, under-
lying circulatory and cellular/metabolic abnormalities
are profound enough to substantially increase mortality
[3] and the effects of inflammation produced by the im-
mune system spread systemically and induce an acute
systemic disorder [4]. Patients with septic shock must be
treated urgently in an intensive care unit. Because of its
complexity, the progression of septic shock varies from
patient to patient, depending on age, sex, physical charac-
teristics, physiological activity, underlying disease, and
other factors. Therefore, treatment is largely based on
doctors’ skill obtained through practical experience, as is
usually the case in the treatment of other diseases. Al-
though several standard guidelines are available [5, 6],
more effective, versatile, and reliable therapeutic strategies
for emergency medicine are currently being sought.
The art of medicine, which emphasizes the individual-

ity of patients, must be supported by a solid scientific
understanding of disease based on human physiology.
The art and science of medicine should be integrated in
clinical practice at a much higher level than at present.
In the physical sciences and engineering, most of

the knowledge accumulated to date about devices,
components, and systems has been represented by
models, most of which are presented quantitatively
(mathematically). These models are available in vari-
ous forms, such as scientific papers, patents, and soft-
ware packages, and are used extensively as a concise
representation of accumulated scientific knowledge in
the research and development of new devices, compo-
nents, and systems.
Accurate models of disease based on physiology and

pharmacology could contribute to improving the treat-
ment of diseases. Doctors could use such models to esti-
mate the physiological state of their patients, predict the
disease progression, and decide on treatment strategies,
including the administration of drugs. Models could
therefore provide a unified scientific background to clin-
ical practice. Rami et al. extensively discussed and pre-
sented persuasive reasoning along these lines based on a
historical review of treatment for sepsis [7]. They aimed
to demonstrate the potential of disease models in ther-
apy and open the door to model-based therapy.
One problem with models is to incorporate the

individuality of patients. We anticipate that individual
differences can be accommodated by choosing model
parameters carefully based on the patients’ age, weight,
sex, physiological status, underlying diseases, and other
factors. Modern hospitals are well equipped with ad-
vanced diagnostic systems that would allow the easy
customization of a disease model for each patient. In
addition, mathematical models could help to promote a
deeper understanding of diseases and establish a hypoth-
esis of pathogenesis, improving our understanding of
treatment methods.
Due to the complexity of disease physiology, it is

difficult to model human diseases, and most mathem-
atical models of disease physiology have so far fo-
cused on experimental animals, except models of
diabetes and Parkinson’s disease. Treatment strategies
have been developed for diabetes based on mathemat-
ical models [8]. The model developed by Kovatchev
et al. [9] was approved by the US Federal Drug Ad-
ministration as an alternative to animal research for
the approval of diabetes medications. Recently, we
have constructed a diabetes model that includes
brain-centered glucose metabolism and suggested an
alternative therapeutic strategy for diabetes [10]. A
mathematical model based on brain metabolism has
been constructed for Parkinson’s disease and is recog-
nized as a useful tool for investigating its pathogen-
esis [11, 12]. The importance of mathematical models
in understanding the basic physiology in the progres-
sion of sepsis has been highlighted in previous work
[13]. In addition, Kendrick et al. published a clear de-
scription of the immune response to sepsis [14], and
Shi et al. discussed a bifurcation analysis of sepsis
based on an immune system model [15].
In this study, we aimed to construct a new math-

ematical model of septic shock based on clinical data.
Among the diverse symptoms of sepsis patients, we
focused on the damage caused to the cardiovascular
system because septic shock most frequently damages
the cardiovascular system. Our model combines the
cardiovascular system, immune system, and pharma-
cological models, and we used existing models of
these systems as our guiding tools [16, 17]. We fo-
cused on how inflammation resulting from immune
activity affected the cardiovascular system and caused
septic shock. Among the many possible effects of in-
flammation on the cardiovascular system, we selected
increased vessel permeability, vasodilation, and re-
duced stroke volume [18, 19]. We incorporated these
three factors into the combined model of the cardio-
vascular and immune systems, making the resulting
model highly nonlinear. Through simulations, we
showed that these three factors are sufficient to re-
produce septic shock.
To complete the sepsis model, the nervous system and

pharmacological responses to drug administration must
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be incorporated because they are crucial to the disease
model. We could not measure the activity of the nervous
system, but we incorporated qualitative physiological
and empirical data to achieve a quantitative description
in our model to reflect realistic physiological effects.
The activity of the nervous system is weaker in pa-
tients with sepsis than in healthy people; thus, we in-
troduced fatigue as a parameter of the sympathetic
nervous system [20, 21]. In addition, the effects of
drugs are reduced in sepsis patients compared with
healthy people. Therefore, we used experimental data
showing the reduced effects of an antihypertensive
medicine in sepsis patients.
Method
We constructed a mathematical model that represents
the physiological dynamics of septic shock after infec-
tion and comprises cardiovascular system, immune
system, nervous system, and pharmacological submo-
dels. An overview of our model is shown in Fig. 1.
There are various cardiovascular, nervous, and im-
mune system models for different uses in the litera-
ture. Most of these models are closed in the
single-target domain, although they must be con-
nected to represent the disease. In this study, we fo-
cused on integrating these models, based on choosing
appropriate existing models for the sepsis model. We
used the cardiovascular system model proposed by
Ursino and Innocenti [17], which is comprehensive
and includes the solute kinetics of each constituent in
blood, as well as the sympathetic nervous system. Be-
cause the increase in vascular permeability is an
Fig. 1 Overview of the sepsis model
important effect of inflammation on the cardiovascu-
lar system, the solute kinetics of the systemic capillar-
ies in the model are essential in our sepsis model.
The immune system is complex, and quantitative

models are still incomplete [22, 23]. We based our
sepsis model on the model reported by Reynolds
et al. [16] because it is simple but captures the essen-
tial features of the immune system that are relevant
to our sepsis model. We incorporated the effect of
antibiotics into this model, following the proposal of
Kitamura [24].
The core of our sepsis model is in the link between

the cardiovascular and immune systems. In other
words, we model how inflammatory responses damage
the cardiovascular system. As stated in the Back-
ground section, we considered the three effects of in-
flammation on the cardiovascular system—increased
vessel permeability, vasodilation, and reduced stroke
volume—all of which contribute to reducing blood
pressure. To quantify these effects, we represented
the three parameters as functions of inflammation.
Because inflammation manifests in diverse ways, it is
hard to represent as a simple physical quantity; it is
more an abstract and collective quantity. In contrast,
permeability, vasodilation, and stroke volume are tan-
gible physical parameters with clear units of measure-
ment. The model connected these physical parameters
with an abstract representation of the severity of in-
flammation. This was an unavoidable difficulty and an
intriguing aspect of sepsis modeling.
Next, we briefly describe each model.
The cardiovascular system model is composed of five

compartments, namely, the pulmonary atrium (pa), right
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atrium (ra), left atrium (la), systemic arteries (sa), and
the systemic veins (sv) (Fig. 2).
Each compartment is described by its volume V, pres-

sure P, incoming flow rate qin, outgoing flow rate qout,
and compliance C representing the compartment cap-
acity, subject to the conservation of mass

dV
dt

¼ qin−qout ; ð1Þ

V ¼ CP ð2Þ
The right cardiac output qr and left cardiac output ql

are represented by.

qr ¼ Sr f ; ql ¼ Sl f ; ð3Þ
where Sr and Sl are the right and left stroke volumes, re-
spectively, and f is the heart rate.
The solute kinetics of the capillary system that trans-

ports the blood components to the tissues are important
in our model. We focus on the material exchange be-
tween vessels and the interstitial fluid. The total blood
volume V is subject to the following transport law:

dV
dt

¼ −Fa þ Rv þ Qinf ð4Þ

where Qinf denotes the external infusion rate. Outflow Fa
Fig. 2 Cardiovascular system model
from the vessel to the interstitial space and inflow Rv in
the opposite direction in eq. (4) are determined by blood
pressure and oncotic pressure as

Fa ¼ La Pac−Pisð Þ− πpl−πis
� �� � ð5Þ

Rv ¼ Lv Pis−Pvcð Þ− πis−πpl
� �� � ð6Þ

where Pac is the capillary arterial pressure, Pis the inter-
stitial fluid pressure, Pvc the venous capillary pressure,
πpl the plasma oncotic pressure, and πis the interstitial
oncotic pressure. Coefficient La in equation (5) denotes
vessel permeability, which is important in our model,
whereas coefficient Lv in equation (6) denotes another
permeability characterizing the opposite blood flow,
which is considered to be irrelevant to damage. In real-
ity, there are more inputs and outputs that affect the
total blood volume, such as the blood carried to the kid-
neys. However, we neglected these other factors because
their contributions are relatively small. The more de-
tailed solute dynamics associated with equations (5) and
(6) are described by Ursino and Innocenti [17].

Total blood volume V consists of six components,
namely,
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V ¼ Vu þ V f ; V f ¼ V ρa þ Vra þ V la þ Vsa þ Vsv

ð7Þ
where Vu is the unloaded volume and Vf is the filling
volume which consists of the volume in each compart-
ment. The unloaded volume is the part of blood reser-
voir in the heart that does not circulate.
The baroreflex is governed by the sympathetic nervous

system, which elevates the blood pressure when the
baroreceptors detect a decrease in blood pressure. The
increase in blood pressure is achieved via elevation of
the heart rate, increased vascular resistance, and in-
creased venous blood volume unloading [25].
Let a be the action of the sympathetic nervous system.

The mechanisms of nervous system action are different
for each component of the baroreflex; thus, a for heart
rate elevation is denoted by af, a for increasing vascular
resistance is denoted by ar, and a for increasing
unloaded blood volume is denoted by aυ. The elevation
in heart rate mediated by sympathetic action is described
as

f ¼ f 0 1−a0 f þ af
� � ð8Þ

where f0 is the normal heart rate and a0f is the normal
level of sympathetic nervous system activity.
According to Poiseuille’s law, vessel resistance R is in-

versely proportional to the fourth power of the vessel ra-
dius r, that is,

R
Q
r4

¼ r0Kr;cr ; ð9Þ

where r0 is the normal vessel radius, Q=r4o is the normal
vessel resistance, and Kr, cr represents the change in the
vessel radius due to sympathetic nerve activity ar. We
assume that sympathetic nerve activity decreases the
vessel radius as

Kr;cr ¼ 1
1−a0r þ ar

¼ 1
Ar

ð10Þ

If ar increases above a0r, then Kr, cr and resistance R
decrease.
Finally, the unloaded blood volume Vu in equation (7)

is assumed to be reduced by the sympathetic nervous
system in the same way as in equation (10),

Vu ¼ Vu0Kv;cr; KV ;cr ¼ 1
1−a0v þ av

¼ 1
AV

; ð11Þ

where Vu0 is the normal unloaded blood volume Vu

given in equation (7) [17]. The reduction of the
unloaded volume implies an increase in circulating vol-
ume Vf due to equation (5), assuming that total volume
V is fixed.
Now we quantify the baroreflex and its fatigue. Let
X be the average output of the baroreceptors that de-
tect the right arterial blood pressure, Pra, and the sys-
temic arterial blood pressure, Psa, which is assumed
to be

X ¼ qrPra þ qsPsa ð12Þ
where qr and qs are averaging factors. The sympathetic
nervous system responds to the decreasing pressure sig-
nal represented by

ΔX ¼ X0−X ð13Þ
where X0 is the normal baroreceptor signal given by.

X0 ¼ qrPra0 þ qsPsa0 ð14Þ
The normal arterial blood pressure, Pra0, and systemic

blood pressure, Psa0, depend on individual patients.
Since the nerve activities af, ar and aυ have the same

mathematical representations, we omit their subscripts f,
r, and υ in the following description. We assume that a
changes between its minimum, amin, and maximum,
amax, due to a change in X. Thus, a is assumed to be
represented by a sigmoid function of ΔX:

a ¼ amax−amin

1þ exp −ΔX=X0ð Þ þ amin ð15Þ

The normal level of sympathetic nerve activity a0 cor-
responds to the activity level when ΔX = 0. Hence, equa-
tion (15) implies

a0 ¼ amax þ amin

2
ð16Þ

that is, the average of amax and amin.
If sympathetic nerve activity is sustained above its nor-

mal level for a long time, then the action gradually de-
creases due to fatigue (e.g., [20]). To represent this
effect, we introduce fatigue factor γ as

_γ ¼ 1
τγ

a−a0ð Þ ð17Þ

and γ decreases the nervous activity as

a ¼ amax−amin

1þ exp −ΔX=X0 þ γð Þ þ amin ð18Þ

If a0 < a for an extended time, γ increases and a is re-
duced according to equation (18). Equations (17) and
(16) are nonlinear differential equations.
Sepsis is caused by excessive inflammation triggered

by the immune system after infection. The dynamics
of the immune system play an important role in
evaluating the progression of sepsis. However, because
the immune system is complex, mathematical models
of immune system dynamics are not well developed,
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although there have been several attempts to quantify
the dynamics [23, 25]. We base our sepsis model on
the model proposed by Reynolds et al. [16] because
their model is simple but captures some essential fea-
tures of the immune system that are relevant to
sepsis.
The dynamic model is composed of the four state vari-

ables, pathogen population P, inflammation N∗, damage
D, and anti-inflammatory mediator CA (Fig. 3) [16].
The interactions among these variables are described

as follows.
The dynamics of P are described by.

dP
dt

¼ kpgP 1−
P
P∞

� �
−

kpmSmP
μm þ kmpP

−kpng N�ð ÞP−ε Cγ
f

Cγ
f þ ECγ

50

;P

ð19Þ

g xð Þ ¼ x

1þ CA=C∞ð Þ2 ð20Þ

The first term represents the logistic growth of patho-
gen P, where kpg is the growth rate and P∞ is the carrying
capacity of P. The second term represents the
non-specific local immune response toward P character-
ized by the Michaelis–Menten equation [16]. The third
term represents the removal of the pathogen by phago-
cytic immune cells, which is proportional to inflamma-
tion N∗, restricted by the anti-inflammatory mediator
CA, as shown in equation (20). The forth term repre-
sents the effect of antibiotic dosage proposed by Kita-
mura [24]. Here, Cf denotes the free concentration of
antibiotic, which is subject to the following dynamics.

dX1

dt
¼ −kaX1 ð21Þ
Fig. 3 Overview of the immune system model [16]
dX2

dt
¼ kaX1−keX2 ð22Þ

C f ¼ f pX2=Vd ð23Þ

Here, X1 denotes antibiotic dosage, X2 its blood con-
centration, ka the absorption coefficient and ke the deg-
radation coefficient.
The inflammation dynamics are represented by

dN�

dt
¼ SnrR

μnr þ R
−μnN

� ð24Þ

R ¼ g knnN
� þ knpP þ kndD

� � ð25Þ

The first term of equation (24) is a simplified repre-
sentation of the initiation of inflammation caused by P,
D, and N∗ represented by their linear combination in
equation (25), and snr and μnr are Michaelis–Menten pa-
rameters for the inflammatory reactions. Function g in-
troduced in equation (20), which represents the
saturating factor due to the presence of anti-
inflammatory mediator CA, is also used to represent the
initiation of inflammation. The second term represents
the degradation.
CA is subject to the dynamics

dCA

dt ¼ Sc þ kcng N� þ kcndDð Þ
1þ g N� þ kcndDð Þ−μCCA ð26Þ

Here, Sc denotes a source of CA and the second term
represents the production of CA from damage D and in-
flammation N∗ by a Michaelis–Menten term with inhib-
ition mediated by CA itself. The third term represents
the degradation. More detailed descriptions are found in
Reynolds et al. [16].
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Damage D is an abstract quantity in the paper by
Reynolds et al. [16], but here we give it a physical mean-
ing to represent cardiovascular system damage. There
are several ways to identify cardiovascular damage, and
we take reduced stroke volume Sl, introduced in equa-
tion (3), because it affects the whole system substantially.
We describe the damage as

dD
dt

¼ kDSd−μdD ð27Þ

Sd ¼
1

1þ e kSl=S0−k0ð Þ ; Sl≤S0
0 Sl > S0

(
ð28Þ

where S0 is the normal stroke volume and Sd is a de-
creasing sigmoid function that takes the value 1/(1 +
e−k0) (i.e., approximately 1) when Sl = 0, and 1=ð1
þeðk−k0ÞÞ (i.e., approximately 0) when Sl = S0, provided
that appropriate values of k and k0 are used.
Next, we quantify how inflammation lowers blood

pressure. The most important factor is the increase in
the permeability of the capillaries due to inflammation
[16, 18]. In our model, capillary permeability is repre-
sented by coefficient La in equation (5). We assume that
the inflammation population N∗ increases La following a
sigmoid function given by

La ¼ La; max−La; min

1þ EC50;La=N�� �slopeLa þ La; min ð29Þ

where La, max and La, min are the maximum and mini-
mum levels of permeability, respectively. Equation (29)
is in the same form as equation (18). If N∗ is large, La
goes to La, max, whereas if N∗ is negligibly small, La be-
comes equal to La, min.
The vessel radius r is given by equation (9), and we as-

sume Ar in (10), which represents the dilation factor, Kr,

cr, is now reduced by N∗ as

Ar→Ar−EX; EX ¼ kEX

1þ EC50;EX=N�� �slopeEX ð30Þ

to represent the effect of inflammation. EX tends to zero
as N∗ approaches zero.
Finally, we assume that inflammation damages the

function of the heart substantially [13, 23]. We assume
that inflammation decreases the left stroke volume Sl de-
fined by equation (3) as

Sl ¼ S0
1þ ksg N�ð Þ ð31Þ

where S0 denotes the normal stroke volume and g is
given by equation (20).
Lowered blood pressure in septic shock is treated by

infusion and drugs. Infusion is represented by the term
Qinf in equation (4). An infusion may contain many
blood components and varies according to the condition
of the patient. However, we omitted a detailed descrip-
tion of the components and assume the infusion to be
0.9% saline.
There are several drugs used to treat severe

hypotension in sepsis patients, of which noradrenaline
and dopamine are the most commonly used in clin-
ical practice. Antibiotics are also used to dispose the
pathogen and are represented by the fourth term of
equation (19).
The dose-response curve of noradrenaline (NAeff ) is

normally represented by a sigmoid function

NAeff ¼ NAeff : max

1þ NAc=EC50;NA
� �−slopeNA ð32Þ

where NAc denotes the concentration of noradren-
aline in the vessels. Although the noradrenaline dose-
response curve is available for healthy individuals
[25], it cannot be applied for patients with sepsis be-
cause the effect of noradrenaline is weaker in these
patients than in healthy people [26–28]. The effect of
noradrenaline in the treatment of hypotension in pa-
tients with sepsis compared with healthy controls is
shown in Fig. 4, which was reproduced from the
paper by Annane D. et.al. [27]. The reduction in the
effect is significant and should be considered in
models of sepsis treatment. We tuned parameters
EC50, NA and slopeNA in equation (32) to fit the clin-
ical data of noradrenaline administration to the con-
trols of Fig. 4. We noticed that the clinical data in
Fig. 4 for sepsis patients could be reproduced by sim-
ply increasing EC50, NA by a factor of approximately
102 (Fig. 5).
Noradrenaline acts in various ways to elevate blood

pressure. Here, we simply assumed that noradrenaline
increases the effect of sympathetic nerve activity a.
Thus, after the dosage NAin, sympathetic nerve activity
is assumed to be increased by a factor proportional to
NAeff, that is,

a→aþ kNAeff ð33Þ
where k is a coefficient representing the reinforcing
effect of noradrenaline. In the computation, a is
changed to a + kNAeff after the dosage of NA wher-
ever a appears.
Another major drug for sepsis therapy is dopamine,

the main effects of which are increasing the heart rate
and stroke volume [26]. These effects are described as

f 0 ¼ f 1þ GD; f ∙DO
� � ð34Þ

S0l ¼ Sl 1þ GD;s∙DO
� � ð35Þ



Fig. 4 Experimental results of the effects of noradrenaline on mean arterial pressure. [27]

Fig. 5 Noradrenaline effect model (dose-response curve)
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where f and Sl are heart rate and stroke volume, respect-
ively, DO is the dopamine concentration, and GD, f and
GD, s are the coefficients of the effects of dopamine on f
and Sl, respectively. Here, we assume that f and Sl are in-
creased to f′ and S0l , respectively, due to the dopamine
dosage. We assume that dopamine becomes effective
through the first-order transfer process,

TD
dD
dt

¼ DOin−DO ð36Þ

where DOin denotes the actual dosage of dopamine.

Parameters
Our model contained a number of parameters that must
be quantified to perform simulations. We classified them
into three groups according to the time periods in which
they were used (Fig. 6).
The parameters in group 1 are used throughout the

whole simulation, even before infection. They represent
the physical characteristics of the patient, such as
weight, sex, and underlying diseases. All parameters in
the cardiovascular system are taken from the paper by
Ursino and Innocenti [17]. Their numerical values are
shown in Table A1 of the Appendix.
The parameters related to the nervous system used in

equations (9)–(18) are shown in Table A2 in the Appen-
dix. Some of them are taken from Ursino and Innocenti’s
paper [17], and others are estimated mainly based on the
literature. Some parameters are fitted based on
MATLAB tools to minimize the gap between data and
simulation. .
The initial value of the total blood volume V depends

on sex and weight. We assume that the total blood vol-
ume is 8% of body weight for men and 7% for women
[29]. We also consider the possibility of heart failure as
an underlying disease. The quantitative description of
heart failure is presented in the Results section.
The parameters in group 2 are used after the initi-

ation of infection and include the immune system
Fig. 6 Parameter classification
parameters. We take these parameters from the paper
by Reynolds et al. [16] (Table A3). This group also
contains parameters that represent the effects of in-
fection on the cardiovascular system. The most im-
portant parameters in this group are those that
represent the increase in blood permeability La de-
noted by equation (5). There are several papers that
report attempts to measure blood permeability. It was
reported that the maximum value of La during infec-
tion is almost 6 times greater than normal La [30–
32], and we used this observation in our model. The
other parameters in equation (29) are chosen by tun-
ing and are listed in Table A4 in the Appendix.
The growth rate of the pathogen, given by parameter

kpg, is used to represent the severity of the infection.
Other parameters are taken from the model reported by
Reynolds et al. [16].
The parameters in group 3 are pharmacological pa-

rameters that represent drug efficacy [24]. The
dose-response curve of noradrenaline is represented
by sigmoid function in equation (32) and the numer-
ical values of the associated parameters have been
experimentally obtained for healthy subjects [25].
The dose-response curve for sepsis patients may dif-
fer from that for healthy people. The numerical
values of the parameters in equation (30) are listed
in Table A5.

Results
We validated the model in two steps. In the first step,
we established a standard patient model capturing some
essential features of sepsis progression and treatment ef-
fect, at least qualitatively. For this purpose, the relation-
ship between the severity of the infection and the
difficulty of recovery was important in the disease
model. We represented the severity of infection through
the value of parameter kpg in equation (19), which de-
scribes the growth rate of the pathogen.
We took heart failure as a representative example

of an underlying disease in patients due to the



Fig. 7 (a) Patient with a mild infection (kpg = 0.2). (b) Patient with a
moderate infection (kpg = 0.45). (c) Patient with a severe infection
(kpg = 1.50). Time courses of sepsis development
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strong link between sepsis and cardiac insufficiency
[33, 34]. A typical consequence of heart failure is a
reduction in stroke volume. According to the Euro-
pean Society of Cardiology guidelines published in
2016 [34], heart failure is defined as a circulatory
condition in which the ejection fraction (EF) is
below 40%, where EF is defined as the ratio of the
left heart cardiac stroke volume to the left heart
blood volume. Normal EF is between 50 and 60%.
We noticed that if the left cardiac stroke volume Sl
in equation (3) was reduced by 22%, we obtained a
40% drop in EF, which is consistent with the defin-
ition of heart failure with reduced EF. Therefore, we
used this reduction in Sl to represent heart failure as
the underlying disease.
We classified the severity of infection as mild, mod-

erate, and severe, based on the range of parameter
kpg. Sepsis progression was represented in the time
courses of mean arterial pressure (MAP) and heart
rate. The recovery can be judged when the time
course of MAP and heart rate returned to the normal
or original level.
For mild infection, where kpg is small (kpg = 0.2),

the disease spontaneously resolves without treatment
(black curve). The internal immune system works ef-
fectively, although the blood pressure decreases
slightly and temporarily (Fig. 7(a)). Thus, natural
healing due to the innate immune system is
achieved. An additional simulation shows that saline
infusion (red curve) and noradrenaline (green curve)
improve the recovery process in the mild infection
case (Fig. 7(a)).
For moderate infection (kpg = 0.45), the internal im-

mune system alone cannot control the effect of inflam-
mation and the blood pressure continues to decrease
(Fig. 7(b)). However, infusion can prevent the decrease
in blood pressure. Blood pressure does not decrease
even after the infusion rate is reduced to the minimum
level after 1 h of intensive infusion, which is consistent
with clinical data.
For severe infection with a high kpg (kpg = 1.50), infu-

sion alone is not enough to raise the blood pressure and
noradrenaline is needed (Fig. 7(c)).
We conducted the same simulations for a case

with heart failure as an underlying disease. In this
patient, no spontaneous healing occurred. Even in
the case of mild infection, the blood pressure con-
tinued to drop without treatment, as shown in
Fig. 8(a) (black curve). This is consistent with clin-
ical observations that heart failure often seriously af-
fects sepsis progression. An infusion can resolve the
drop in0020blood pressure, as in patients without
heart failure. The time courses in Figs. 7(b)(c) and
8(b)(c) are similar, indicating that in cases of



Fig. 8 (a) Mild infection with heart failure. (b) Moderate infection
with heart failure. (c) Severe infection with heart failure. Time courses
of sepsis development in patients with heart failure
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moderate and severe infection, the sepsis damage domi-
nates the effect of heart failure as an underlying disease,
which is also consistent with some clinical observations.
The two in silico experiments show that our model

reproduced the progression of septic shock and the out-
come of the treatment, at least qualitatively.
Now, we validated our model quantitatively using real

clinical data from three patients with septic shock who were
treated in Tokyo Women’s Medical University Hospital.
Basic information about the patients is given in Table 1.
For model validation, we used blood pressure and

heart rate time courses, which were fundamental state
variables for tracking disease progression and therapy.
In Figs. 9, 10, 11, the time courses of blood pressure
and heart rate records are shown with the infusion
and drug administration records of each patient. The
time according to the records is shown on the hori-
zontal axis. The severity of infection was set as mod-
erate for all cases.
We observed marked different time courses of sepsis

progression among the three patients. We must adjust the
parameters of the model to reproduce the data for each
patient. We performed simulations to check whether the
model parameters could be adjusted to fit the computa-
tional results to the clinical data. Parameters were ad-
justed starting with the model constructed for a standard
patient in the first step of validation. Figure 12 compares
the simulation results and clinical data for patient 1. The
blood pressure (MAP) and heart rate computed by our
model fit the clinical data well.
A sudden drop in blood pressure occurred 17 h after

treatment began, which the model did not reproduce.
Normally, a drop in blood pressure is associated with an

elevated heart rate according to the baroreflex response.
However, in this case, the patient’s heart rate also dropped.
Because this patient was a heavy habitual alcohol drinker
(ca. 150 g/day), we thought a heart dysfunction was in-
duced during septic shock. Thus, we imposed external
noise fnoise on heart rate f given in equation (3) as

f→ f þ f noise ð37Þ

fnoise is shown in Fig. 13. We also assumed that a sud-
den reduction of arterial baroreceptor gain qr in equa-
tion (3) occurred. The simulation results incorporating
these events are shown in Fig. 13. The results reproduce
the sudden drop in heart rate and the effect on blood
pressure, as well as the recovery process (Fig. 14). Usu-
ally, disease progression is affected by many unexpected
factors that cannot be represented in a model. However,
a model can explain unexpected events when reasonable
assumptions are made. In this case, our simulation was
validated due to the close link between cardiac dysfunc-
tion and sepsis [35].



Table 1 Basic Information about Patients

Patient’s Data Treatment

Sex Age Weight[kg] Underlying
Disease

Infusion NA DOA Antibiotics

Patient1 male 51 66 Heart failure* ○ ○ × ○

Patient2 female 99 45 Alzheimer ○ × ○ ×

Patient3 male 79 65 Diabetes
Atrial fibrillation

○ ○ × ×

*assumed
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Figure 15 compares the simulation results and clinical
data for patient 2.
This patient was stable with low blood pressure and

high heart rate when given infusion therapy. The admin-
istration of dopamine contributed to the elevation of the
heart rate, which was reproduced in the simulation.
Figure 16 compares the simulation results and clinical

data for patient 3.
The gradual recovery of the blood pressure and the as-

sociated normalization of the heart rate due to infusion
and noradrenaline administration are closely reproduced
by the simulation.
The parameter tuning for fitting data was done by up-

dating several parameters of the basic model used in the
first step of the qualitative validation. Table 2 lists the
parameters changed for accommodating the individual
patients. Among 12 parameters, five are related to the
vessel resistance. Remarkably, only a handful of parame-
ters need to be adjusted for accommodating differences
Fig. 9 Clinical data for patient 1
among patients, and also the differences among the par-
ameter values are not large.
An important parameter that is not listed in Table 2 is

the time interval between the time of infection and the
start of treatment. At the start of the simulation, the initial
value of pathogen P is set to be positive. This implies that
the starting time of the simulation is the time of infection.
We must decide when treatment is started (when the
initial data was obtained) based on the goodness of
fit between data and simulations. This tuning is
one-dimensional and was not difficult. It conveys,
however, valuable information about when the patient
was infected before hospitalization.

Discussion
The first part of the simulation showed that our model
captures the fundamental dynamics of sepsis progression
and the effects of therapy. The severity of infection could
be represented by the growth rate kpg of the pathogen in



Fig. 11 Clinical data for patient 3

Fig. 10 Clinical data for patient 2
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Fig. 12 Comparison of the simulation results and clinical data for patient 1

Fig. 13 Simulation results after fnoise was introduced
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Fig. 14 Comparison of the simulated and clinical data after fnoise was introduced

Fig. 15 Comparison of the simulation results and clinical data for patient 2
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Fig. 16 Comparison of the simulation results and clinical data for patient 3
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the immune model in equation (19). We considered mild,
moderate, and severe infections, and treatment with noth-
ing, saline infusion, and saline infusion plus medicine to
identify the level of difficulty of recovery. The results are
shown in Fig. 7 and summarized in Table 3.
The results show that the severity of the infection

matched the intensity of treatment required for recovery.
Many sepsis patients have underlying diseases; thus, we

used heart failure as an example of an underlying disease
that can be modeled by changing some parameters. We
showed that the patient with heart failure does not recover
from even a mild infection without treatment, which is
Table 2 Patients parameter information

Parameter Stand

Normal value of heart rate f(f0) 1.2be

Normal value of arteriovascular radius r(r0) 3.0μm

Initial total blood Volume(V0) 3150

Severity(kpg) -

Rate of vessel radiusr dilation(kEX) 40

Compliance of sa(Csa) 4ml/

Resistance of the systemic circulation upstream of arteriolar capillaries(Rs2) 0.224

Resistance of the systemic circulation downstream of arteriolar capillaries(Rs3) 0.112

Resistance of sv(Rsv) 0.011

Resistance of pa(Rpa) 0.112

Resistance of pv(Rpv) 0.005

Rate at which activated phagocytes(N*) consume pathogen(kpn) 1.8 /

*The table indicates the differences of the parameters among the three patients. Th
consistent with clinical experience. These simulations
show that our model captures the essential features of sep-
sis and that the interactions quantified in our model
among the immune, cardiovascular, and nervous system
submodels are justified, at least qualitatively.
In the second part of the simulation, we validated our

model to fit clinical data of three sepsis patients (Figs.
9–11). As stated in the Background section, the progres-
sion of sepsis differs among patients, and the symptoms
are also different. Although it is necessary to customize
the models for each patient by choosing appropriate
model parameters, there are a large number of parameters
ard Patient Patient1 Patient2 Patient3

at/s 1.2beat/s 1.25beat/s 0.9beat/s

3.0μm 2.85μm 2.9μm

ml 5300ml 3150ml 5200ml

0.55 /h 0.7 /h 0.6 /h

50 35 44

mmHg 4ml/mmHg 2.8ml/mmHg 2.8ml/mmHg

7mmHg∙ s/ml 0.2247mmHg∙ s/ml 0.2247mmHg∙ s/ml 0.2472mmHg∙ s/ml

4mmHg∙ s/ml 0.1124mmHg∙ s/ml 0.1124mmHg∙ s/ml 0.1236mmHg∙ s/ml

mmHg∙ s/ml 0.011mmHg∙ s/ml 0.011mmHg∙ s/ml 0.012mmHg∙ s/ml

4mmHg∙ s/ml 0.1124mmHg∙ s/ml 0.1124mmHg∙ s/ml 0.1236mmHg∙ s/ml

6mmHg∙ s/ml 0.0056mmHg∙ s/ml 0.0056mmHg∙ s/ml 0.0062mmHg∙ s/ml

N*-units/h 1.8 /N*-units/h 1.8 /N*-units/h 1.26/N*-units/h

e confidence intervals of the parameters are omitted in the table



Table 3 Severity and intensity of treatment

Mild Moderate Severe

No treatment ○ × ×

Infusion ○ ○ ×

Infusion and medicine ○ ○ ○

○: recovered ×: not recovered
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making customization appear difficult. However, as was
shown in Table 3, the number of parameters tuned for fit-
ting was not very many and most parameters were un-
changed from the general model of a standard patient
used for the first part of simulations (Figs. 7 and 8). The
most obvious differences were body weight and sex, which
affect the total blood volume. Age differences were taken
into account by choosing the vessel flexibility and radius,
and the strength of the sympathetic nerve activity was
tuned slightly to accommodate the data. They are natural,
easy, and reasonable customizations for individuality.
Heart failure is included as an underlying disease in

patient 1. The sudden drop in blood pressure is accom-
modated by a sudden drop in heart rate, which is usually
a symptom of heart failure. This suggests the possibility
that the model can explain sudden events occuring dur-
ing the course of treatment. For patient 3, we ignored
diabetes as an underlying disease, but still obtained a
good fit between the model and data.
The most finely balanced and important parameter for

fitting the model to real data is the time of infection or the
starting time of the simulation. Typically, a patient has
already been infected when admitted to the hospital and
does not know when they were infected. As discussed in
the Method sections, we could estimate the time of infec-
tion through a one-dimensional search. Estimating the
time of infection with the model by finding the most ap-
propriate initial time of simulation gives valuable informa-
tion for determining the treatment strategy for a patient.
This is an important benefit of disease modeling.
Because sepsis is a serious disease that affects almost

all parts of the body, it may lead to other subsequent
diseases, which we have not incorporated in the model.
However, even when an unexpected physical event oc-
curred, the model could identify the cause. Patient 1 had
a sudden drop in blood pressure during treatment
(Fig. 12), which was explained by a heart attack (Fig. 14).
Although this was an estimate, it could provide valuable
information for medical staff.

Conclusion
We have constructed a simple mathematical model of
septic shock to represent and predict disease progression
and the effects of treatments. The model combined the
cardiovascular and immune systems through the effects
of inflammation, which are represented by increases in
vessel permeability, vasodilation, and stroke volume re-
duction. We assumed the following three effects of sym-
pathetic nerve activity responding to severe hypotension
caused by infection: elevated heart rate, increase in ves-
sel resistance, and decrease in blood volume unloading.
We also introduced the fatigue effect of the sympathetic
nervous system. The weaker effects of drugs in sepsis
patients were also considered.
We demonstrate that our model is a reasonable model

of septic shock and represents the therapeutic effects of
treatment through in silico experiments. We also show
the reduced therapeutic effects in patients with sepsis
who have underlying heart failure.
We validated our model based on the clinical data of

three sepsis patients and showed that the model repro-
duced the treatment course. Moreover, the model repro-
duced sudden physiological events in patients.
Although our model represents specific aspects of septic

shock, which is complex and involves almost every organ in
diverse ways, we show that we can construct a model that
captures the essential features of this disease. We discuss
the potential of the model to help with clinical decision
making and promoting a deeper understanding of sepsis.
Because the model contained a number of parameters

that must be set for simulations, the difficulty in determin-
ing appropriate numerical values has been identified as one
of the main barriers to using mathematical models in medi-
cine. The customization of models for individual patients is
an additional difficulty. However, we found that a standard
patient model can be constructed based on the existing
physiological, medical, and pharmacological knowledge, as
described in the first part of the Results section, although
some parameters had to be taken from experimental data
on animals. We were able to customize the standard patient
model for three patients based on their age, sex, weight,
and underlying disease, by tuning only several parameters
of the standard patient model. The simulations well repro-
duced the data.
Our results suggest that disease modeling could help

medical staff predict the patient’s condition and establish
a clinical strategy for recovery. The possibility of esti-
mating the infection time before treatments start is an-
other benefit of the disease model.
The disease model extracts knowledge about human

physiology relevant to the target disease, and the model
can be customized by selecting relatively small number of
parameters. We consider that the general and individual
data are accommodated well in the model and that their
integration can bring great benefits to clinical practice.
We hope that our model will play a role in guiding practi-
tioners toward model-based therapies. To achieve this
goal, our model must be more reliable and versatile, and
must be validated using a larger amount of clinical data,
which we intend to tackle in the next step of our research.
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Appendix

Table 4 Cardio vascular system model (Ursino model) parameters
Parameter Value Description

Csa 4ml/mmHg Compliance of sa

Csv 111.11ml/mmHg Compliance of sv

Cra 31.25ml/mmHg Compliance of ra

Cpa 6.56ml/mmHg Compliance of pa

Cpv 25.37ml/mmHg Compliance of pv

Cla 19.23ml/mmmHg Compliance of la

Rs2 0.2247mmHg∙ s/ml Hydraulic resistance of the systemic

Rs3 0.1124mmHg∙ s/ml Hydraulic resistance of the systemic

Rsv 0.011mmHg∙ s/ml Hydraulic resistance of sv

Rpa 0.1124mmHg∙ s/ml Hydraulic resistance of pa

Rpv 0.0056mmHg∙ s/ml Hydraulic resistance of pv

La 0.01ml/mmHg/s Permeability coefficient of arterial cap

Lv 0.062ml/mmHg/s Permeability coefficient of venular ca

Vusa 611.3ml Unstressed volume of sa

Vura 25ml Unstressed volume of ra

Vupa 124ml Unstressed volume of pa

Vupv 120ml Unstressed volume of pv

Vula 25ml Unstressed volume of la

kl 20ml/mmHg Slope of the stroke volume versus th

kr 34.028ml/mmHg Slope of the stroke volume versus th

pla0 2.8mmHg x -axis intercept of the stroke volume

pra0 1.82mmHg x -axis intercept of the stroke volume

Vn 5300ml Total blood volume in the basal con

Vrc 1300ml Red blood cell volume

psan 100mmHg Intravascular pressure in the sa in the

psvn 5mmHg Intravascular pressure in the sv in the

pran 4mmHg Intravascular pressure in the ra in the

ppan 17mmHg Intravascular pressure in the pa in th

ppvn 7mmHg Intravascular pressure in the pv in th

plan 6.5mmHg Intravascular pressure in the la in the

kNa 25ml/s Mass transfer coefficient of the cellul

βNa 0.0704 Mass transfer coefficient of the cellul

kK 6.67 ∙ 10−2ml/s Mass transfer coefficient of the cellul

βK 28.2 Mass transfer coefficient of the cellul

kU 13ml/s Mass transfer coefficient of the cellul

βU 1 Mass transfer coefficient of the cellul

kf 4 ∙ 10−3L2/s/mmol Water exchange coefficient of the ce

Meq,ic 150mmol Amount of other osmotically efficien

Meq,ex 150mmol Amount of other osmotically efficien

Eis 24.5mmHg/L Interstitial space elastance

Visn 11L Basal volume of the interstitial fluid

Vicn 25L Basal volume of the intracellular fluid

cp,pin 7.4g/dl Basal protein concentration in the pl
Source

[16]

[16]

[16]

[16]

[16]

[16]

circulation upstream of arteriolar capillaries [16]

circulation downstream of arteriolar capillaries [16]

[16]

[16]

[16]

illaries [16]

pillaries [16]

[16]

[16]

[16]

[16]

[16]

e atrial pressure relationship for the left heart [16]

e atrial pressure relationship for the right heart [16]

versus atrial pressure relationship for the left heart [16]

versus atrial pressure relationship for the right heart [16]

dition [16]

[16]

basal condition [16]

basal condition [16]

basal condition [16]

e basal condition [16]

e basal condition [16]

basal condition [16]

ar membrane for sodium [16]

ar membrane for sodium [16]

ar membrane for potassium [16]

ar membrane for potassium [16]

ar membrane for urea [16]

ar membrane for urea [16]

llular membrane [16]

t solutes in the intracellular compartment [16]

t solutes in the extracellular compartment [16]

[16]

[16]

[16]

asma [16]



Table 4 Cardio vascular system model (Ursino model) parameters (Continued)

Parameter Value Description Source

cp,isn 1.37g/dl Basal protein concentration in the interstitial fluid [16]

Mk,ic(0) 3535mEq Initial amount of potassium in the intracellular fluid [16]

Mk,ex(0) 75mEq Initial amount of potassium in the extracellular fluid [16]

MNa,ic(0) 250mEq Initial amount of sodium in the intracellular fluid [16]

MNa,ex(0) 2130mEq Initial amount of sodium in the intracellular fluid [16]

MU,ic(0) 2130mEq Initial amount of urea in the intracellular fluid [16]

MU,ex(0) 375mmol Initial amount of urea in the extracellular fluid [16]

QF 0.2083ml/s Ultrafiltration rate of the replacement fluid [16]

Qinf 0ml/s Ultrafiltration rate of the replacement fluid [16]

cNa,d 142mEq/L Ultrafiltration rate of the replacement fluid [16]

cKd 62mEq/L Ultrafiltration rate of the replacement fluid [16]

cUd 0 Concentration of urea in the dialysate [16]

Fp 0.94 Plasma fractions [16]

FR 0.72 Red blood cell water fractions [16]

γU 1 Fraction of red blood cell water that participates in the transfer through the dialyzer [16]

RDU 1 Donnan ratio for urea in red cells [16]

γNa 0 Fraction of red blood cell water that participates in the transfer through the dialyzer [16]

γK 0 Fraction of red blood cell water that participates in the transfer through the dialyzer [16]

QB 3ml/s Bulk blood flow through the dialyzer [16]

DNa 2.67ml/s Dialysance (or clearance) of sodium [16]

DK 2.67ml/s Dialysance (or clearance) of potassium [16]

DU 2.67ml/s Dialysance (or clearance) of urea [16]

σRn 0.7303mmHg∙ s/ml Basal value of the sigmodideal static characteristic for the mechanism of systemic resistance control [16]

ΔσR 1.4mmHg∙ s/ml Amplitude of the sigmodideal static characteristic for the mechanism of systemic resistance control [16]

τR 6s Time constant of the mechanism of systemic resistance control [16]

GaR 0.02/mmHg Central gain of the arterial controls for the mechanism of systemic resistance control [16]

GcR 0.7/mmHg Central gain of the cardiopulmonary controls for the mechanism of systemic resistance control [16]

σV n 2900ml Basal value of the sigmodideal static characteristic for the mechanism of venous unstressed volume control [16]

ΔσV 500ml Amplitude of the sigmodideal static characteristic for the mechanism of venous unstressed volume control [16]

τV 20s Time constant of the mechanism of venous unstressed volume control [16]

GaV 10.8/mmHg Central gain of the arterial controls for the mechanism of venous unstressed volume control [16]

GcV 417/mmHg Central gain of the cardiopulmonary controls for the mechanism of venous unstressed volume control [16]

σTn 0.833s Basal value of the sigmodideal static characteristic for the mechanism of heart period control [16]

ΔσT 0.75s Amplitude of the sigmodideal static characteristic for the mechanism of heart period control [16]

τT 2s Time constant of the mechanism of heart period control [16]

GaT 0.015/mmHg Central gain of the arterial controls for the mechanism of heart period control [16]

GcT 0/mmHg Central gain of the cardiopulmonary controls for the mechanism of heart period control [16]

plat 4.5mmHg Threshold value of left atrial pressure for activation of the sympathoinhibitory mechanism [16]

Gσ 4.5mmHg Gain constant of the sympathoinhibitory mechanism [16]

τσ 120s Time constant of the sympathoinhibitory mechanism [16]

τ 2700s(acetate dialysis only) Time constant of the acetate effect upon peripheral vessels [16]
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Table 5 Nervous system model parameters
Parameter Value Description Sources

af,max 1.3175 Maximum value of sympathetic nerve activity af Estimated

ar,max 8.6993 Maximum value of sympathetic nerve activity ar Estimated

aV,max 0.9443 Maximum value of sympathetic nerve activity aV Estimated

af,min 0.1896 Minimum value of sympathetic nerve activity af Estimated

ar,min 2.6996 Minimum value of sympathetic nerve activity ar Estimated

aV,min 0.8206 Minimum value of sympathetic nerve activity aV Estimated

kγ 3.0 × 10−5 Sympathetic nerve effect coefficient forγ Estimated

af0 0.680 Sympathetic nervous activity for f0 Estimated

ar0 0.549 Sympathetic nervous activity for r0 Estimated

aV0 0.0935 Sympathetic nervous activity for V0 Estimated

f0 1.2beat/s Normal value of heart rate f Estimated by [16]

Rs1,0 0.0113mmHg·s/ml Normal value of arteriolar vascular resistance Rs1 Estimated by [16]

Vusv,0 2.9 × 10−3ml Normal value of venous unstressed blood bolume Vusv Estimated by [16]

r0 3.0μm Normal value of arteriovascular radius r Estimated by [17]

kf 1.01 Sympathetic nerve effect coefficient for f Estimated

kr 8.2 Sympathetic nerve effect coefficient for r Estimated

kV

Table 6 Immune system model and antibiotics pharmacological effect model parameters
Parameter Value Description Sources

kpm 0.6/M-units/h Rate at which the non-specific local response(M) eliminates pathogen [15]

kmp 0.01/P-units/h Rate at which the non-specific local response is exhauseted by pathogen [15]

kpn 1.8/N*-units/h Rate at which activated phagocytes(N*) consume pathogen [15]

p∞ 20·106/cc Maximum pathogen population [15]

sm 0.005/M-units/h Source of non-specific local response [15]

μm 0.002/h Decay rate for the non-specific local response [15]

snr 0.08NR-units/h Source of resting phagocytes [15]

μnr 0.12/h Decay rate of resting phagocytes [15]

μn 0.05/h Decay rate of activated phagocytes [15]

kdn 0.35D-units/h Maximum rate of damage produced by activated phagocytes [15]

μd 0.02/h Decay rate of damage [15]

kcn 0.04/CA-units/h Maximum production rate of the anti-inflammatory mediator [15]

kcnd 48N*-units/D-units Relative effectiveness of activated phagocytes and damaged tissue in inducing production of the anti-inflammatory mediator [15]

sc 0.0125CA-units/h Source of the anti-inflammatory mediator [15]

μc 0.1/h Decay rate of the anti-inflammatory meditor [15]

knn 0.01/N*-units/h Activation of resting phagocytes by previously activated phagocytes and their cytokines [15]

knp 0.1/P-units/h Activation of resting phagocytes(NR)by pathogen [15]

knd 0.02/D-units/h Activation of resting phagocytes by damage(D) [15]

c∞ 0.28CA-units Controls the strength of the anti-inflammatory mediator(CA) [15]

xdn 0.06N*-units Determines level of activated phagocytes needed to bring damage production up to half its maximum [15]

k 25 Coefficient for Srate Estimated

k0 18 Coefficient for Sd Estimated

kD 0.35/h Coefficient of Sd for D Estimated

S0 73.8ml Normal value of stroke volume S Estimated by[32]

ka 1/h Absorption rate constant from the gut compartment to the central compartment [23]

ke 1/h Elimination rate constant from the central compartment [23]

fp 1 Free fraction in plasma [23]

Vd 1l/kg Distribution volume [23]

ε 0.01/h Maximum kill rate constant [13]

γ 0.5 Hill coefficient [13]
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Table 8 Noradrenaline pharmacologival effect model parameters

Parameter Value Description Source

N Aeff ,max 1.05 Maximum effect of noradrenaline Estimated by [36]

EC50,N A 0.53kg/μg Half maximal effective NA value Estimated by [36]

slopeN A 1.09 Maximum gradient value of NA Estimated

GN A,r 5.0 Interaction strength of noradrenaline to artery Estimated by [25]

GN A,V 0.18 Interaction strength of noradrenaline to vein Estimated by [25]

Table 7 Blood pressure reduction model parameters

Parameter Value Description Sources

La,min 0.01ml/mmHg/s Normal vascular permeability [16]

La,max 0.06ml/mmHg/s Maximum vascular permeability Estimated by[29][31]

EC50,La 0.22 Half maximal effective N* value Estimated

slopeLa 1.0 Maximum gradient value of La Estimated

kEX 50 Rate of vessel radiusr dilation Estimated

EC50,EX 0.5 Half maximal effective EX value Estimated

slopeEX 3.0 Maximum gradient value of EX Estimated

ks 1.0 Effect of inflammatory to stroke volume Estimated
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