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Abstract
Background: The mathematical design of optimal therapies to fight cancer is an
important research field in today’s Biomathematics and Biomedicine given its
relevance to formulate patient-specific treatments. Until now, however, cancer optimal
therapies have considered that malignancy exclusively depends on the drug
concentration and the number of cancer cells, ignoring that the faster the cancer
grows the worse the cancer is, and that early drug doses are more prejudicial. Here, we
analyze how optimal therapies are affected when the time evolution of treated cancer
is envisaged as an additional element determining malignancy, analyzing in detail the
implications for imatinib-treated Chronic Myeloid Leukemia.

Methods: Taking as reference a mathematical model describing Chronic Myeloid
Leukemia dynamics, we design an optimal therapy problem by modifying the usual
malignancy objective function, unaware of any temporal dimension of cancer
malignance. In particular, we introduce a time valuation factor capturing the increase
of malignancy associated to the quick development of the disease and the persistent
negative effects of initial drug doses. After assigning values to the parameters involved,
we solve and simulate the model with and without the new time valuation factor,
comparing the results for the drug doses and the evolution of the disease.

Results: Our computational simulations unequivocally show that the consideration of
a time valuation factor capturing the higher malignancy associated with early growth
of cancer and drug administration allows more efficient therapies to be designed. More
specifically, when this time valuation factor is incorporated into the objective function,
the optimal drug doses are lower, and do not involve medically relevant increases in
the number of cancer cells or in the disease duration.

Conclusions: In the light of our simulations and as biomedical evidence strongly
suggests, the existence of a time valuation factor affecting malignancy in treated
cancer cannot be ignored when designing cancer optimal therapies. Indeed, the
consideration of a time valuation factor modulating malignancy results in significant
gains of efficiency in the optimal therapy with relevant implications from the
biomedical perspective, specially when designing patient-specific treatments.
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Background
The design of optimal therapies to fight several illnesses, among them mainly cancer, is
an important research in the field of Biomathematics. As a result, the textbooks and arti-
cles published during the last 15 years dealing with this subject are numerous (see for
instance [1–3] or the textbooks [4–9]; for the specific case of cancer see [10–18] and the
references provided by these authors). Basically, an optimal therapy problem is a control
problem consisting of: first, a set of difference/differential equations describing the bio-
logical dynamics of the disease under the specified treatment; and second, an objective
function measuring the malignancy of the treated cancer and that must be minimized. By
solving this optimal control problem it is possible to find the optimal therapy, that is, the
drug doses that minimize the malignancy of the treated disease.
The philosophy behind a cancer optimal therapy model can be easily explained and

interpreted in biomedical terms. The key fact is the possibility of describing the dynamic
behavior of the treated cancer through a system of difference/differential equations. More
specifically, this system of equations describes the evolution of the number of tumor and
normal cells in the course of a treatment with a drug. In this system, the number of cancer
and normal cells are a consequence of the administered drug concentration, which is a
completely controllable variable. In simple words, the administered drug doses constitute
the input of the problem, the number of cancer and normal cells being the output. Then,
since the behavior of normal and cancer cells is a function of the administered drug dose,
it becomes feasible to govern the number of cancer and normal cells according to an
objective by adequately manipulating the drug doses. This is precisely the idea underlying
a cancer optimal therapy model: to identify the drug doses that minimize the damages to
health caused by cancer and drug toxicity, damages quantified by an objective function
measuring treated cancer malignancy.
Until now, the mathematical formulation adopted to measure the malignancy of a

particular status of the disease, whatever the evolution/duration of the disease may be,
exclusively considers as malignancy elements the tumor size, given by the number of can-
cer cells, and the administered drug concentration measured in a specific instant (see for
instance the references here provided [10–18]). From this perspective, a given number
of cancer cells and a given drug dosage would always entail the same malignancy, inde-
pendently of the moment of time in which these magnitudes have been observed, i.e.,
independently of how the disease evolved, when the cancer reached the measured size,
and when the drug dose was administered. However, from the biomedical perspective, it
is a well-established fact that the faster the cancer grows the worse the cancer is, i.e., that a
cancer that reaches a given size earlier is worse than a cancer reaching the same size later
(see for instance [19–22]). To take into account this malignancy factor, ignored by the lit-
erature, would require highermalignancy to be assigned to cancer cells at the beginning of
the cancer and lower malignancy to those appearing afterwards, that is, a time-valuation
factor weighting cancer size. On the other hand, it is also widely accepted by biomedical
researchers and practitioners that drugs are not totally eliminated by patients and remain
in their bodies, and that, subsequently, a given drug dose entails more negative effects if it
is administered at the beginning of treatment than at the end (see [23–26]). As happened
with cancer size, to evaluate malignancy associated to drug doses, it would also be neces-
sary to consider a time-valuation factor weighting them, and assigning higher malignancy
to the initial drug doses.
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The higher malignancy of early developed cancer can also be concluded from the
heuristic perspective. On this point and as is obvious, one of the main questions to arise
in our research is how to measure treated cancer malignancy and its evolution in time.
To do this, we propose to measure the malignancy of treated cancer through the slope of
the cancer survival curve in absolute value, since, according to survival theory, it repre-
sents the contribution of each instant in time to bring about death as a consequence of
the considered cancer. The typical survival curves for cancer are markedly strictly con-
vex, something implying decreasing slopes in absolute values and therefore decreasing
malignancy in time. This happens for practically all treated cancers, among them colorec-
tal ([27]), pancreatic ([28]), lung ([29]), hepatocellular ([30]), ovarian ([31]), breast ([32]),
etc., and also for chronic myeloid leukemia (CML) ([33]).
In this respect, although this treated cancer malignancy/probability of dying needs not

be decreasing in time for all treated cancers, this situation, implying non-convexity for
the subsequent survival curve and non-decreasing malignancy, is the exception and not
the rule. Indeed, to our knowledge, this happens only for some types of breast cancer
and prostate cancer, the sole cancers presenting non-decreasing malignancy in time when
diagnosed and treated (see [32], [34–36]).
In addition and as we will explain in detail in the following section, the design of realistic

optimal therapy models requires the following aspects to be simultaneously formulated
according to the empirical evidence: the mathematical behavior of the considered can-
cer; the particular biomedical effects of the administered drugs for this cancer; and the
observed evolution in time of malignancy according to the cancer specific survival curve.
All these interrelated aspects, whose output are the observed clinical data used in the
calibration process, lead to a unique optimal therapy model, which is specific for the
considered cancer.
In this respect, and as a representative case of the most generalized behavior of malig-

nancy (convex survival curves and therefore malignancy decreasing in time), we focus
on chronic myeloid leukemia and elaborate a specific model for imatinib-treated. We
therefore consider the mathematical description of this disease arising from the observed
clinical data, which imply specific interrelationships between the different types of cells,
and specific drug effects compatible with convex survival curves (unequivocally observed
for this type of cancer), and then a decreasing in time malignancy. From the heuristic
perspective and besides the above mentioned clinical and medical data, this convex sur-
vival curve for imatinib-treated CML also suggests introducing a time valuation factor
weighting cancer malignancy, and implying decreasing malignancy as cancer persists.
We study these questions for the standard formulation of optimal therapymodels. More

specifically, we formulate a modified discrete version of the ordinary differential equation
model of Chronic Myeloid Leukemia dynamics proposed in [15], incorporating a daily
schedule in the dynamics: since our purpose is to replicate the observed evolution of CML
and to extract clinical conclusions, and given that in the empirical literature on CML and
in clinical practice the parameters and the variables involved in the model are measured
in per day values, we opt to consider a difference equation model in which time is discrete
and represents a sequence of days. Then, we calibrate the model parameters to mirror
the observed behavior of the disease and introduce a time valuation factor that allows the
malignancy elements associated to time and commented on above to be considered. We
analyze the consequences of the introduction of this time valuation factor decreasing over
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time with the purpose of: first, clarifying whether or not this time dependent malignancy
factor modifies the optimal therapies and the population of normal and cancer cells; and,
second, quantifying these modifications.
This paper is organized as follows. First, we consider a discrete CML mathematical

model, introducing an optimal therapy problem and analyzing it from a numerical point
of view. After assigning values to the model parameters through the calibration of the
model, which is carried out for an average patient with CML at advanced phase, we
present the simulation and numerical results for the calibrated model. Finally, we briefly
comment on the main conclusions of the research.

Methods
Amathematical model of treated CML

Taking into account [17], in [15] a continuous time model was introduced to analyze the
global dynamics of CML. Here, in order to gain consistency in the analysis, comparisons
with real data and simulations, we propose a discrete time version of that model incorpo-
rating a daily schedule in the dynamics, since in the empirical literature on CML and in
clinical practice the parameters and variables involved in the model are measured in per
day values.
Our discrete time dynamicmodel of CML reproduces the biological interactions among

the different types of normal and cancer cells observed in this disease, interactions
represented in Fig. 1.
We start by considering two different populations: that of hematopoietic stem cells

(HSC), and that of differentiated cells (DC). In addition, each of these populations is
divided into normal cells and cancer cells. Then, denoting by T the treatment duration
measured in days, at time instant t, t = 0, 1, . . . ,T+1, it is possible to distinguish between

Fig. 1 Day to day interactions among cancer and normal cells in CML
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four different populations: normal HSC, denoted by x0(t); cancer HSC, denoted by y0(t);
normal DC, represented by x1(t); and cancer DC, denoted by y1(t).
The evolution over time of CML is described by a system of difference equations which

incorporates the most relevant biomedical facts. First, the populations of all the consid-
ered types of cells naturally decrease at fairly constant rates. Upon this fact, let d0, g0, d
and g be, respectively, the per day decrease rates of normal and cancer HSC, and normal
and cancer DC. In addition, since DC are produced not only by proliferation of DC but
also by HSC, it is necessary to distinguish between these two mechanisms of increase in
the number of DC for both normal and cancer cells. In particular, let d2 and g2 be the
per day rates at which normal and cancer DC proliferate and originate, respectively, nor-
mal and cancer DC; and let r and q denote the rates at which normal and cancer HSC
produce normal and cancer DC, in this order. Finally, through the self-renewal process,
normal and cancer HSC produce similar cells by division. Then, we let normal and can-
cer HSC divide at rates n and m per day, respectively. In this self-renewing activity, there
underlies a homeostatic process that controls the proliferation of HSC. In this respect, the
division of normal HSC, x0, is directed by homeostasis which is represented by a positive
decreasing function �, depending on the total level (x0 + y0), and given by

�(x0 + y0) = 1 − x0 + y0
K

, (1)

where K represents the carrying capacity of bone marrow. In the same way, homeostasis
for cancer cells, y0, is governed by a positive decreasing function � , which depends on
(x0 + αy0), where α ∈ (0, 1] measures the fall in the homeostatic efficiency due to the
disease (see [10] and [16] for an analysis of this fall),

�(x0 + αy0) = 1 − x0 + αy0
K

. (2)

This model incorporates the existence of nonlinear effects of imatinib treatment over a
fixed period of time. Drug treatment is described by a positive time-dependent sequence
u(t), t = 0, 1, . . . ,T , which captures the drug dose, and given that there is a dosage
limitation due to the drug’s toxicity, u(t) is supposed to be bounded in [ 0,umax], for
t = 0, 1, . . . ,T . The effects of imatinib treatment are introduced through nonlinear func-
tions, which affect the lifetime of cancer cells, and imply their maximum effect only for
an intolerable dosage. In [15], different scenarios were studied depending on the distinct
effects of imatinib on the dynamics. That work concluded that the disease completely
remits only when imatinib causes an additional mortality of cancer HSC. In addition,
since imatinib is a targeted drug (see [37]), this is the case with highest plausibility from
the biomedical point of view, so we limit our study to this situation. Drug effects are
represented by the function h(u), which is a nonlinear increasing function satisfying
h(0) = 0 (this means that cancer HSC declines at baseline rate g0 without treatment).
Clinical evidence also shows that patients rarely develop resistance to imatinib. Indeed,
as the eight-year International Randomized Study of Interferon and STI571 (IRIS) trial
concluded (see [38]), resistence to imatinib only appears for 6.75% of patients, and there-
fore we can assume that the function h only depends on the drug dose u and not on the
elapsed treatment time. The behavior under treatment of CML is therefore described by
the following system of difference equations:
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x0(t + 1) = x0(t) + n� (x0(t) + y0(t)) x0(t) − d0x0(t), (3)

x1(t + 1) = x1(t) + rx0(t) − dx1(t) + d2x1(t), (4)

y0(t + 1) = y0(t) + m� (x0(t) + αy0(t)) y0(t) − g0y0(t) − h(u(t))y0(t), (5)

y1(t + 1) = y1(t) + qy0(t) − gy1(t) + g2y1(t), (6)

for t = 0, 1, . . . ,T .
The system must be completed with the initial values for normal and cancer HSC and

DC x0(0), x1(0), y0(0), y1(0).

The optimal therapy problem and the time valuation factor

In this section we consider an optimal therapy problem where the objective is to find the
therapy u∗(t), t = 0, 1, . . . ,T , minimizing the malignancy of the disease under treatment.
Then, the set of admissible controls is given by

U =
{
{u(t)}Tt=0 | 0 ≤ u(t) ≤ umax, t = 0, 1, . . . ,T

}
.

Concerning the objective function measuring malignancy which must be minimized,
there is not in the literature any consideration of the higher malignancy associated with
quick development of cancer and early drug administration. These functions measuring
malignancy adopt different specifications (for instance, [18] considers quadratic terms
representing the nonlinear costs of the treatment; [15] assumes quadratic terms to mea-
sure the nonlinear costs of both the treatment and the malignancy of the cancer HSC and
DC levels; and [14] assumes linear costs for cancer cells and quadratic terms to measure
treatment toxicity). However, and as commented on above, no valuation of time appears.
Here we formulate the alternative objective function

N(u) =
T∑
t=0

ρt [u2(t) + y20(t) + y21(t)
] + ρT+1 [

y20(T + 1) + y21(T + 1)
]
, (7)

where ρ ∈ (0, 1] is a parameter measuring the increase of malignancy of early cancer
development and drug administration. Case ρ = 1 corresponds to the situation presented
in the literature until now, which assumes that time does not affect either the malignity of
cancer cells or the toxicity of the drug treatment. However, different values of ρ ∈ (0, 1)
highlight the important role of time. In this respect, and given that a higher malignancy
is associated with both early cancer growth and early drug administration, we introduce
such a time valuation malignancy factor, decreasing over time, that affects the objective
function in the optimal therapy problem as a whole. This is consistent with the observed
evidence for treated CML (see [39]), obviously the only existing situation of the disease
for which data exist. Indeed, most empirical survival analyses show decreasing rates of
mortality as treated cancer persists, i.e., higher mortality rates at the beginning of the
disease than in subsequent dates. This decreasing rate of mortality over time would also
suggest introducing a time valuation factor weighting cancer malignancy, and implying
decreasing malignancy as cancer persists.
Summing up, we propose to solve and simulate the following optimal therapy problem:

min
{u(t)}Tt=0∈U

N(u)
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subject to the difference Eqs. (3)-(6) and

x0(t) ≥ 0, x1(t) ≥ 0, y0(t) ≥ 0, y1(t) ≥ 0, t = 0, 1, . . . ,T + 1,

x0(0), x1(0), y0(0), y1(0), initially given.

Numerical solution and computational procedure

As usually happens with optimal control problems in Biomedicine, our optimal ther-
apy problem does not have an algebraic solution. This compels us to numerically solve
and simulate the model. Here, we consider an indirect method. The starting point is the
derivation of the necessary conditions for the optimal control u∗(t), t = 0, 1, . . . ,T . To
this end, we use the discreteMaximumPrinciple bymeans of the Lagrangian function (see
[40]), which involves: the system of difference equations for the state variables describ-
ing the dynamics of CML with the associated initial conditions; the system of difference
equations for the Lagrange multipliers with the corresponding final conditions; and the
nonlinear equation for the control variable.
We denote the Lagrange multipliers as p1(t), p2(t), p3(t) and p4(t), t = 1, . . . ,T + 1,

satisfying the following adjoint equations (where we substitute expressions (1) and (2) for
functions � and � , respectively),

p1(t) = p1(t + 1)
[
1 − d0 + n

(
1 − 2x0(t) + y0(t)

K

)]
+ (8)

p2(t + 1)r − p3(t + 1)
m
K
y0(t),

p2(t) = p2(t + 1) [1 − (d − d2)] , (9)

p3(t) = 2ρty0(t) − p1(t + 1)
n
K
x0(t) + (10)

p3(t + 1)
[
1 − g0 − h(u(t)) + m

(
1 − x0(t) + 2αy0(t)

K

)]
+ p4(t + 1)q,

p4(t) = 2ρty1(t) + p4(t + 1)
[
1 − (g − g2)

]
, (11)

for t = 1, . . . ,T , and the corresponding final conditions,

p1(T + 1) = 0, (12)

p2(T + 1) = 0, (13)

p3(T + 1) = 2ρT+1y0(T + 1), (14)

p4(T + 1) = 2ρT+1y1(T + 1). (15)

With respect to the stationary condition for the control, for t = 0, 1, . . . ,T , we have that
u∗(t) is the solution of

2ρtu(t) − p3(t + 1)h′(u(t))y0(t) = 0, if u∗(t) ∈ (0,umax), (16)

otherwise,

u∗(t) = umax, if 2ρtu(t) − p3(t + 1)h′(u(t))y0(t) > 0, (17)

u∗(t) = 0, if 2ρtu(t) − p3(t + 1)h′(u(t))y0(t) < 0. (18)

In addition, the Eqs. (3)-(6) and the corresponding initial conditions for the state
variables must be satisfied.
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For the numerical solution of this problem, we employ a forward-backward sweep
method (see [41]) by writing an algorithm in Matlab® with the procedure specified in the
Appendix.
We implement this numerical method for a clinical case. To this end, it is previously

necessary to calibrate the parameters, i.e., to assign a value to the parameters in the system
of difference equations providing the solution. This calibration will be carried out in the
following section on the basis of the available recent biomedical data, whenever possible,
and of the dynamic properties of the model.

Assigning values to the model parameters: the calibration of the model

Rather than assigning values to the parameters on the basis of statistical estimation pro-
cedures (see for instance [42] or [43]), we will adopt the calibration approach (see for
instance [15] and [18]) using when possible real data obtained from biomedical evidence.
This procedure has an immediate advantage: In principle and with the only restriction of
data availability, the calibration of the model could be done for each particular patient, a
very interesting question from the clinical perspective since it opens up the possibility of
designing personalized therapies.
Here we carry out an update and extension of the calibration process followed in

[15]. These authors assign values for the bone marrow capacity and for the division,
decline and production rates of normal cells on the basis of the biomedical data pro-
vided by Michor et al. [17], the remaining parameter values being fixed according to
mathematical criteria. Here we consider more recent biomedical empirical evidence
on a greater set of parameters, not only those in [15], but also for the division and
mortality rates of cancer HSC and cancer DC, maximum recommended daily dose
of imatinib, effectiveness of imatinib, and days to complete hematological response.
As reference, we consider an average patient with CML at advanced phase, who is
totally recovered after treatment with imatinib. According to [39], this happens in 38%
of the cases.
As commented on before and for the sake of reproducing realistic behaviors of the

treated disease, the values of the parameters in the model are calibrated on the basis of
the more recent and reliable available biomedical data (see [33, 44–47]). Regarding divi-
sion and mortality rates for normal HSC, we take the estimates provided by [45], which
fix a per day division rate n = 1

280 ≈ 0.0036 and a mortality rate d0 = 1
2000 = 0.0005.

In that work we also find the steady number of normal HSC x0 = 11000, from which we
can compute the estimate of the per-day carrying capacity of bone marrow K consistent
with the model: since the dynamics of normal HSC is ruled by (3), at the steady state for a
healthy patient

0 = 1
280

(
1 − 11000

K

)
− 1

2000
,

and then we take K = 12791.
The rate of generation of normal DC from normal HSC is taken as r = 1011.5 ≈

3.1623e + 11 (see [46]) .
Concerning the value of the mortality rate of DC, it was calculated on the basis of

the lifetimes of their different types and respective percentages. As collected by [47],
these lifetimes and percentages are roughly the following: Neutrophils (62%), 6 hours;
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Eosinophils (2.3%), 8 days; Basophils (0.4%), 2 hours; Lymphocytes (30%), 1.5 days; and
Monocytes (5.3%), 4 hours. These data imply an average lifetime of 0.8 days, and there-
fore a per day mortality rate of d = 1

0.8 = 1.25. Regarding the mortality rates of cancer
HSC and DC and according to the recent research by [44] showing loss of apoptosis for
cancer cells in CML, we fix g0 = 0.0003 < d0 and g = 1.1 < d. For the parameters α, q,
g2, d2 and g, there are no empirical observations. However, in accordance with the results
in [15], given that the stability and dynamic properties of the model do not depend on
these parameters, we can fix arbitrary values for them. In particular, we assign the values
α = 0.1, q = 1011.5 = r and d2 = 0.25. Work in [44] also finds that the division rates for
cancer HSC and DC in CML are higher than for normal HSC and DC; but there are no
empirical observations concerning this rate. In this respect, having accepted that m > n
and g2 > d2 and given that the asymptotic behavior of the solution of the uncontrolled
problem does not depend on the value of m and g2 (as in the continuous model [15]), we
fix a value form slightly greater than n. In particular, we assign the valuesm = 0.0037 > n
and g2 = 0.5 > d2. In any case, as we shall see, the calibration of the function h(u)

is conditioned by the assumed set of values: the adoption of other values would simply
imply a re-calibration of h(u). Table 1 collects all the previously calibrated values for the
parameters.
With respect to the drug treatment, the maximum recommended daily dose umax

is 800 mg/day (see [39] and [48]). Calibration of the function h(u), representing the
drug effects, is as follows. First, concerning its qualitative properties, we impose that:
h(0) = 0; h(u) must be non linear; and verifying dh(u)

du > 0 and d2h(u)

du2 < 0. In biomedical
terms, we are assuming well established facts (see [17]): that if no drug is administered
there are no drug effects; that imatinib effects are non linear; that higher doses imply
higher effectiveness; and that these gains of effectiveness are decreasing. Several math-
ematical expressions capturing these generic features are possible (see for instance [15]
or [3]). In this respect, and given that there exists empirical evidence suggesting a
logarithmic relationship between biological responses and their causing factors (see
[49–51] and the references provided by these works), we assume a logarithmic expression
for h(u):

h(u) = h ln (1 + u) . (19)

Table 1 Calibrated values for the parameters in the model

Parameter Description Value Units

n Normal HSC division rate 0.00357 /day

m Cancer HSC division rate 0.0037 /day

d0 Normal HSC mortality rate 0.005 /day

g0 Cancer HSC mortality rate 0.0003 /day

r Normal DC production rate 1011.5 /day

q Cancer DC production rate 1011.5 /day

d Normal DC mortality rate 1.25 /day

d2 Normal DC proliferation rate 0.25 /day

g Cancer DC mortality rate 1.1 /day

g2 Cancer DC proliferation rate 0.5 /day

K Carrying Capacity of Bone Marrow 12791 HSC/day
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In this case, the nonnegative root of (16) satisfies

u(t) = 1
2

⎛
⎝−1 +

√
1 + 2 h p3(t + 1) y0(t)

ρt

⎞
⎠ . (20)

Finally, in order to fit the value of h in (19), we impose the fulfillment of the following
biomedical facts, collected in [39]:

• A fixed imatinib dose of 600 mg/day gets a complete hematological response, i.e., the
total disappearance of cancer HSC and DC, and the recovery of the number of
normal HSC and DC to their steady healthy values in about 36 months.

• The gain of effectiveness after increasing the drug doses from 400 mg/day to 600
mg/day is about 1.17.

Note that function h in (19) satisfies h(u=600)
h(u=400) = 1.07, a reasonable approximation to the

empirical evidence. On the other hand, we have simulated the model with the constant
dose u(t) = 600, t = 0, 1, 2, . . ., and starting with the initial data:

x0(0) = 104, x1(0) = 1011, y0(0) = 103, y1(0) = 1010,

representative of CML at advanced phase. We have observed that h = 0.00455 provides
a close approximation to a complete hematological response after 36 months. It is worth
noting again that, since we close the calibration process with the calibration of h(u), dif-
ferent values for the previously calibrated parameters would lead to a new expression for
h(u) consistent with all the observed biomedical data (see [17, 39]). From this perspec-
tive, our calibration of h, based on simulations of the model, lies on the same principles
as those in [52].
Finally, concerning ρ, the parameter measuring the decrease in malignancy of the

treated disease as time passes, we calibrate a value ρ < 1 on the basis of the survival anal-
yses for CML carried out by [33]. More specifically, we analyze this parameter assuming
that it measures the decrease in the slope of the survival curve, i.e., the decrease in the
death density. As this slope represents the contribution of each lapse of time to the prob-
ability of dying (see [10]), decreases in this contribution with time can be interpreted as
decreases in the malignancy of the disease. In geometrical terms, the assumed decrease
in malignancy must cause a decrease in the absolute value of the slope of the survival
curve, that is, it must imply a convex survival curve. Empirically, this convexity is a uni-
versal feature of survival curves in cancer, something that supports our approach. This
convexity has also been found in CML. Indeed, survival curves for treated CML in [33]
(which we denote by S(t)) are markedly convex. In that paper, the authors carry out an
exhaustive survival analysis of patients with CML under different treatments, concluding
that the slope changes from significant negative initial values to a final value of zero. Since
according to our argument

S′(ti)
S′(tf )

= ρti−tf ,

this fact justifies any value for ρ lower than 1.
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Results and numerical simulations
Uncontrolled/untreated dynamics

Once the parameters have been calibrated, the next step is to study the dynamics of the
model. First of all, in order to test its biological feasibility, we consider the uncontrolled
(or untreated) situation, that is, we analyze the time evolution of cells described by (3)-(6)
when u(t) = 0, t = 0, 1, . . . (remember that h(0) = 0).
As a first experiment we consider the evolution of normal HSC and normal DC when

the disease is not present, i.e., when initially y0(0) = 0 and y1(0) = 0. Figure 2 shows the
evolution of the different cells, with dashed line, when the initial levels of normal cells are
fixed as x0(0) = 104, x1(0) = 1011.
Note that the solution is attracted towards the safe steady state of the system (as in the

continuous model in [15]):

x0 = K
(
1 − d0

n

)
= 11000, x1 = r

d − d2
x0 ≈ 3.48e + 15, y0 = 0, y1 = 0.

Fig. 2 Uncontrolled dynamics. Time evolution in days (x-axis) of cells. Safe case: dashed line. Blast cases: solid
line
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Since according to themedical literature (see [39]) the non-existence of cancer HSC and
DC, and the recovery of the number of normal HSC and DC in the blood are the crucial
values to ascertain the remission of the disease –complete hematological response–, this
safe steady state is the reference to determine the overcoming of CML.
Now, assume that there exist cancer cells. Figure 2 also shows this solution, with solid

line, obtained with the previous initial levels of normal cells, and when the initial values
of cancer cells are y0(0) = 103 and y1(0) = 1010.
In accordance with biomedical evidence, the solution is attracted towards the blast

steady state, which corresponds to the total prevalence of cancer cells and the complete
disappearance of normal cells (again, as in the continuous model in [15]):

x0 = 0, x1 = 0, y0 = K
α

(
1 − g0

m

)
≈ 117539, y1 = q

g − g2
y0 ≈ 6.19e + 16.

As is logical, under the absence of treatment, this is the steady state reached when y0(0) >

0.

Controlled/treated dynamics

Non truncated treatment

The above considered initial values y0(0) = 103 and y1(0) = 1010, representative of CML
at advanced phase, constitute just the initial situation that we analyze under drug treat-
ment. Firstly, we simulate the case ρ = 1: the objective function (7) does not depend on
time. We assume that the treatment has a duration of 4 years, according to [26], a usual
observed length for imatinib treatments in CML at advanced phase. Now, we implement
the forward-backward sweep method described in the Appendix. As initial guess for the
control we chose u(t) = umax, t = 0, 1, . . .T . Figure 3 presents the solution of the optimal
control problem that appears. We observe an initial time period (850 days) of maximum
daily dose, followed by a fast decay.

Fig. 3 Non truncated treatment. Optimal therapy without time dependence in the objective function
(ρ = 1). Time in days (x-axis)
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The cell dynamics of the optimal solution is presented in Fig. 4: the disease remits, since
the cancer HSC and cancer DC continuously decrease and are almost eliminated by drug
optimal dosages reaching undetectable values.
We now consider a time valuation factor less than 1. A value of ρ < 1 reflects the

malignity of cancer cells and the toxicity of the drug treatment in the model. However,
for the numerical computation of the optimal control solution, some values of ρ are not
valid. Note that, when ρ < 1, ρt decays to zero as t increases, and the smaller the factor,
the faster the decay. This implies that if ρ is sufficiently small, the division in (20) cannot
be implemented in the computer due to arithmetic underflow. In this sense, the smallest
value that can be considered is ρ = 0.65. For the feasible values of ρ, a qualitatively similar
control solution to the case ρ = 1 can be observed: an initial time period of maximum
daily dose followed by a fast decay.
Table 2 provides some representative data of the treatment for different values of ρ.

First, the duration of the maximum dose, represented by Tmax. Second, the accumulative

Fig. 4 Non truncated treatment. Time evolution in days (x-axis) of cells in the optimal therapy without time
valuation in the objective function (ρ = 1)
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Table 2 Representative parameters of the control solution depending on the discount factor ρ

ρ 1 0.9 0.8 0.7 0.65

Tmax (days) 850 829 816 806 801

UTot (mg) 715372 696192 685644 677046 673026

Tmax : duration of the maximum dose. UTot : accumulative total dose

total dose, represented by UTot . For these two variables we observe quantitative differ-
ences: both values decrease as ρ decreases. Consequently, we consider the limit value
ρ = 0.65 particularly worth studying, since this is the most extreme case with the most
pronounced results. In Fig. 5, the computed optimal control with time valuation (dashed
line) and without time valuation (solid line) are plotted.
It is important to note that the introduction of a time valuation factor implies a notice-

able decrease in the optimal drug doses. As Fig. 5 shows, the main features of this descent
when ρ = 0.65 are the following: first, the duration of the maximum dose of 800 mg/day
is 801 days, that is, the maximum amount of imatinib per day is retired 49 days before;
second, when the optimal dose is lower than 800 mg/day, it is always significantly lower
than the optimal dose when ρ = 1; and third, the accumulated decrease in the adminis-
tered drug is high. The treatment consists of 715372 mg when ρ = 1, while it is of 673026
mg when ρ = 0.65. This is a total saving of 42346mg along the whole period of treatment:
6% of the total dose.
It is worth providing some intuitive ideas on the underlying biomedical mechanisms

causing such drug dose descents, since they constitute one of the main findings of the
research. As commented on in the previous sections, ρ < 1 means that, given fixed num-
bers of cancer cells and drug dose, malignancy is higher if these numbers of cancer cells
and the administered drug dose occur at the beginning of the treated disease. Conse-
quently, other things being equal, malignancy decreases as time passes, and our optimal

Fig. 5 Non truncated treatment. Optimal therapy. Solid line: without time valuation (ρ = 1). Dashed line:
with time valuation (ρ = 0.65). Time in days (x-axis)
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therapy problem takes account of this fact by assigning lower malignancy to given num-
bers of cancer cells if they happen later. The logical outcome is the administration of
optimal lower drug doses as time passes in comparison with the optimal therapy when
ρ = 1. This is clear when we reach day 801: since both therapies (when ρ = 1 and there is
no time valuation, and when ρ = 0.65 and there is time valuation) have previously admin-
istered the maximum doses every day, the drug dose and the number of cancer cells at day
802 will be the same for both alternatives; however, optimal therapy when ρ = 0.65 inter-
prets that this number implies lower malignancy and requires a lower drug dose than that
administered by the optimal therapy when ρ = 1, which has not assigned any decrease
in malignancy. This mechanism continues from day 802 onwards, and the result is the
identified decreases in the imatinib doses. The key point is now the associated relative
increases in the numbers of cancer cells for the optimal therapy when ρ = 0.65. Indeed,
since the drug doses are lower, the numbers of cancer cells when ρ = 0.65 must be higher
than when ρ = 1. Therefore, if these increases in the number of cancer cells compen-
sate the decrease in the assigned malignancy, the optimal therapy could imply the need
for higher imatinib doses for ρ = 0.65. In this respect, we obtain another crucial result
showing that this does not happen.
Indeed, with respect to the number of cells at each moment, we observe a very similar

behavior to that depicted in Fig. 4 for ρ = 1. Figure 6 shows the differences between cells
obtained with ρ = 1 and ρ = 0.65 (denoted by �x0(t),�x1(t),�y0(t) and �y1(t), t =
0, 1, . . .T + 1).
Note that the levels of cells at the end of the treatment are practically indistinguishable.

The introduction of a time malignancy factor ρ = 0.65 implies a negligible increase in the
number of cancer HSC, always lower than 2.77e−11, and lower than 9.71e−10 at the end
of the treatment. Concerning cancer DC, the results are similar. In particular, the increase
in the number of cancer DC when ρ = 0.65 is always lower than 511.49, and lower that
14.60 at the end of the treatment. Since the number of normal DC is about 3.48e + 15,
this increase is less than a million-millionth percentage of the number of normal cancer
cells, clinically undetectable and irrelevant (see [53]).

Truncated treatment

It is of interest to note that, in both cases and after an initial time period of maximum
daily dose, a fast decay appears. Then, from the clinical point of view, it can be assumed
that there exists an effective duration of treatment depending on a medical minimal dose.
After this period, the daily dose is negligible and then it can be assumed that nomore drug
is given. Here, for the CML treatment, we consider that the minimal dose of imatinib is
8 mg, that is, 1% of the maximum daily dose. This truncated treatment is worth studying
due to its clinical applicability. In this case we observe that the effective length of the
therapy is 1138 days when ρ = 1 and 1053 days when ρ = 0.65. This represents an
important decrease in the duration of the treatment, more specifically 85 days, almost
3 months less. In addition, the resulting treatment obtained with ρ = 0.65 provides a
plausible duration period of about 35 weeks for a successful therapy.
In the following experiment we control and keep track of the progress of the illness

under this truncated treatment. Figure 7 shows the effectiveness of the optimal therapy
obtained for ρ = 0.65 over a period of 1053 days (effective duration of the treatment),
which is illustrated here by a dashed vertical line. Note that, in this truncated version, the
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Fig. 6 Non truncated treatment. Differences between the number of cells obtained with ρ = 1 and
ρ = 0.65. Time in days (x-axis)

treatment consists of 672021 mg: we reduce the total dose by 1005 mg. If we now observe
the evolution of cells over 10 years, the cell levels are 11000 normal HSC, 5.45e-10 cancer
HSC, 3.48e+15 normal DC, and 288 cancer DC. Therefore, the number of normal cells
corresponds to the safe equilibrium state and the number of cancer cells is negligible from
the biomedical perspective.
Summing up, it can be concluded that, when ρ = 0.65, the drug optimal doses are

considerably lower and do not entail significant increases in the number of cancer HSC
and cancer DC or in the disease duration. Therefore, the quantitative consequences of the
consideration of a malignancy factor capturing the higher malignancy associated to early
growth of cancer and drug administration are unequivocal: There is a gain of efficiency
after the consideration of the time valuation factor. Indeed, since it allows more efficient
therapies to be designed, the consideration of the existence of a time-valuation factor
becomes very relevant to the design process of optimal therapies and cannot be ignored
by practitioners and biomathematicians.



Gutiérrez-Diez et al. Theoretical Biology andMedical Modelling           (2019) 16:10 Page 17 of 20

Fig. 7 Truncated treatment. Time evolution in days (x-axis) of cells: effective 1053 days therapy (ρ = 0.65), 10
years tracing

Discussion and conclusions
The design of optimal therapies in cancer has been the subject of increasing research
over recent years. Until now, the objective function has considered that malignancy exclu-
sively depends on the drug concentration and the number of cancer cells. However, from
the biomedical perspective, it is universally accepted that the faster the cancer grows the
worse the cancer is, and that early doses are more prejudicial. To take into account these
malignancy dimensions associated to the course of time, ignored by the literature but
empirically observed in survival analyses, it is necessary to incorporate time-valuation
factors into the objective function, assigning a higher malignancy to the initial periods.
In this paper we study these questions for the standard formulation of optimal therapy
models.
In particular, considering a discrete model of Chronic Myeloid Leukemia, we intro-

duce a time valuation factor that allows the malignancy elements associated to time and
commented on above, to be considered. Since clinical and biomedical data on CML are
chosen in per day values, and the treatment and follow-up of the disease are carried out
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according to a daily schedule, this discrete time approach allows a better replication of the
CML evolution to be obtained, easing the interpretation of the model and the extraction
of clinical conclusions and recommendations. In addition, from the purely mathematical
perspective, the use of difference equations instead of ordinary differential equations does
not entail any loss of analysis capability (see [10], chapter 7, and the references therein).
Moreover, we have verified that the dynamic behavior of the uncontrolled problem is just
the same in both situations. In fact, the modeling of treated CML dynamics through a sys-
tem of ordinary differential equations in continuous time needs of a discretization of time
to be numerically solved, and this leads to a discrete model equivalent to the difference
equations model we have considered.

Conclusions

Our conclusions are unequivocal: the consideration of a time-valuation factor captur-
ing the higher malignancy associated to early growth of cancer and drug administration
allows more efficient therapies to be designed, and is then a very important element when
designing cancer optimal therapies. More specifically, when this time valuation factor is
incorporated into the objective function, not only the optimal drug doses are lower (a
change in ρ from 1 to 0.65 involves 6% saving of the total dose), but also do not involve
significant increases in the number of cancer cells or in the disease duration. The time val-
uation factor therefore cannot be ignored when designing cancer optimal therapies, since
it results in significant modifications in the optimal therapy with relevant implications
from the biomedical perspective, specially when designing patient-specific therapies. In
this respect, given that the proposed optimal therapy model can be solved and simulated
for any set of values for the parameters in Table 1, once we count on these values for a
specific patient, it is straightforward to compute her/his personalized therapy as well as
to calculate the subsequent reductions in the drug doses.

Appendix
For the numerical experiments we employ the following forward-backward sweep
method:

1. We start with an initial guess for u(t) at t = 0, . . . ,T .
2. With this initial iterant and making use of the initial conditions and equations

(3)-(6), we forward compute the corresponding values of the state variables.
3. From the resulting values of the state variables and making use of

equations (8)-(11) and the final conditions (12)-(15), we backward calculate the
Lagrange multiplier variables.

4. By means of these approximations, we compute a new control variable following
the procedure (16)-(18).

5. Finally, we iterate the procedure until convergence to the optimal control u∗(t),
t = 0, . . . ,T (in practice, we stop when two consecutive iterations are close
enough). Then, we generate the associated optimal values x∗

0(t), x∗
1(t), y∗

0(t), and
y∗
1(t), t = 0, . . . ,T + 1.
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