
RESEARCH Open Access

Effects of a high protein diet and liver
disease in an in silico model of human
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Abstract

Background: After proteolysis, the majority of released amino acids from dietary protein are transported to the
liver for gluconeogenesis or to peripheral tissues where they are used for protein synthesis and eventually
catabolized, producing ammonia as a byproduct. High ammonia levels in the brain are a major contributor to the
decreased neural function that occurs in several pathological conditions such as hepatic encephalopathy when liver
urea cycle function is compromised. Therefore, it is important to gain a deeper understanding of human ammonia
metabolism. The objective of this study was to predict changes in blood ammonia levels resulting from alterations
in dietary protein intake, from liver disease, or from partial loss of urea cycle function.

Methods: A simple mathematical model was created using MATLAB SimBiology and data from published studies.
Simulations were performed and results analyzed to determine steady state changes in ammonia levels resulting from
varying dietary protein intake and varying liver enzyme activity levels to simulate liver disease. As a toxicity reference,
viability was measured in SH-SY5Y neuroblastoma cells following differentiation and ammonium chloride treatment.

Results: Results from control simulations yielded steady state blood ammonia levels within normal physiological limits.
Increasing dietary protein intake by 72% resulted in a 59% increase in blood ammonia levels. Simulations of liver
cirrhosis increased blood ammonia levels by 41 to 130% depending upon the level of dietary protein intake.
Simulations of heterozygous individuals carrying a loss of function allele of the urea cycle carbamoyl phosphate
synthetase I (CPS1) gene resulted in more than a tripling of blood ammonia levels (from roughly 18 to 60 μM
depending on dietary protein intake). The viability of differentiated SH-SY5Y cells was decreased by 14% by the
addition of a slightly higher amount of ammonium chloride (90 μM).

Conclusions: Data from the model suggest decreasing protein consumption may be one simple strategy to decrease
blood ammonia levels and minimize the risk of developing hepatic encephalopathy for many liver disease patients. In
addition, the model suggests subjects who are known carriers of disease-causing CPS1 alleles may benefit from
monitoring blood ammonia levels and limiting the level of protein intake if ammonia levels are high.

Keywords: Ammonia, Hepatic encephalopathy, Liver cirrhosis, Carbamoyl phosphate synthetase 1, Nitrogen, Urea
cycle, Dietary protein
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Background
Protein is an abundant part of the human diet. It is recom-
mended that humans consume 0.8 g of protein per kg
body mass per day. For a male of average weight (88.7 kg)
[1], this is equivalent to 71 g of protein per day. When
amino acids are consumed at a faster rate than they are
used for protein synthesis, they are metabolized as an
energy source, typically accounting for roughly 15–20% of
the energy supply. The liver breaks down nearly half of
the amino acids in the human diet as substrates for gluco-
neogenesis [2]. Amino acid catabolism first relies upon
the transfer of the amino group by aminotransferases to a
ketoacid, often to alpha-ketoglutarate to form glutamate,
and then by the deamination of glutamate by glutamate
dehydrogenase which produces ammonia (NH3). Roughly
12.5% of nitrogen intake is excreted from the digestive
tract [3]. Because ammonia is relatively toxic [4], systems
such as the urea cycle are in place primarily in the liver to
convert it into a less toxic form that can be readily
removed from the circulation and excreted.
The liver is the main organ responsible for filtering am-

monia and other nitrogen sources such as glutamine from
the blood to synthesize urea, the major form of excreted
nitrogen in mammals. Urea is a relatively nontoxic waste
product that safely stores nitrogen until it can be removed
from the body. However, when ammonia is not successfully
removed from the blood due to impaired or overwhelmed
removal mechanisms, the plasma ammonia concentration
increases, which may cause deleterious effects such as
neural impairment [5]. As part of the process of nitrogen-
ous waste removal, nitrogen-rich blood enters through the
hepatic portal vein and is eventually filtered through the
acinus, the functional unit of the liver, before draining out
of the central vein. The acinus is divided into three zones
[6]. Zone 1 is the closest to the hepatic portal vein, and
zone 3 is the closest to the central vein. The hepatocytes
spanning these three zones do not all perform the same
metabolic functions [7]; rather, different branches of nitro-
gen metabolism are localized to specific zones. Zones 1
and 2 contain the enzymes of the urea cycle [8] as well as
glutaminase [9], an enzyme that removes nitrogen from
glutamine to yield ammonia and glutamate. However, zone
2 has less glutaminase activity than zone 1. Zone 3 contains
glutamine synthetase [10], an enzyme that combines
ammonia and glutamate to produce glutamine and is also
called glutamate-ammonia ligase (GLUL).
Liver disease can change the activities of several key en-

zymes involved in nitrogen metabolism. For example, liver
cirrhosis results in decreased expression of GLUL and the
urea cycle enzyme CPS1 [11, 12]. Mutations in the CPS1
gene can lead to individuals born with a deficiency in
mitochondrial carbamoyl phosphate synthetase activity
[13]. Because CPS1 catalyzes the first committed step of
the urea cycle, this can have serious consequences on

nitrogen metabolism. The increase in the number of indi-
viduals with liver disease in recent years [14] combined
with an average protein intake in the U.S. that is about
40% above the recommended value [15] creates the need
for understanding the effects of increased protein intake
on blood ammonia levels.
Increased blood ammonia levels are a causative agent

in hepatic encephalopathy (HE) [16], but increased am-
monia levels have also been implicated in other neural
disorders such as Alzheimer’s disease [17], amyotrophic
lateral sclerosis [18], and Huntington’s disease [19]. HE
results from liver damage leading to cognitive impair-
ment. Liver disease also increases the blood levels of
other potentially neurotoxic factors such as manganese
and pro-inflammatory cytokines [20] that may contrib-
ute to the encephalopathy as well. Between 30 and 45%
[21] of the more than 600,000 patients [22] with liver
cirrhosis each year will develop hepatic encephalopathy,
resulting in a cost of nearly $1 billion per year [21]. Most
treatments aim to reduce the level of circulating ammo-
nia [16]. Due to challenges in reliably assaying ammonia
due to its reactivity [23, 24], there are not many studies
that measured the effects of dietary alterations on blood
or tissue ammonia levels. Our model provides further
insight into how changes in dietary protein intake may
affect blood ammonia levels to better direct these treat-
ment strategies.
We used data from the literature to create a computa-

tional model that simulates ammonia metabolism and
predicts blood ammonia levels based upon the amount
of protein consumed and the degree of liver function.
Results from the model agree relatively well with mea-
sured physiological and pathophysiological steady state
metabolite levels, and several insights were made from
varying our initial conditions to investigate the role of
key enzymes in human organismal nitrogen metabolism.
Cell culture studies were used to extend the model and
establish the toxicity of pathophysiological concentra-
tions of ammonia on differentiated SH-SY5Y neuroblast-
oma cells in culture.

Methods
Description of the model
This model describes the changes in ammonia, urea, and
glutamine in the blood with the following ordinary differen-
tial equations:

d NH3½ �
dt

¼ VNH3 abs þ VGLS−VUrea for Balance

−VCPS1−VNH3 ex−VGLUL

ð1Þ

d Urea½ �
dt

¼ VCPS1−VUrea ex ð2Þ
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d Gln½ �
dt

¼ VGLUL−VGLS ð3Þ

The overall reaction scheme is shown in Fig. 1. Equa-
tions for reaction velocities in Eqs. 1, 2, and 3 are shown
in Table 1 [25–31]. Carbamoyl phosphate synthetase 1
(CPS1) catalyzes the first committed step in the urea cycle,
so this is the only enzyme of the cycle incorporated into
the model for simplicity. Other model parameters are
shown in Table 2 [32–35]. Mammalian enzymes from liver
tissue were used when the data was available (see Table 1).
No distinction is made between NH3 and NH4

+ in this
study unless otherwise noted. N-acetyl-glutamate (NAG)
is a CPS1 activator that increases in concentration when
more protein is consumed [36]. To model the effects of
NAG on CPS1 activity, we interpolated data on CPS1 ac-
tivity changes from a study that included the effects of
changes in hepatic mitochondrial NAG levels due to diet
[36] (about 11% in this study). The maximally activated
activity of CPS1 [27] was adjusted to reflect the reduced
activity at physiological NAG concentrations [37, 38] for
the different protein content in the diets and liver condi-
tions used in the study. The adjusted CPS1 values for indi-
viduals on the three diets of differing protein content are
as follows: 71 g protein per day, 8.05 mmoles/min; 100 g
protein per day, 8.47 mmoles/min; 122 g protein per day,
8.78 mmoles/min. Adjustments for liver conditions are
described below.
Because all the chemical species under consideration are

present in the blood compartment, it is the only compart-
ment where the volume affects simulation results. The
other compartments in Fig. 1 are used to organize the
model components for conceptualization. We assume free
diffusion across membranes. The volume was determined
by assuming a linear relationship between body mass and

blood volume and taking 5.2 L to be the blood volume of a
70 kg male [35]. Blood in the model is assumed to be well
mixed. Published enzyme activities were scaled up to the
average liver size (1561 g, see Table 2) by adjusting the
units to mmol/(min*1561 g). For example, McGivan et al.
[25] report glutaminase activity as 91.4 nmoles per minute
per mg protein, which converts to 0.0914 mmoles per mi-
nute per g protein. If we assume 20% protein content in
the cultured hepatocytes, it takes 5 g of tissue to yield 1 g
protein. Adjusting for protein content and multiplying by a
liver weight of 1561 g yields an enzyme activity of 28.54
mmoles/min/liver. Because of the slightly higher protein
content of liver tissue compared to isolated hepatocytes
[39], we used a tissue protein content value of 25% when
scaling up parameters from a study that reports enzyme ac-
tivity from liver tissue. Similar calculations were performed
for each of the liver enzymes. Changes in enzyme activity
due to diet and liver conditions are summarized in Table 3.
The complete urea cycle uses two nitrogen atoms to

synthesize each molecule of urea in one turn of the
cycle. However, CPS1 incorporates one nitrogen atom
per turn of the cycle. A second nitrogen enters into the
cycle from aspartate when argininosuccinate synthetase
catalyzes the reaction of aspartate with citrulline. To bal-
ance the stoichiometry of the reaction series and to sim-
plify the model, a second reaction equal to CPS1 was
created with the product not considered in the simula-
tion results (“Urea for Balance” in Fig. 1). Therefore, two
nitrogen atoms per unit time are used to produce one
urea molecule, satisfying the stoichiometry of the overall
reaction series for this simplified model. The rate of ni-
trogen absorption is based upon the daily amount of ni-
trogen consumed. The mass of protein ingested is
adjusted to the molar amount of nitrogen ingested (16%
of the mass of protein ingested) and for the 12.7% loss

Fig. 1 Model of nitrogen metabolism and excretion. NH3 in the figure includes both ammonia and ammonium ions. Circles represent reactions
(see Table 1 for reaction equations) and ovals represent reactants and products. a Conceptual framework of the in vivo physiology simulated
including the many tissues and subcellular compartments involved. b The system is modeled in silico considering only the concentrations of
metabolites in the blood. Abbreviations are as follows: GLUL, glutamine synthetase; Gln, glutamine; GLS, glutaminase; CPS1, carbamoyl phosphate
synthetase 1; Urea ex, urea excreted; NH3 abs, ammonia absorbed; NH3 ex, ammonia excreted
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of nitrogen in feces [3]. The remaining molar amount of
nitrogen is assumed to be absorbed linearly over a
period of 24 h. For example, if 71 g of protein is ingested,
16% of that amount (11.36 g) is nitrogen. Assuming a
12.7% loss in feces, this leaves 9.92 g of nitrogen avail-
able for absorption. Because there are 14 g of nitrogen
per mole, there are 0.708 mol of nitrogen available for
absorption per day, or 0.49 millimoles of nitrogen per
minute. The absorption rate was recalculated using the
same method for each of the three protein diets mod-
eled. The ranges of the amounts of ammonia and urea
excreted in urine over a 24 h period have been reported
[40, 41], and in the model we assumed the average
values to be excreted linearly over the 24 h period. When
modeling altered protein intake, the rates of ammonia
and urea excretion were adjusted as well. For the high
protein diet, we used the upper values of the reference
ranges reported for the amounts of ammonia and urea
excreted instead of the average values. This was accom-
plished by assuming daily nitrogen balance and using

calculations similar to those used above to equate molar
amounts of nitrogen to grams of protein. For example,
using the lower values for the reference ranges of daily
ammonia and urea excretion and assuming daily nitro-
gen balance suggest a dietary intake of about 60 g of pro-
tein per day. Ammonia and urea excretion rates were
scaled to the dietary protein intake by assuming a linear
relationship between the two. Excretion rates that were
used in the model are as follows: for the 71 g per day
protein diet, 0.004 mmoles ammonia are excreted per
minute and 0.244 mmoles urea are excreted per minute;
for the 100 g per day protein diet, 0.008 mmoles ammo-
nia are excreted per minute and 0.343 mmoles urea are
excreted per minute; and for the 122 g per day protein
diet, 0.012 mmoles ammonia are excreted per minute
and 0.417 mmoles urea are excreted per minute.
Changes with altered protein content in the diet are
summarized in Table 3.
We modelled the spatial separation of enzymes by aci-

nus zones by translating spatial separation into temporal
separation. The time a red blood cell takes to travel
through a sinusoid has been calculated to be 4.3 s [33].
Assuming a constant rate and equal division of zones,
this is about 1.43 s per zone. CPS1 and GLS are found in
two zones in the acinus (zones 1 and 2); this means a
red blood cell would take about 2.87 s to cross these
zones. By using event functions in the SimBiology soft-
ware, the enzyme activities of CPS1 and glutaminase
were turned on for 2.87 s and then off for 1.43 s while
GLUL was turned on. This change in enzyme activities
combined with the well-mixed assumption approximates
the spatial enzyme separation found in the liver because
blood is exposed to CPS1 and glutaminase for twice as
long and just prior to exposure to GLUL activity before
repeating the cycle. This cycling was repeated for 774 s
during simulations (Fig. 2a), yielding a pattern of peaks

Table 1 Values for reaction velocities scaled to average male liver mass with recommended protein diet

Reaction Velocities Parameters from the Literature Organism and Tissue Parameters Scaled to Liver

VNH3 abs = 0.492 mmol/mina

VGLS = (Vmax GLS[Gln])/(Km Gln + [Gln]) Vmax GLS = 91.4 nmole/min per mg [25] Rat Liver Vmax GLS = 28.54 mmol/min

Km Gln = 4.0 mM [26] Human
Recombinant

Km Gln = 4.0 mM

VNH3 ex = 0.004 mmol/mina

VCPS1 = (Vmax CPS1[NH3])/(Km NH3 + [NH3]) Vmax CPS1 = 45 nmole/min per mg [27] Human Liver Vmax CPS1 = 8.05 mmol/minab

Km NH3 = 0.35 mM [28] Human
Recombinant

Km NH3 = 0.35 mM

VGLUL = (Vmax GLUL[NH3])/(Km NH3{1
+ ([Gln]/Ki Gln)} + [NH3])

Vmax GLUL = 0.47 μmole/15 min per mg [29] Rat Liver Vmax GLUL = 12.3 mmol/minb

Km NH3 = 0.15 mM [30] Human Recombinant Km NH3 = 0.15 mM

Ki Gln = 0.6 mM [31] Bacillis subtilis Ki Gln = 0.6 mM

VUrea ex = 0.244 mmol/mina

aThese values change with protein diet. See methods and discussion for details
bThese values change with liver condition. See methods and discussion for details

Table 2 Parameter values used in nitrogen metabolism model

Parameter Name Value References

Blood Volume 6.59 La

Average Liver Mass 1561 g [32]

Average Human Mass, Male 88.7 kg [1]

Time Through Sinusoid 4.3 s [33]

Initial Urea 5.5 mM

Initial Ammonia 0 μM

Initial Glutamine 0 mM

Recommended Daily Protein 71 g [34]
aBlood volume is about 5.2 L for a 70 kg individual [35]. The value used above
was determined by assuming a linear relationship of blood volume with body
mass for an individual weighing 88.7 kg. This is the volume of the blood
compartment used to calculate metabolite concentrations
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and valleys in the simulation results that is a mathemat-
ical artifact of modeling spatial separation as temporal
separation. The 774 s of simulation allowed sufficient
time to reach the steady state definition (less than
0.002% change per second).
Steady state levels for ammonia were calculated fol-

lowing model simulations for different levels of pro-
tein in the diet (recommended, 71 g per day; average,
100 g per day; high, 122 g per day) and liver condi-
tions (no disease, liver cirrhosis, and 50% CPS1 activ-
ity) for 9 conditions total. Simulation results were
exported to Microsoft Excel, and steady state levels
were determined from the data points corresponding
to the top of the resulting ammonia concentration
curves. The rate of change of the ammonia concen-
tration during the final part of the simulation was
calculated. Steady state was defined as the concentra-
tion when blood ammonia levels were changing less
than 0.002% per second.

Model assumptions and simplifications
Several assumptions and simplifications were used in
the model. The urea cycle is simplified to the first
committed step and an extra CPS1 reaction was
added to maintain the stoichiometry of the entire
urea cycle (“Urea for Balance” in Fig. 1). Other mo-
lecular species involved in the included reactions that
are not included in the model are assumed to be in
abundance, blood is assumed to be well-mixed, and
we used temporal separation of enzymes to model
spatial separation of enzymes in the liver acinus.

Furthermore, GLS activity is the same in zones 1 and
2 in the model, but it may be slightly decreased in
zone 2 in vivo. We recognize that blood is heteroge-
neous, and blood ammonia levels may be concen-
trated in some compartments compared to others.
For example, arterial blood has been shown to have
higher ammonia levels than venous blood in dogs
with liver disease [42]. This difference of concentra-
tions could limit systemic effects of blood ammonia.
However, this was not included in the model. We also
assume a continuous nutritional supply for simplicity.
Furthermore, the model does not account for the ac-
tivities of transporters but often assumes free passage
of small molecules. There is also evidence for positive
cooperativity for the binding of some of the species
to enzymes in the model. For example, there is evi-
dence of cooperativity for glutamine binding (Hill co-
efficient of 1.8) in the kinetics of the glutaminase
enzyme [43] and possible glutaminase upregulation by
a high protein diet [44] that was not included in the
model. However, sensitivity analysis suggests that in-
creases in glutaminase and GLUL activity will not
have much effect on ammonia steady state levels.
Even with these simplifying assumptions, the model
results agree relatively well with the available clinical
data (see Discussion). However, the available clinical
data is sometimes incomplete, so further validation is
not currently possible. The SBML file for this model
can be found in Additional file 1.

Sensitivity analysis
To determine the relative effects of altering enzyme kin-
etic parameters on the steady state blood ammonia
levels, each of the parameters was individually increased
or decreased by 50% under the normal simulation condi-
tions for a liver without disease and a protein diet of 71
g per day. The simulations were run under these altered
conditions and the steady state levels of ammonia were
compared to those under normal conditions. Results are
reported in Table 4 as percent change.

SH-SY5Y culture, differentiation, and treatment
SH-SY5Y cells were cultured in a 1:1 mixture of DMEM
(high glucose) and Ham’s F-12 medium. The medium
contained 2.44 g/L sodium bicarbonate, 30 mg/L penicil-
lin, 50 mg/L streptomycin, and 10% FBS. The cells were
seeded at a concentration of 1,000 cells per well in 96-
well plates and treated with retinoic acid (10 μM) for 4
days with the medium changed every 2 days. Next, am-
monium chloride was added to the medium at the indi-
cated concentrations and the cells were incubated for 24
additional hours.

Table 3 Parameter changes with altered protein intake and
liver condition

Parameter
Name

Protein in Diet
(g per day)

Normal Enzyme
Activity (mmoles/min)

Enzyme Activity
in Liver Cirrhosis
(mmoles/min)

Urea ex 71 0.244 0.244

100 0.343 0.343

122 0.417 0.417

NH3 ex 71 0.004 0.004

100 0.008 0.008

122 0.012 0.012

NH3 abs 71 0.492 0.492

100 0.693 0.693

122 0.845 0.845

Vmax CPS1 71 8.05 5.64

100 8.47 5.93

122 8.78 6.146

Vmax GLUL No change
with diet

12.3 2.46
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Protein assay
After 24 h of treatment with ammonium chloride, the cells
were washed in PBS and then lysed with RIPA buffer
(50 μl per well for three wells per condition). The lysate
was pooled in a microcentrifuge tube and the Pierce BCA
Protein Assay was performed in triplicate per manufac-
turer’s instructions.

Software and statistical methods
The model was built and simulated using the MATLAB
R2016a SimBiology software package. Data was analyzed
using Microsoft Excel and GraphPad Prism v7.0. For cell
culture studies, three independent experiments were
performed and data was analyzed with a repeated mea-
sures one-way ANOVA with Fisher’s post hoc test.

Fig. 2 Model simulation results for an individual with normal enzyme activities on a recommended protein diet. a Simulation results for an
individual with normal enzyme activities with the recommended daily protein intake. Note the break in the scale of the y-axis. b Ammonia steady
state levels from simulations varying enzyme activities of CPS1 and GLUL. c Simulation results showing changes in ammonia kinetics with
changes in GLUL activity
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Results
Model results approximated physiological steady state
ammonia levels
A computational model estimating blood ammonia
levels in individuals without disease and those with liver
disease was constructed. The model was first simulated
using the parameters for a liver without disease and the
recommended protein content in the diet to determine if
the resulting steady state levels were consistent with clinical
data. The recommended protein intake was taken to be 71
g per day. The reference range for normal blood ammonia
levels was taken to be 11–32 μM [45]. Normal blood urea
levels are considered to be 3.6–7.1mM [46]. The initial
conditions in this study are 0 μM ammonia and 5.5mM
urea. Fig. 2a shows the results of 774 s of simulation of our
model. The steady state ammonia level was 17.5 μM (Fig.
2a), and the steady state urea level remained around 5.5
mM (Fig. 2a), both values well within the normal range.

Enzyme activity changes had different effects on
ammonia and urea levels
To investigate the relative influences of CPS1 and GLUL on
blood ammonia levels, enzyme activities were individually
varied stepwise in the model for an individual without dis-
ease with a recommended protein intake, and steady state
levels of ammonia were determined. The results show an in-
verse, non-linear relationship between CPS1 activity and
ammonia levels (Fig. 2b). The steady state urea level did not
show much change under any conditions tested likely be-
cause much larger changes are necessary to cause differ-
ences in the millimolar concentrations of urea compared to
the micromolar concentrations of ammonia. Decreasing
GLUL activity had almost no effect on steady state levels of
ammonia (Fig. 2b). However, decreasing GLUL activity does
affect the kinetics of ammonia formation. Eliminating GLUL
activity caused the simulation to reach steady state ammo-
nia levels much more quickly. In an individual without liver
disease, the rate of ammonia formation for the first 12.9 s of
the simulation was 0.55 μmoles per second, but this rate
increased to 0.83 μmoles per second when GLUL activity
was inactivated (Fig. 2c). A sensitivity analysis (Table 4) of
the kinetic parameters revealed that, as expected, changes in
CPS1 activity have by far the strongest effect on blood am-
monia levels of any enzyme in the model.

Changes in enzyme activity levels caused by liver
cirrhosis affected blood ammonia levels
Liver cirrhosis has been shown to decrease the activities of
two of the enzymes in the model, so decreasing the Vmax

values accordingly can create a simple model of liver cir-
rhosis. As mentioned above, the recommended protein in-
take for a typical adult male is 71 g of protein per day. The
average American diet is about 100 g of protein per day,
and a high protein diet in our model was taken to be 122
g of protein per day. The amount of protein in the high
protein diet was calculated by using the highest values of
ammonia and urea excretion in the published reference
ranges [40, 41] and assuming nitrogen balance (see

Table 4 Sensitivity analysis for kinetic parameters

Enzyme Parameter Parameter
Percent
Change

Blood Ammonia
Percent Change

CPS1 Vmax 150% −35.4

50% 110.3

Km 150% 52.6

50% −50.3

Glutaminase Vmax 150% 0.6

50% −2.9

Km 150% −1.1

50% 1.1

Glutamine Synthetase Vmax 150% 4.6

50% −4.6

Km 150% −2.9

50% 7.4

Ki 150% 0.6

50% −0.6

Fig. 3 Ammonia levels changed with dietary protein levels, liver cirrhosis, and CPS1 activity. a The steady state ammonia concentration in the
blood increases with increased ammonia absorption due to increases in dietary protein (See Table 1) and decreased liver function. b When CPS1
activity is reduced by half, steady state ammonia levels are higher than those in an individual with normal enzyme activities. This effect increases
with increased ammonia absorption due to increased dietary protein levels (See Table 1)
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Methods). To model liver cirrhosis, the Vmax of CPS1 was
reduced to 70% of the normal value, and the Vmax of
GLUL was reduced to 20% of the normal value [11]. Fol-
lowing simulation, the steady state ammonia and urea
levels were determined as described above. The steady
state ammonia levels under the various conditions are
shown in Fig. 3a. Ammonia levels increased with in-
creased dietary protein intake and with decreased liver
function. For simulations of a liver without disease, in-
creasing protein consumption from the recommended
protein intake to the high protein diet increased ammonia
levels by roughly 59%. Simulations of cirrhosis led to in-
creases of blood ammonia levels of 41 to 130% depending
upon the level of protein intake.

Decreased CPS1 activity led to increased blood ammonia
levels
Based upon the population frequency of the genetic dis-
order CPS1 deficiency, there are likely many heterozy-
gous individuals with decreased CPS1 activity (see
Discussion). To investigate the consequences of de-
creased CPS1 activity on blood ammonia and urea levels,
the Vmax for CPS1 was reduced by 50% and different
protein levels in the diet were compared (Fig. 3b). De-
creased CPS1 activity (50% below normal, as present in
a heterozygous individual with a complete loss of func-
tion from one of the two alleles) led to more than a
doubling in blood ammonia levels for the recommended
protein intake and more than a tripling of blood ammo-
nia levels for the high protein diet.

Ammonium chloride treatment decreased viability of
differentiated SH-SY5Y cells
To test whether the increased ammonia levels observed
in the simulations could be neurotoxic in vitro, we ad-
ministered ammonia to retinoic acid-differentiated hu-
man neuroblastoma cells. Differentiated SH-SY5Y cells
treated with 90 μM ammonium chloride showed 14% de-
creased viability as measured by protein content from
cells attached to the plate after a PBS wash. Ammonium
chloride concentrations of 30 μM or 60 μM showed no
statistically significant effect on viability (Fig. 4).

Discussion
A simple mathematical model of human organismal nitro-
gen metabolism is presented that uses published parame-
ters for physiological inputs to give physiologically
relevant outputs consistent with the available experimen-
tal data. While other models for ammonia metabolism in
humans exist [47–49], this is the first to our knowledge to
model the effects of altered levels of dietary protein intake
on blood ammonia levels. Increased protein intake led to
increased blood ammonia levels across all conditions.
However, blood ammonia levels remained in the normal
range when simulating a liver with normal enzyme activ-
ities. The simulation results showed that low GLUL activ-
ity can lead to more rapid changes in blood ammonia
levels. The model highlights the effects of diet on ammo-
nia levels in disease conditions. Our results indicate that
increased protein intake likely causes blood ammonia to
rise above normal levels in some patients with cirrhosis.

Fig. 4 Ammonium chloride (90 μM) decreased the viability of retinoic acid-differentiated SH-SY5Y neuroblastoma cells in culture. * indicates that
p = 0.01 compared to 0 μM NH4Cl added. Bars represent mean ± SEM, and n = 3 independent experiments
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Altering dietary protein consumption in cirrhosis patients
Because relative energy expenditure per kg body mass is
increased in some cirrhotic patients [50], some sources
recommend a high protein diet (1.8 g/kg per day) for
these patients to maintain muscle mass if they do not
already have HE [51]. Others suggest a normal, moder-
ate intake of 0.8 g to 1.0 g of protein per kg per day [52].
Data has shown that high protein intake exacerbated en-
cephalopathy in 35% of patients with cirrhosis [53]. Re-
duced protein intake was first shown to protect from
encephalopathy in cirrhotic patients in 1952 [54]. In
2004, a study was performed with cirrhosis patients
where protein was completely removed from the diet for
3 days and then slowly increased over 12 days back to
the normal level [55]. At the end of the study, blood
ammonia levels were non-significantly 17% lower in the
patients with the restricted protein diet compared to
patients on a normal protein diet of 1.2 g/kg per day,
roughly equivalent to the average American protein diet
in this model. However, the methods used in that study
have been critiqued and questioned [56]. A larger patient
group size and earlier measurements of blood ammonia
levels would help to clarify if blood ammonia levels are
indeed decreased by a low protein diet. If the findings of
no significant effects do prove to be robust and highly
reproducible, this leaves the possibility that a high pro-
tein diet may play a role in the development of HE, but
a low protein diet is not helpful in its resolution. Even
though several studies have suggested that restricting
dietary protein intake below the recommended amount
for an individual with normal enzyme activities may not
be therapeutic for the roughly 60% of cirrhosis patients
who suffer from malnutrition, other studies over the past
65 years on HE patients who can maintain a proper en-
ergy balance have consistently shown benefits of protein
restriction [56]. We acknowledge the large heterogeneity
in patient responses to changes in the level of dietary
protein [57] and suggest that monitoring the cirrhosis
patient’s energy balance will help determine the proper
dietary protein level for that individual.
Previous research has shown that there was an 80% re-

duction in GLUL activity and a 30% reduction in CPS1
activity in a rat model of liver cirrhosis [11]. Results
from adjusting the model to these parameters suggest
that ammonia levels will increase with liver disease. Fur-
thermore, a high protein diet will likely exacerbate these
effects. We recognize that liver cirrhosis is a complex
disease with many changes besides altered CPS1 and
GLUL activity, so this model is a simplified representa-
tion of liver cirrhosis. Using an upper limit of 32 μM for
the reference range of normal blood ammonia levels, the
model indicates that a high protein diet with liver cir-
rhosis will result in a blood ammonia level that is at least
20% higher (40.3 μM) than the upper limit for the

normal range (32 μM). This elevation may contribute to
HE. The model suggests that controlling protein intake
could be one method to slightly reduce the likelihood of
developing HE in some patients with liver cirrhosis.

Plasma ammonia levels likely rise after a meal
Our model predicts that blood ammonia levels will rise
slightly by consumption of a high protein diet. Surprisingly,
we could not find many studies in the literature examining
dietary-induced changes in blood ammonia levels in healthy
humans. One study found increased blood ammonia levels
in women following consumption of a test drink containing
whey protein. The ammonia level peaked at a value 20%
higher than the initial level at 90min after consumption
[58]. Another study found increasing breath ammonia
levels after a high protein challenge; ammonia levels plat-
eaued roughly 5 h after the dietary challenge [59]. However,
breath ammonia levels do not always correlate well with
blood ammonia levels. A further study using Huntington’s
disease patients who were put on a high (26.3%) protein
diet did not find any association between the high protein
diet and blood ammonia levels [19].
In studies with mice placed on a high protein diet, am-

monia levels increased from 210 μM to 245 μM at night
when the mice were active and feeding. Likewise, a high
fat/low protein diet decreased ammonia levels from
170 μM to 130 μM when measured at night [60]. When
rats were switched from a 20% protein diet to a 58%
protein diet, colonic venous ammonia maximally in-
creased from 100 μM to 340 μM 2 days after the switch
in diet, which dropped to 170 μM after a week on the
diet [61]. Another study using rats trained on a 6% pro-
tein diet showed that blood ammonia levels increased
from 60 μM to 120 μM when they were given a 44% pro-
tein meal, and ammonia levels were maintained at that
elevated level for at least 24 h [62]. There is also evi-
dence of increases in blood ammonia levels in pigs after
a protein meal [63, 64]. The limited data above suggest
that systemic ammonia levels likely increase slightly fol-
lowing a meal, especially if the meal is high in protein,
but more experiments should be performed to verify
these initial findings and to determine the extent of
brain ammonia level changes under the same conditions.
In addition, more detailed studies using human subjects
would help to better characterize the time dependency
of elevated ammonia levels as well as to discern differen-
tial effects in patients with liver disease.

Variability in the correlation between blood ammonia
levels and the severity of HE
While there is a correlation between blood ammonia levels
and HE severity [65] the exact blood concentration that
leads to impairment may be different for individuals based
on their specific nitrogen balance and the release of other
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neurotoxic factors from the liver. Some patients with
hyperammonemia present with 100–200 μM blood ammo-
nia levels and remain asymptomatic, while others such as
infants with GLUL deficiency have severe encephalopathy
with blood ammonia levels fluctuating between 100 and
150 μM [66]. However, decreased blood glutamine levels
may also contribute to the encephalopathy in GLUL defi-
ciency. Maintained blood ammonia levels over 300 μM are
considered severe and invariably lead to encephalopathy.
However, some newborns have been shown to have no
lasting impairment by temporary blood ammonia concen-
trations up to 2mM for a day or two [67]. In contrast with
this data, blood ammonia levels (< 50 μM) that border the
normal range have also been linked to HE [65]. These vari-
abilities do not affect the validity of the model because the
model represents the blood ammonia level changes for an
average person.
To investigate the roles of CPS1 and GLUL in ammo-

nia metabolism, enzyme activities were varied in the
model with otherwise normal parameters (Fig. 2b, Table
4). CPS1 activity levels relevant to the model had an in-
verse, non-linear effect on ammonia concentrations.
This is consistent with clinical data that demonstrate
ammonia levels increase due to CPS1 deficiency [68].
GLUL activity, however, had very little effect on ammo-
nia steady state levels. Simulating liver cirrhosis (70%
CPS1, 20% GLUL) resulted in an average ammonia in-
crease of 43% across all diets. GLUL activity appears to
slow initial changes in blood ammonia levels. Since mus-
cles may help metabolize some ammonia [69], slowing
the rate of change may give the body time to adapt to
the larger ammonia levels. These results are consistent
with the known role of CPS1 together with the rest of
the urea cycle to be a low affinity, high capacity system
for removing ammonia, while GLUL is a high affinity,
low capacity enzyme for removing ammonia [70].

Ammonia levels in individuals deficient in GLUL
Human subjects with decreased GLUL activity have
been shown to have blood ammonia levels of 100–
150 μM [66], while mice with liver-specific GLUL knock-
out showed a blood ammonia level of roughly 150 μM
[71]. Our model, under otherwise normal conditions,
shows no change in ammonia steady state levels when
GLUL is reduced (Fig. 2b). This is a major limitation of
the study possibly due to the enzyme kinetics data avail-
able, but it could also be due to the way we have mod-
eled the hepatic acinus, the functional unit of the liver.
The ratio of CPS1 to GLUL activity or the amount of
time that ammonia is associated with CPS1 activity com-
pared to GLUL activity may be too high in our model,
resulting in deviations from in vivo results. This suggests
that some of the changes in ammonia levels observed in
our model may be too conservative. However, CPS1

deficiency [72] has been demonstrated to lead to higher
plasma ammonia levels than GLUL deficiency [73], indi-
cating that GLUL does not exert as strong an effect on
blood ammonia levels as CPS1.

Ammonia levels in individuals deficient in CPS1
CPS1 deficiency is a rare autosomal recessive genetic
disorder that results in very little CPS1 activity [74]. In-
dividuals experience extreme hyperammonemia and the
many detrimental effects that come with it [13]. The
prevalence of CPS1 deficiency is about 1 in 800,000 [75].
Assuming strict Mendelian inheritance, if a mother and
father each are heterozygous for a complete loss of func-
tion allele and have decreased CPS1 activity, there is a 1
in 4 chance that their children will have CPS1 deficiency.
Working backwards from this assumption, the odds that
both parents are heterozygous are 1 in 200,000. The
odds that one parent is heterozygous is roughly 1 in 447.
Therefore, heterozygosity for disease-causing CPS1 mu-
tations is almost as prevalent as liver cirrhosis. However,
regulatory effects may partially compensate for CPS1
heterogeneity, a scenario not explored in this study. The
model predicts that individuals with CPS1 activity 50%
of normal levels (currently thought to have no detrimen-
tal effect) will have high blood ammonia levels. Most
CPS1 disease allele carriers are likely unaware that they
possess a mutation in one CPS1 allele that may result in
higher than normal levels of blood ammonia. Lifelong
exposure to high levels of blood ammonia may have un-
known, deleterious effects on neural function.

Relatively low (90 μM) ammonia levels may affect neural
cell viability or function
It is hypothesized that the increased levels of ammonia in
liver disease interfere with the glutamine-glutamate bal-
ance involved in neurotransmission [76], which can lead
to increased production of reactive oxygen and nitrogen
species [77]. Increased brain ammonia levels also block
potassium uptake in astrocytes, which causes increased
potassium uptake in neurons that compromises inhibitory
neurotransmission in the cortex, leading to seizure [78].
Cell culture experiments using retinoic acid-

differentiated SH-SY5Y cells revealed that viability was de-
creased by relatively low concentrations (90 μM) of ammo-
nium chloride. The ability of such a low concentration of
brain ammonia to cause toxicity was surprising given that
most cells [79] including rodent primary cortical and cere-
bellar granule cells and undifferentiated human SH-SY5Y
cells require low (1–10) millimolar concentrations of am-
monium chloride before toxicity is observed [77]. Ammo-
nia has been reported to be slightly more toxic to
neuroblastoma cells than to primary neurons [80], partially
accounting for the lower toxicity threshold. Furthermore,
the retinoic acid-mediated differentiation procedure we
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used likely sensitized the cells to ammonia toxicity as it is
known to increase reactive oxygen species production [81].
The ability of uncharged NH3 to cross the blood brain

barrier and the limited ability of the charged, protonated
form NH4

+ to cross the barrier combined with the differ-
ence in pH between the brain and the blood allows higher
total ammonia levels to accumulate in the brain [4]. The
model predicts serum (pH ~ 7.4) levels of ammonia/am-
monium in individuals with normal enzyme activities will
be 17.5 μM; since the brain has a pH of about 7.0 [82, 83],
applying the Henderson-Hasselbalch equation implies a
total ammonia/ammonium concentration in the brain of
44 μM for a individual on a recommended protein diet,
more than twice the blood ammonia/ammonium concen-
tration. The following diet combinations and liver condi-
tions are predicted from the model results to have brain
ammonia/ammonium concentrations of > 90 μM: high
protein diet/cirrhosis (101 μM), recommended protein
diet/decreased CPS1 activity (92 μM), average protein diet/
decreased CPS1 activity (127 μM), and high protein diet/
decreased CPS1 activity (152 μM).
The cell culture experiments that we performed high-

light the relevance of our study. Brain ammonia levels
predicted by the model for the disease conditions de-
creased the viability of differentiated neuroblastoma cells
in culture. This suggests that these ammonia levels have
the potential to damage or kill neurons, contributing to
HE. Taken together the experimental and computational
results suggest that several of the diet and liver condi-
tion combinations could negatively affect neuronal func-
tion. Mouse studies have shown that high protein diets,
more so than high fat or high carbohydrate diets, are as-
sociated with decreased lifespan [84]. These results
should stimulate further research into the mechanisms
involved. Adhering to the recommended protein intake
may help cirrhosis patients and CPS1 heterozygotes
avoid high blood and brain ammonia levels and any as-
sociated cognitive dysfunction.

Conclusions
The following testable hypotheses have been generated
using this model: 1) Increasing dietary protein consump-
tion increases blood ammonia levels in individuals with
normal CPS1 and GLUL enzyme activities. 2) A low pro-
tein diet is beneficial for liver cirrhosis patients who have
a normal energy balance. 3) Heterozygosity for CPS1
complete loss of function mutations leads to elevated
blood ammonia levels. 4) Chronic but low-level hyper-
ammonemia has negative effects on neurons and astro-
cytes such as sensitizing them to further toxic insults. 5)
Increased blood ammonia levels contribute to the de-
creased lifespan of mice on a high protein diet [84].
This model describes physiological and pathophysio-

logical human nitrogen metabolism in blood and liver

using published parameters. It suggests that protein con-
tent in the diet and liver cirrhosis contribute to blood
ammonia levels, and results from cell culture experi-
ments suggest that these blood ammonia levels could
affect neural functioning. Since high blood ammonia
levels are associated with diseases such as HE, the model
can be used to predict the conditions in which HE may
develop. Furthermore, the model predicts that a 50% re-
duction in CPS1 activity, an activity level present in
thousands of individuals worldwide, could lead to high
blood ammonia levels. Limiting protein intake may be
one effective way for some of these individuals to de-
crease blood ammonia levels and possible associated
pathologies.
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