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Abstract

The aim. (1) To develop a mathematical model of the passage of a diffusible indicator
through microcirculation based on a stochastic description of diffusion and flow; (2) To
use Goresky transform of the dilution curves of the diffusible indicators for the
estimation of the permeability of a tissue-capillary barrier.
The method. We assume that there are two causes for flow to be stochastic: (a) All
microvessels are divided between open and closed microvessels. There exists random
exchange between the two groups. (b) The flow through open microvessels is also
random. We assume that each diffusing tracer has a probability to leave the intravascular
space, and has a probability to return. We also assume that all considered processes are
stationary (stability of microcirculation).
Conclusion. (a) The distribution of the time to pass microcirculation by diffusing indicator
is given by a compound Poisson distribution; (b) The permeability of tissue-capillary
barrier can be obtained from the means, delay, and dispersions of the dilutions of
intravascular and diffusing traces.
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Introduction
From the beginning the theory of the passage of a tracer through an organ exploits two

approaches. The first approach considers the vascular system as a black box character-

ized by a probability density function of a transit time (the transport function). It started

with the work of Stephenson [1]. He suggested that a dilution curve is a distribution of

the time it takes for an indicator to pass through an organ. His approach was further

developed by Meier & Zierler [2]. They detailed the relationship among mean transit

time, flow, and blood volume. Thus was established the foundation of the indicator di-

lution theory and its practical application. The problem with the black box approach

was formulated by Zierler [3]: “What mechanism shapes the transport function?”

At the same time, there are attempts to reveal and/or impose on the vascular archi-

tecture and irregularities of flow such properties that lead to the transport function as

one of the well-known probability density functions. The used distributions are from

the random walk [4] to the mixing chambers [5,6]. Intensive review of the transport

functions can be found in [7,8]. The main problem with a distribution chosen in ad-

vance is that the physiological background of transport function remains unclear.

In his quest to select from different math models such that generate a transport

function for a liver’s circulation Goresky [9] found out that by the transformation of
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any dilution curves (from RBC-Cr51 to the DHO) by dividing time by the corrected

mean transit time (MTT - delay), and simultaneously multiplying the ordinate of the

dilution by the same factor, one get all dilution curves coincided. This discovery gener-

ated the hope for better understanding of microcirculation, as it was said by Zierler [3]:

“It seemed to telling us something new about what is inside the black box”.

Thus the aim of the manuscript is

(a) To present a mathematical model of the passage of a diffusing tracer through

microcirculation.

(b) To use Goresky transform for estimation of the permeability of a tissue-capillary

barrier.

Description of diffusion

Let r be the time spent by a diffusing particle within a microcirculation. Let denote as s

the time that a particle spends being within the intravascular space, thus the time r-s is

the time the particle spends in the extravascular space. Also, assume that two probabil-

ities of exchange, from intra to extra vascular space and back, are constant. Accepted

properties of the exchange mean that there exist two exponential distributions: (a) A

distribution to leave a vascular space with density δ · exp(−δt), where 1/δ is the average

time for the particle, being in a microcirculation, to flux to the extravascular space

(thus 1/δ is the intensity to pass endothelial barrier); (b) A distribution to return into

vasculature with density fγ,1(t) = γ · exp(−γt) where 1/γ is the average time for a particle

to be in the extravascular space before its return into a vascular space. We denote as

fγ,0(t) = 1 if time t=0 and fγ,0(t) = 0 if t>0. The exponential law for the time to be within

a microcirculation (between two consecutive jumps) leads to the number of jumps out

of a capillary during time s (before leaving microcirculation) to be Poisson distributed

with probability to have n jumps as pn ¼ exp �δ:sð Þ δ:sð Þn
n! . Since the n jumps out of ca-

pillary space are connected with n returns out of extravascular space with the distribu-

tion fγ,n(t) = (γt)n − 1γ · exp(−γt)/(n − 1) !, the time to be in extravascular space, under

condition that the time to be in intravascular space is s, and follows to a compound

Poisson distribution [10]:

D r; sð Þ ¼
X1
n¼0

pn:fγ;n r � sð Þ ¼
0 r < s

e�δs r ¼ sX1
n¼1

δ:sð Þn
n!

e�δs γn

n� 1ð Þ! r � sð Þn�1e�γ r�sð Þr > s

8>><
>>:

ð1Þ

The Laplace transform of D(r,s)
d λ; sð Þ ¼
Z

exp �λrð Þ
X1
n¼0

δ:sð Þn
n!

exp �δsð Þfγ;n r � sð Þdr ¼ exp �λs
γ þ δ þ λ

γ þ λ

� �� �

ð2Þ

The equation analogous (1), as the solution of a diffusion equation (named as the
Sangren-Shepard equation), is presented in Goresky et al. [11] in their attempt to ex-

plain Goresky phenomenon.
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The time s in (1) and (2) is the time to pass through microcirculation, and thus it is

variable. We assume that intravascular space both type of tracers (diffusing and intra-

vascular) pass having the same distribution of the time s. Thus, our next step is the de-

scription of the passage of intravascular indicator.

The passage of an intravascular indicator

The distribution of the s is a composition of two processes (a) the change of the state

of any microvessel, meaning that closed microvessels become open and vice versa, this

process will be denoted as vasomotion; and (b) a variation of the time to pass through

microvessels being in the open state. Thus the time s is the sum of times s-T and T,

where time s-T is the time spent by particles in the temporally closed microvessels and

T is the time to pass through microvessels being in open state. T and s-T are mutually

independent random variables. The T as variable depends on a tortuosity of microves-

sels and a heterogeneity of flow.

To find the distribution of the s we start with vasomotion. The time between inter-

ruptions of flow follows to the exponential distribution: β · exp(−βt) with 1/β as the

average number of interruptions per unit of time, and the time needed for resuming of

flow follows to the distribution fμ,1(t) = μ exp(−μt) where 1/μ is the mean time of being

stopped. Thus the probability to have n stops is pn = exp(−βT)(βT)n/n !. The conditional

density of the time to pass through an organ by an intravascular indicator, V(s,T), with

T arbitrary but fixed, is :

V s;Tð Þ ¼ exp �βTð Þ:
X

n¼0;1

βTð Þn
n!

f n∗μ;1 s� Tð Þ ð3Þ

Laplace transform of (3) is (4). The T in (4) is, actually, the variables and its distribu-

tion is denoted as G(T) with Laplace transform g(λ).

v λ;Tð Þ ¼
Z

exp �λSð Þ
X1
n¼0

βTð Þn
n!

e�βT f n∗μ;1 S � Tð ÞdS ¼ exp �λT
μþ βþ λ

μþ λ

� �� �

ð4Þ

The randomization of (4) by G(T) and the specificity of v(λ,T) lead to the Laplace

transform of unconditional distribution to pass through microvasculature:

v λð Þ ¼
Z

exp �λT
μþ βþ λ

μþ λ

� �� �
G Tð ÞdT ¼ g λ

μþ βþ λ

μþ λ

� �
ð5Þ

The passage of a diffusing indicator

We have a conditional distribution of s (the time T is arbitrary but fixed), thus the con-

ditional Laplace transform of the distribution for a diffusible indicator:

d λ;Tð Þ ¼
Z

exp �λs
γ þ δ þ λ

γ þ λ

� �� �
:V s;Tð Þds ¼ exp �φ λð ÞT βþ μþ φ λð Þ

μþ φ λð Þ
� �

¼

¼ exp �Tφ φ λð Þð Þð Þ
ð6Þ

where φ λð Þ ¼ λ: γþδþλ
γþλ ; and ϕ λð Þ ¼ λ βþμþλ

μþλ

� �
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To get the unconditional Laplace transform for the distribution of a diffusible indica-

tor all we need is the randomization of (6) by the distribution of T [10]:

d λð Þ ¼
Z

exp �Tφ φ λð Þð Þð ÞG Tð ÞdT ¼ g φ φ λð Þð Þð Þ ð7Þ

Goresky transform

The essence of Goresky phenomenon [9] can be expressed as follow: by transformation

of any dilution curve (from RBC-Cr51 to the DHO) by dividing time by the mean tran-

sit time (MTT) corrected by common delay, T, and simultaneously multiplying the or-

dinate of a dilution by the same factor, one would get all dilution curves simultaneously

coincided. Let denote this transform as Goresky transform.

Formally Goresky transform is performed in the two steps

(a) Obtaining of the coefficient a of the transform:

a MV � Tð Þ ¼ MD � T ; a ¼ MD � T
MV � T

ð8Þ

where MV is the mean time to pass through the investigated tissue by the

intravascular indicator, MD is the mean time to pass through by diffusing indicator,

and T is the common delay;
(b)
 The distribution of the diffusing indicator, D(t), changes to distribution DGT(t):
DGT tð Þ ¼ aD T þ t � Tð Þ=að Þ; t > T ;DGT tð Þ ¼ 0; t ¼ T ; or t < T ð9Þ

Thus we obtain the Goresky coefficient, a, and the new shape, DGT(t), for the
dilution curve of the diffusing indicator.
Goresky phenomenon

If two distributions, F(t) and G(t) coincide then all their moments Mk = (−1)kf(k)(0),
where f(λ) is the Laplace transform of F(t), are equal, Mk(F)=Mk(G), for each k. The

practical coincidence can be reached by equalities only of the first two moments, or,

what is the same, the equality of the means and dispersions. In our case we have two

dilution curves, from the intravascular indicator, V(t) and, after Goresky transform,

DGT(t), the dilution curve obtained from the diffusing indicator, D(t). Thus the Goresky

phenomenon takes place if applying Goresky coefficient, see (8), we obtain next relation

between dispersions of the intravascular (DV
2 ) and diffusing indicators (DD

2 ): DD
2 = a2DV

2 ;

by other words, dispersions of V(t) and DGT(t) are equal.
Permeability by Goresky transform

Our diffusing indicator has a distribution with Laplace transform d(λ) = g(φ(φ(λ))) (7),
and a dilution of an intravascular indicator has Laplace transform v(λ) = g(φ(λ)) (5). Due

to stochastic description of the diffusion one has φ λð Þ ¼ λ: γþδþλ
γþλ .
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With such a presentation of φ(λ) Goresky transform leads to the determination of the

characteristics of permeability of endothelial barrier, these are δ and γ. Also will be found

out that the specificity of g(λ) and φ(λ) play no role (but φ(λ) should be infinitely divisible).

Indeed, the mean and dispersion of the diffusible indicator are

MD ¼ MV 1þ δ

γ

� �
;D2

D ¼ D2
V 1þ δ

γ

� �2

þMV
2δ
γ2

; ð10Þ

Where Mv and Dv are mean and dispersion for the intravascular indicator. The
(10) follows from next equations that established connection between M and D2 of

any distribution, f(t), and derivatives of its Laplace transform F(λ) =
R
exp(−λt)f(t)dt.

Thus M = F 0(λ)|λ = 0; and D2 = F″(λ)|λ = 0 −M2.

Now, if we put relations between two means, given by (10) into equation (8), we get,

for Goresky coefficient, next equality:

a ¼ MD � T
MV � T

¼
MV 1þ δ

γ

� �
� T

MV � T

Since MD, MV, and T are known, the a can be calculated. Thus the knowledge of
Goresky coefficient, a, leads to obtaining of δ/γ:

δ

γ
¼ a� 1ð Þ MV � Tð Þ

MV
; ð11Þ

The use of the second relation in (10), assuming the knowledge of dispersions, leads

to the obtaining of γ:

γ ¼ 2δ:MV

γ:D2
V

D2
d

D2
V
� 1þ δ

γ

� �2
 ! !�1

ð12Þ

Experiments with Goresky transform

On Figures 1 through 4 there are the experiments on PC with the math model of intra-

vascular and diffusing indicators.

The distribution to pass through intravascular space is characterized by delay of

2 sec, and by binomial distribution given on N=40 points between 2 and 8 sec, thus with

step h = 0.15 sec, and p=0.4 thus pi ¼ 40!
i! 40�ið Þ! p

i 1� pð Þ40�i . So the mean transit time

Mv=Nph+T=2.4+2=4.4; and dispersion Dv
2=Np(1-p)[h]2 = 0.216.

Distributions of diffusing indicators are additionally characterized by relation of

extravascular/intravascular distribution, this is δ/γ. Thus we have relation between two

means to pass through microcirculation (diffusing and intravascular): Md =Mv(1 + δ/γ).

For the experiment are chosen three types of diffusing indicator, with δ/γ equal 0.5, 1.0 and

2.0 (by other words with small, medium and expanded extravascular space). Goresky trans-

form leads to the next three, corresponding Goresky coefficients obtained by applying (8):

they are 1.8; 2.7, and 4.4 correspondingly.

In common case dispersions are not equalized by Goresky coefficient so a2DV
2 ≠DD

2 . How-

ever, if we chose γ to fulfill equality between dispersion: DD
2 = a2DV

2; then Goresky transform

leads to the dilutions given on Figure 2. On Figure 1 there are four initial dilution curves.

Corresponding δ and γ are: for the second curve 7.2, 14.3, for the third curve 10.1, 10.1, and
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Figure 1 Four dilution curves, one is from non-diffusible indicator and three dilutions are from
diffusible indicators, with different extravascular distribution, but with the same dispersions after
Goresky transform.
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for the fourth curve 12.8, 6.4. Thus given characteristics of the permeability lead to the

Goresky phenomenon.

Figure 3 presents the same intravascular dilution but diffusing indicators are differ-

ent. The probabilities to return into intravascular space are lesser than presented on

Figure 1, by 2.5 times, thus dispersions of passing through microcirculation are

increased and application of Goresky transform does not lead to the coincidence dilu-

tion curves, Figure 4. In this case corresponding δ and γ are: for the second curve 7.2,

5.7, for the third curve 10.1, 4.0, and for fourth curve 12.8, 2.6.
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Figure 2 Dilution curves from Figure 1 after Goresky transform.
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Figure 3 Four dilution curves, one is from non-diffusible indicator and three dilutions are from
diffusible indicators, with different extravascular distribution, and with the dispersions not equal to
dispersion of intravascular indicator after Goresky transform.
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Discussion
Equation (7) that gives Laplace transform of the distribution to pass through

microcirculation by a diffusing indicator, and also (11) with (12) that give the ex-

pression for permeability obtained by Goresky transform are the main result of

the manuscript. These equations are obtained by the exploiting exponential distri-

butions of the times such as being in extra/intra vascular space, or being in tem-

porally closed/open microvessels. The physical (physiological) assumptions leading
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Figure 4 Dilution curves from Figure 3 after Goresky transform.
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to exponential distribution are based on the randomness of the passage of parti-

cles through microcirculation. The randomness is taken as stationary, indicating

the constancy of parameters of a transport functions. Additionally, the trajectory

of any particle follows markovian property, meaning that the future trajectory

depends only on the current place of particle, and not on its past state. The base

for such assumptions is (a) The force applied to the small volume containing a

particle (the local pressure gradient) is not zero then the move exists, and velocity

is V=k*F. This is plausible since in microcirculation Newton’s law: acceleration is

equal sheer stress (viscosity force) minus gradient of pressure, can be simplified

since the convective inertia can be ignored, Fung, [12]. (b) The random walk

presentation of diffusion used to obtain (1) is a good approximation of diffusion

expressed in partial deviations [13].

Existing methods of estimation of permeability of an endothelium are based on

assumptions that vary from the negligible back diffusion to the very high permeability

such that equilibrium, capillary-tissue is established instantly, see review [14]. Thus the

Goresky transform for estimation of permeability could have some advantage since it is

based only on assumptions of stochasticity of blood flow and diffusion.
Conclusion

1. The markovian property of flow and diffusion lead to compound Poisson

distribution for the time to pass through an organ, and thus to the composite

functions for Laplace transform of diffusing and intravascular indicator.

2. The Goresky transform could be used for the estimation of permeability of the

tissue/capillary barrier.

Abbreviations
r: is the time to pass through microcirculation by a diffusing particle; s: is the time to pass through microcirculation by
an intravascular particle; r-s: is the time spent by a diffusible particle in the extravascular space; T: is the time spent in
open microvessels. Thus s-T is the time spent in closed vessels; t: is used as argument for any time-dependent
process; denotation V(t . ): is used for the distribution of an intravascular indicator; denotation D(t . ): is used for the
distribution of a diffusing indicator; T: is used as the denotation for a delay in section “Goresky transform” and section
“Experiment with Goresky transform”.
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