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Abstract
Background: In the process of constructing a dynamic model of a metabolic pathway, a large
number of parameters such as kinetic constants and initial metabolite concentrations are required.
However, in many cases, experimental determination of these parameters is time-consuming.
Therefore, for large-scale modelling, it is essential to develop a method that requires few
experimental parameters. The hybrid dynamic/static (HDS) method is a combination of the
conventional kinetic representation and metabolic flux analysis (MFA). Since no kinetic information
is required in the static module, which consists of MFA, the HDS method may dramatically reduce
the number of required parameters. However, no adequate method for developing a hybrid model
from experimental data has been proposed.

Results: In this study, we develop a method for constructing hybrid models based on metabolome
data. The method discriminates enzymes into static modules and dynamic modules using metabolite
concentration time series data. Enzyme reaction rate time series were estimated from the
metabolite concentration time series data and used to distinguish enzymes optimally for the
dynamic and static modules. The method was applied to build hybrid models of two microbial
central-carbon metabolism systems using simulation results from their dynamic models.

Conclusion: A protocol to build a hybrid model using metabolome data and a minimal number of
kinetic parameters has been developed. The proposed method was successfully applied to the
strictly regulated central-carbon metabolism system, demonstrating the practical use of the HDS
method, which is designed for computer modelling of metabolic systems.

Background
Since a biochemical network is essentially a nonlinear,
nonequilibrium, non-steady-state system, dynamic simu-
lation is especially effective for analyzing or predicting its
behaviour in a detailed and realistic manner. However, a
large amount of experimental information, including
reaction mechanisms of enzymes, kinetic constants, and
initial concentrations of enzymes and metabolites, is

required to construct a dynamic model of a metabolic
pathway. Although a number of high-throughput tech-
nologies for obtaining comprehensive biochemical data
have been developed [1-6], most experimental methods
for determining enzyme kinetics are of the low-through-
put variety. Recently, several databases for enzyme kinet-
ics have been published on the internet [7-9]. However, in
many cases, the parameters in these databases are insuffi-
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cient for building an accurate metabolic model. Moreover,
although intracellular data can be collected from the pub-
lished literature, experimental conditions and target
strains are, in general, not uniform. Therefore, a huge
amount of experimental work is currently needed to build
an accurate dynamic model of a biochemical system. For
this reason, a modelling method requiring less experi-
mental effort needs to be developed.

Yugi et al. proposed a novel method for dynamic model-
ling of metabolism, the hybrid dynamic/static method
(HDS method) [10]. The HDS method divides a dynamic
system into a dynamic module and a static module.
Enzyme reactions included in the dynamic module are
represented by differential equations. Reaction rates of
enzymes included in the static module are calculated by
metabolic flux analysis (MFA) [11,12]. Since MFA needs
no kinetic information, the amount of experimental work
required is dramatically reduced. According to Okino and
Mavrovouniotis's classification [13], the HDS method can
be regarded as a "linear transformation into standard two-
time-scale form," which is a time-scale analysis method.
The superior points of the HDS method are its simple
architecture and the admissibility of multiple metabolites.
Only relationships among enzyme reactions are
employed in the HDS method; thus a model builder does
not have to consider the problem of multiple time-scale
reactions of a given metabolite [14]. Since the Moore-Pen-
rose pseudo-inverse [15,16] of the stoichiometric coeffi-
cient matrix for the unknown variables (i.e. reaction rates
of enzymes in the static module) is applied in performing
the MFA, the stoichiometric coefficient matrix for the
unknown variables does not have to be square and regu-
lar.

Although the HDS method has the aforementioned
advantages, no method has been proposed for splitting a
dynamic system into a dynamic module and a static mod-
ule before completion of the initial model construction.
Advanced measurement technologies have been devel-
oped that now enable researchers to obtain the metabo-
lome, that is, comprehensive metabolite concentration
data [17-19]. It is reasonable to expect that the in-depth
information of the metabolome contributes to the process
for distinguishing dynamic and static enzymes in a meta-
bolic system. In this study, we have developed a method
of distinguishing dynamic and static enzymes based on
metabolome data before construction of a complete
model. The purpose of the proposed method is to provide
the information (distinguishing dynamic from static
enzymes) for initial HDS model construction required by
the model builders without losing the advantage of the
HDS method: reducing experimental efforts to obtain
kinetic information of the modelled metabolic system.
Identification of enzyme kinetic rate equations and the fit-

ting of kinetic parameters using metabolite concentration
data are outside the scope of this study. Moreover, biolog-
ical meanings of the dynamic/static modules are not con-
sidered explicitly in the HDS method.

The proposed method consists of two parts. First, the
enzyme reaction rate time series are estimated from
metabolite concentration time series data. The dynamic
and static enzymes are distinguished using the estimated
enzyme reaction rate time series. The purpose of this study
was to confirm that the proposed method can be used to
construct accurate hybrid models, with accuracy compara-
ble to that of a fully dynamic model. Therefore, we used
pseudo-experimental data obtained from preliminarily
constructed fully dynamic models. Two models of micro-
organisms, Escherichia coli [20] and Saccharomyces cerevi-
siae [21], were used for evaluation.

Methods
Hybrid dynamic/static method
The hybrid dynamic/static method (HDS method) is
described in Yugi et al. [10]. Enzyme reaction rates in the
static module are calculated by the following equation:

vstatic(t) = -Sstatic
# · Smodule boundary · vmodule boundary(t)

(1)

where vstatic is the static module enzyme reaction rate vec-
tor, vmodule boundary is the module boundary enzyme reac-
tion rate vector, Sstatic

# is the Moore-Penrose
pseudoinverse of the stoichiometric coefficient matrix for
enzymes in the static module, and Smodule boundary is the
stoichiometric coefficient matrix for module boundary
enzymes. The HDS method aims to describe a system in
which a quasi-steady state is attained in the static module
at each instant, while the overall system (both the
dynamic and the static modules) acts dynamically [10]. A
transient value of the modelled system is calculated by an
interaction between kinetic-based dynamic models and
MFA-based static models.

Estimation of internal enzyme reaction rates
To calculate reaction rates of enzymes from metabolite
concentrations, we define a "system boundary enzyme" as
an enzyme located on the border of the metabolic system
and extending outside the system. The system boundary
enzyme is not the same as the "module boundary
enzyme" defined by Yugi et al. [10]. A non system bound-
ary enzyme is defined as an "internal enzyme." The rela-
tionship among the dynamic module, static module,
module boundary enzyme, system boundary enzyme, and
internal enzyme is shown in Figure 1. Since all system
boundary enzymes should be included in the dynamic
module, we assumed that the kinetics of system boundary
enzymes have already been determined and that the reac-
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tion rates of system boundary enzymes can be calculated
from metabolite concentrations.

The reaction rates of internal enzymes were calculated
from the slopes of metabolite concentrations and the reac-
tion rates of the system boundary enzymes. With the def-
initions of the system boundary enzyme and the internal
enzyme, a mass balance equation of a metabolic system
under a dynamic transition state can be expressed as fol-
lows [22]:

where S is the stoichiometric coefficient matrix, diag(-1)
is a diagonal matrix (column number = row number =
metabolite number), vsystem boundary(t) is the system
boundary enzyme reaction rate vector, vinternal(t) is the
internal enzyme reaction rate vector, and C'(t) is the
metabolite concentration slope vector.

If C(t) and vsystem boundary(t) are known, the reaction rates
of the internal enzymes can be estimated from Eq. (3),
which is transformed from Eq. (2).

where Sinternal
# is the Moore-Penrose pseudoinverse of the

stoichiometric coefficient matrix for internal enzymes,
and Ssystem boundary is the stoichiometric coefficient matrix
for system boundary enzymes [see Supplementary Text
(see additional file 1) for an example of this procedure].
This procedure uses only the mass balance of the overall
system and rate equations of the system boundary
enzymes; thus, no information about regulation in the
internal system is required beforehand. When Eq. (3) is
applied to a determined system, the equation provides a
true solution for vinternal, and when Eq. (3) is applied to an
over-determined system, the least-squares estimation of
vinternal is obtained [10]. In both cases, the solution is rea-
sonable even if the modelled metabolic system has a com-
plex network [10]. When Eq. (3) is applied to an under-
determined system, the equation provides the least norm
solution. However, such a least norm solution is not
always a physiologically optimal estimation of vinternal.
This is a limitation of the current procedure.

Evaluation of estimated internal enzyme reaction rates
The accuracy of the estimated internal enzyme reaction
rates was evaluated by means of the reproduced metabo-
lite concentration time series, which were calculated from
the estimated enzyme reaction rates. Since it is difficult to
compare the true and estimated reaction rates, we com-
pared the metabolic concentrations. If an enzyme cata-
lyzes a reversible reaction, the sign of the sum of the
forward and reverse reaction rates may change. Near such
a sign change, the calculated relative error between the
true reaction rate and the estimated reaction rate may at
times be a very large value (see Eq. (4) below). When the
value of a data point is close to zero, a large error will be
obtained. However, in general, most metabolite concen-
trations have a sufficiently large positive value for the
problem caused by a value close to zero to be avoided.The
metabolite concentration time series slope was calculated
from the reaction stoichiometric matrix and each esti-
mated enzyme reaction rate time series. The metabolite
concentration time series was calculated by numerical
integration of the metabolite concentration slope time
series obtained. The mean relative error (MRE) [23]
between the true values (data) and the calculated values in
the metabolite concentration time series was calculated by
the following equation:

where Cdata,i,j is the true concentration of the j-th metabo-
lite at the i-th sampling point, Cestimated,i,j is the estimated
(reproduced) concentration of the j-th metabolite at the i-
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Schematic diagram of hybrid model.Figure 1
Schematic diagram of hybrid model. The hybrid model 
consists of a dynamic module (area shaded with diagonal 
lines) and a static module (dotted area). All module boundary 
enzymes should be included in the dynamic module. All sys-
tem boundary enzymes are included in the dynamic module, 
but not all system boundary enzymes locate on the border 
between the static module and the dynamic module.
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th sampling point, nmetabolite is the number of metabolites,
and nsampling point is the number of sampling points.

In this study, the MRE between the true metabolite con-
centration data and the reproduced metabolite concentra-
tions is called the "basal error".

Distinction of dynamic and static enzymes
The genetic algorithm (GA) [24] is employed to search for
an optimal dynamic/static enzyme combination in a met-
abolic system. In this work, an individual code set for the
GA was defined to represent the dynamic/static enzymes
in a metabolic system. For example, DDSSDD represents
a metabolic system consisting of six enzymes: the 1st, 2nd,
5th, and 6th enzymes for the dynamic module and the 3rd
and 4th enzymes for the static module. In the GA calcula-
tion, the enzyme reaction rate time series in the static
module were calculated from enzyme reaction rate time
series in the dynamic module, which were derived from
metabolite concentration time series data, by the same
HDS method. Consequently, each metabolite concentra-
tion time series data point was calculated by the same
method as that described in "Evaluation of estimated
internal enzyme reaction rates". The fitness function
defined in Eq. (5) was calculated for each code set; there-
after, propagation, crossover, and mutation followed.
This procedure was repeated until the optimal solution,
which minimizes Eq. (5), was found. A flowchart of the
process for distinguishing dynamic/static enzymes is
shown in Figure 2.

where Cdata,i,j is true concentration of the j-th metabolite at
the i-th sampling point, Cestimated,i,j is estimated concentra-
tion of the j-th metabolite at the i-th sampling point, nme-

tabolite is number of metabolites, nsampling point is number of
sampling points, nenzyme is number of internal enzymes,
nstatic enzyme is number of enzymes included in static mod-
ule, and w is weighting coefficient.

The first term in the fitness function represents the average
error of the metabolite concentrations. For the fitness
function, for the same reason as in the evaluation of esti-
mated enzyme reaction rates, the metabolite concentra-
tions rather than the enzyme reaction rates themselves
were used. The second term in the fitness function evalu-
ates the ratio of static enzymes included in the metabolic
system; this term was added to adjust the number of
enzymes in the static modules. The second term is multi-
plied by an adjusting parameter, a weighting coefficient,

to control the balance between the model error and the
static enzyme ratio.

9 different values of the weighting coefficient (w = 1.000,
0.750, 0.500, 0.250, 0.100, 0.075, 0.050, 0.025, and
0.010) were employed. The results of distinguishing
dynamic and static enzymes were used to construct the
hybrid models.

Error calculation
MRE of the metabolite concentration time series in a
result of the process for distinguishing dynamic/static
enzymes or in a hybrid model was calculated by Eq. (4).
Finally, in the process for distinguishing dynamic/static
enzymes, the "basal error", which originated from the
incompleteness of the estimation of the enzyme reaction
rates and from the error of the numerical integration of
the enzyme reaction rates, rather than from the HDS cal-
culation, was subtracted from the MRE.
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Flowchart of distinguishing dynamic/static enzymes on the basis of metabolome dataFigure 2
Flowchart of distinguishing dynamic/static enzymes 
on the basis of metabolome data. Simulation results 
from the dynamic models of E. coli and S. cerevisiae were used 
as pseudo experimental data to provide the metabolite con-
centrations required in the first step of the flowchart.
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Pseudo experiments
Two microbial central-carbon metabolism models were
chosen for testing: the E. coli model constructed by Chas-
sagnole et al. [20] and the S. cerevisiae model constructed
by Hynne et al. [21]. For the E. coli model, starting from a
steady state for which the extracellular glucose concentra-
tion was 5.56 × 10-2 mM, a glucose pulse was added. The
concentration of the injected glucose pulse was 1.67 mM.
In Chassagnole's original model, time series of nucle-
otides (ATP/ADP/AMP, NAD(H), NADP(H)) were
expressed by time-dependent functions [20]. However, in
our study, the nucleotide concentrations were fixed as ini-
tial values. For the S. cerevisiae model, starting from a
steady state for which the glucose concentration in the
feed solution was 2.50 mM, the glucose concentration was
shifted to 5.00 mM. The metabolite concentrations in
both models at the steady state – that is, the initial concen-
trations for the dynamic simulations – are shown in Table
S1 (see additional file 1). The running time after perturba-
tion was set to 20 s for the E. coli model and 60 s for the
S. cerevisiae model; these settings were chosen to allow
time for the change from the original steady state to
another steady state after the perturbation. The calculated
metabolite concentration time series data sets were
obtained at intervals of 1 s. These data sets were used as
noise-free pseudo-metabolome data to calculate the
slopes of the metabolite concentrations (C'(t)) and the
reaction rates of the system boundary enzymes (vsystem

boundary(t)) in a performance test of the method. The slopes
of the metabolite concentrations were obtained by first-
order differentiation of the interpolated metabolite con-
centration time series.

Noise addition to the pseudo-experimental data
To evaluate the practical use of the proposed method, arti-
ficial noise was added to each pseudo-experimental
metabolite concentration data point. The coefficient of
variance (CV) was assumed to be 15%, and the standard
deviation (SD) of each pseudo-experimental data point
was calculated by multiplying the CV by the noise-free
value. A normally distributed random number around the
noise-free value was generated for each data point using
the SD obtained. Five noise-added data points were gen-
erated for each noise-free data point as pseudo-replicated
measurements. The average of the five noise-added data
points was used in the following smoothing procedure.

Smoothing of noisy pseudo-experimental data
Each noise-added metabolite concentration time series
pseudo data set was smoothed by fitting it to a polyno-
mial or a rational function of time using the least-squares
method.

Calculation tools
MATLAB Release 2006a (MathWorks) was used for all cal-
culations. Ordinary differential equations were solved by
the ODE15s algorithm [25]. For interpolation, differenti-
ation and smoothing of the metabolite concentration
time series data, Curve Fitting Toolbox 1.1.5 (Math-
Works) was used. Cubic spline interpolation was
employed. For optimization, the Genetic Algorithm and
Direct Search Toolbox 2.0.1 (MathWorks) was employed.
In each GA calculation, the number of code set was set to
100. The other parameters were set to default values. Each
optimal solution was taken after the fitness function con-
verged to a constant value.

Results
Estimation of enzyme reaction rates using noise-free data
In the HDS method, reaction rates of enzymes in a
dynamic module are used to estimate reaction rates of
enzymes in a static module. If the true reaction rates of all
enzymes in a metabolic system are known, they can be
used directly for discriminating dynamic and static
enzymes. However, the true reaction rates of enzymes in a
cell cannot be determined in most cases. Therefore, we
tried to estimate the reaction rates of enzymes from
metabolite concentrations, which can be experimentally
measured by high-throughput metabolome technologies.

We calculated the estimated reaction rates by using the
metabolite concentration time series obtained from the E.
coli and S. cerevisiae models to evaluate our method of
estimating reaction rates. In this section, the noise-free
pseudo-experimental data were used to obtain a clear
assessment of the estimation method itself. In the true
reaction rate time series of Tkb in E. coli, TA in E. coli, and
AK in S. cerevisiae, some sign-changing points were
observed (Figure S1, see additional file 1). As predicted,
around such points, huge relative errors between the true
enzyme reaction rates and the estimated enzyme reaction
rates were calculated (Figure S1). To avoid the undesired
influence of such huge errors caused by using the reaction
rates themselves, the reproduced metabolite concentra-
tions were employed for the evaluation, as explained in
the Methods. Therefore, the accuracy of the estimated
reaction rates of the internal enzymes was assessed by the
MRE between the original metabolite concentration time
series and the reproduced metabolite concentration time
series (Table 1). In the results for E. coli, the MRE was rel-
atively large, mainly because of the large error in PGP.
Errors in metabolites except for PGP were within approx-
imately 10%; thus the estimation can be considered prac-
tically meaningful. For S. cerevisiae, errors of all
metabolites were sufficiently small. On the whole,
enzyme reaction rate time series data can be estimated
from metabolite concentration time series data.
Page 5 of 12
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Distinction of dynamic and static enzymes using noise-free 
data
Using enzyme reaction rate time series data, we can apply
the HDS method to calculate the reaction rates of static
enzymes from the reaction rates of dynamic enzymes.
These calculated static enzyme reaction rates can then be
compared with the original reaction rate data. The errors
between the estimated static enzyme reaction rates and
the static enzyme reaction rate data can be used to find an
optimal pattern for distinguishing dynamic from static
enzymes. In this study, a fitness function (Eq. (5)) consist-
ing of two terms was used for the optimization. In Eq. (5),
the second term is multiplied by an adjusting parameter,
a weighting coefficient (w). Even if the same data set is
used, the result for distinguishing dynamic/static enzymes
may vary for different w.

The E. coli and S. cerevisiae models and the estimated reac-
tion rates obtained in the previous section (i.e., calculated
from noise-free metabolite concentration data) were used
to test this method for distinguishing enzymes, and the
optimized patterns of dynamic and static enzymes shown
in Table 2 were obtained as a result. As expected, the pro-
portion of static enzymes decreased with decreasing w.
The dynamic/static enzymes displayed on the metabolic
map are shown in Supplementary Figure S2 (see addi-
tional file 1). The results obtained by using the noise-
added metabolite concentration data are shown in the fol-
lowing section.

In the next step, the estimated optimal results for distin-
guishing dynamic/static enzymes in Table 2 were used to

convert the full dynamic models for E. coli and S. cerevisiae
to hybrid models. In a process for distinguishing
dynamic/static enzymes – that is, numerical integration of
a given enzyme reaction rate time-series curve – the calcu-
lated static enzyme reaction rates at one sampling point
do not affect those calculated at the next sampling point.
In contrast, in the HDS method – that is, the initial value
problem of simultaneous differential equations – the cal-
culated static enzyme reaction rates at one integration step
affect the calculation in the next step. Accordingly, the
error calculated in a process for distinguishing dynamic/
static is not always equal to the error in the hybrid model.
Thus, comparison of errors between these two types of cal-
culations is required.

Figure 3 shows the relationship between the MRE of
metabolite concentrations obtained by processes for dis-
tinguishing dynamic/static enzymes and the MRE of
metabolite concentrations in the hybrid models for vari-
ous weighting coefficients. The errors obtained by these
two methods showed a high positive correlation (r =
0.948). This result indicates that the accuracy of the
hybrid model constructed using the estimated distin-
guishing of dynamic/static enzymes exactly reflects the
magnitude of the error estimated by processes for distin-
guishing dynamic/static enzymes. Therefore, the pro-
posed method for distinguishing dynamic/static modules
can be used to build a hybrid model.

The error in the hybrid models was higher than that
obtained by processes for distinguishing dynamic/static
enzymes. In particular, in the distinguishing of dynamic/
static enzymes of S. cerevisiae with w = 0.250, a considera-
ble degree of error enlargement was shown in the hybrid
model. This result can be considered to have been caused
by error propagation at each integration step, as
expected.The relationship between w and the MRE of the
metabolite concentration time series and that between w
and the static enzyme ratio was examined (Figure 4). The
two metabolic systems tested showed very similar results,
perhaps because both models deal with central-carbon
metabolism. The dependency of the MRE and the static
enzyme ratio on w showed a staircase pattern, rather than
a pattern of simple linear increase (or decrease).

Evaluation of the total process using noise-added data
In the previous sections, we used noise-free values to
obtain a clear evaluation of the proposed method itself.
However, real experimental data of metabolite concentra-
tions are generally noisy. For practical use of the proposed
method, the effect of noise on the process for distinguish-
ing dynamic/static enzymes should be evaluated. Thus,
we added noise to the noise-free data and then smoothed
the noisy data for use in distinguishing the dynamic/static
enzymes. In this study, simple smoothing by fitting to a
polynomial or rational function of time was employed.
The smoothing functions that were used and their param-

Table 1: Errors in reproduced metabolite concentrations 
obtained by using estimated enzyme reaction rates

E. coli S.cerevisiae

Metabolite Error (%) Metabolite Error (%)

G6P 5.14 × 10-1 Glc 1.24 × 10-1

F6P 2.79 G6P 6.35 × 10-2

FDP 1.21 F6P 6.46 × 10-2

DHAP 2.16 FDP 2.38 × 10-1

GAP 1.95 DHAP 1.25 × 10-1

PGP 2.71 × 102 GAP 1.40 × 10-1

3PG 1.01 PGP 3.36
2PG 5.88 PEP 6.88 × 10-2

PEP 8.27 × 10-1 Pyr 9.45 × 10-2

Pyr 2.45 × 10-1 ACA 3.91 × 10-2

6PG 2.06 EtOH 7.73 × 10-3

Ribu5P 1.04 × 10 Glyc 2.11 × 10-2

Xyl5P 8.08 ATP 5.67 × 10-2

Sed7P 9.06 ADP 3.36 × 10-2

Rib5P 2.91 AMP 1.28 × 10-1

E4P 7.40 NAD 3.74 × 10-2

G1P 2.82 NADH 1.18 × 10-1

MRE 1.94 × 10 MRE 2.77 × 10-1
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Table 2: Estimated patterns in distinguishing dynamic from static enzymes.

E. coli

w 1.000 0.750 0.500 0.250 0.100 0.075 0.050 0.025 0.010

Noise - + - + - + - + - + - + - + - + - +

Fitness (-) 7.83 × 
10-1

3.37 7.13 × 
10-1

3.30 6.42 × 
10-1

3.23 5.71 × 
10-1

3.16 5.06 × 
10-1

3.09 4.94 × 
10-1

3.08 4.82 × 
10-1

3.07 4.69 × 
10-1

3.05 4.59 × 
10-1

3.04

PGI S S S S S S S S S S S S S S S D D D
PFK D D D D D D D D D D D D D D D D D D
ALDO D D D D D D D D D D D D D D D D D D
TIS S S S S S S S S S S S S S S S S S S
GAPDH D D D D D D D D D D D D D D D D D D
PGK D D D D D D D D D D D D D D D D D D
PGluMu D D D D D D D D D D D D D D D D D D
ENO D D D D D D D D D D D D D D D D D D
PK D D D D D D D D D D D D D D D D D D
PGM S S S S S S S S S S S S S S S D D D
G6PDH D D D D D D D D D D D D D D D D D D
PGDH D D D D D D D D D D D D D D D D D D
Ru5P S S S S S S S S S S S S S S S S S D
R5PI S S S S S S D S D D D D D D D D D D
TKa S S S S S S S S S S S S S S S S D S
TKb S S S S S S D D D D D D D D D D D D
TA S S S S S S S S D D D D D D D S D S

S. cerevisiae

w 1000 0.750 0.500 0.250 0.100 0.075 0.050 0.025 0.010

Noise - + - + - + - + - + - + - + - + - +

Fitness (-) 3.35 × 
10-1

1.75 × 
101

2.64 × 
10-1

1.75 × 
101

1.94 × 
10-1

1.74 × 
101

1.10 × 
10-1

1.73 × 
101

5.42 × 
10-2

1.73 × 
101

4.17 × 
10-2

1.73 × 
101

4.17 × 
10-2

1.73 × 
101

1.68 × 
10-2

1.72 × 
101

8.02 × 
10-3

1.72 × 
101

PGI D D D D D D D D D D D D D D D D D D
PFK D D D D D D D D D D D D D D D D D D
ALDO D D D D D D D D D D D D D D D D D D
TIS S S S D S D D D D D D D D D D D D D
GAPDH D D D D D D D D D D D D D D D D D D
PGK D D D D D D D D D D D D D D D D D D
PGluMu D D D D D D D D D D D D D D D D D D
ENO D S D S D S D S D S D S D S D S D S
PK D D D D D D D D D D D D D D D D D D
PGM S S S S S S S S S S S S S S S S D S
G6PDH D D D D D D D D D D D D D D D D D D
PGDH S S S S S S S S S S S S S S S S S S
Ru5P S S S S S S S D D D D D D D D D D D
R5PI S S S S S S S S S S S S S S S S D D
TKa S S S S S S S S S S S S S S S S S S
TKb S S S S S S S S D S D S D S D S D S
TA S S S S S S S S S S S S S D S D D D

w is the weighting coefficient in the fitness function (Eq. (5)), and the symbols D and S denote enzymes in the dynamic and static modules, respectively. The system boundary enzymes were omitted from the 
table because all system boundary enzymes were represented as dynamic enzymes.
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eters are shown in Supplementary Tables S2 and S3 (see
additional file 1). Comparisons of noise-free values,
noise-added values, and smoothed curves of metabolites
are shown in Supplementary Figure S3 (see additional file
1). The results of distinguishing dynamic/static enzymes
from the noisy metabolite concentration data are shown
in Table 2. In most cases, when noise-added data were
used, entirely or almost the same distinctions between
dynamic/static enzymes were obtained as when noise-free
data were used. However, in the results for S. cerevisiae
obtained using smoothed noisy data, when w < 0.250, the
number of static enzymes tended to be larger than in the
results obtained using noise-free data. In the results for E.
coli, the same tendency was observed when w = 0.010.
Because the smoothing process of the metabolite concen-
tration time series might result in loss of the high-fre-
quency component of the time series data, the smoothed
data might apparently change more slowly than is actually
the case. Thus, when smoothed noisy data are used, the
number of required dynamic enzymes in a HDS model
tends to be smaller than the number needed when noise-
free data are used. Because more precise metabolite con-
centrations need to be calculated when w is small, this ten-
dency might be enhanced.

Discussion
Estimation of enzyme reaction rates
As shown in Table 1, the accuracy of the estimations of the
enzyme reaction rates was confirmed by the reproduced
metabolite concentrations, except for PGP in E. coli. Since
the concentration of PGP was very low (average concen-
tration, 3.60 × 10-3 mM), even a slight error in the enzyme
reaction rate had a large influence. In fact, the average
errors between the true enzyme reaction rate time series
and the estimated enzyme reaction rate time series for
both GAPDH (PGP-producing enzyme) and PGK (PGP-
consuming enzyme) in E. coli were adequately small,
2.44% and 1.46%, respectively. In the process for distin-
guishing dynamic/static enzymes, the average of the
squared errors of all metabolite concentrations is used to
calculate the fitness function (Eq. (5)); thus, an error in
only one metabolite concentration has a limited effect.
Actually, the results of distinguishing dynamic/static
enzymes without the PGP time series (data not shown)
were entirely the same as those shown in Table 2. How-
ever, if many metabolites with low concentrations are
included in the modelled metabolic system, the processes
for distinguishing dynamic/static enzymes may cause an
erroneous conclusion to be drawn. This is a limitation of
the current procedure. In comparison with the results for
E. coli, errors for all metabolites for S. cerevisiae were ade-
quately small, because the dynamics of the metabolic sys-
tem in S. cerevisiae is relatively slow compared with the
sampling frequency.

Relationship of MRE of metabolite concentrations between processes for distinguishing dynamic/static enzymes and hybrid modelsFigure 3
Relationship of MRE of metabolite concentrations 
between processes for distinguishing dynamic/static 
enzymes and hybrid models. The MRE s of the processes 
for distinguishing dynamic/static enzymes are the values after 
subtraction of the basal error (MRE shown in Table 1). Num-
bers next to the symbols represent weighting coefficients.
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Another difficulty in applying the proposed method is
that we assume that the concentrations of all metabolites
are measurable. It is expected that high-throughput meas-
urement techniques for detecting a huge number of
metabolites, such as capillary electrophoresis combined
with mass spectrometry (CE-MS) [17-19], can be used for
such comprehensive measurements. The 1-s sampling
interval employed in this study is feasible, because some
rapid-sampling instruments capable of drawing multiple
samples within 1 s from a bioreactor have already been
developed [26-28].

Distinction of dynamic and static enzymes
After a process for distinguishing dynamic/static enzymes
is completed, the MRE in the corresponding hybrid model
can be estimated using the linear relationship between the
MRE in the process for distinguishing dynamic/static
enzymes and the MRE in the hybrid model (Figure 3).
This information helps to build a hybrid model that has
the desired accuracy.

The staircase pattern of the relationships between the
error and static enzyme ratio with decreasing w, observed
in Figure 4, was probably caused by a property of meta-
bolic systems. In a testing system, the number of enzymes
that can potentially be allocated to the static module may
be restricted. If w is greatly changed, the few potentially
static enzymes would eventually start to be converted to
static enzymes.

Weighting coefficient in the fitness function
The weighting coefficient in the fitness function (Eq. (5))
is a tuning parameter. Since a suitable value for the
weighting coefficient (w) is not given a priori, we need to
consider how to define the value.

As shown in Figure 4, with a w of 1.000, about half of the
enzymes were discriminated to the static module. Thus, a
large amount of experimental work can be saved because
no kinetic information is required by the static module.
The MRE at w = 1.000 was 15.2% for the E. coli hybrid
model and 18.6% for the S. cerevisiae hybrid model (Fig-
ure 4). These errors are acceptable considering the accu-
racy of the experimentally measured metabolite
concentrations. Thus, w = 1.000 may simply be chosen at
the initial trial stage of model construction. When a more
precise model is required, a smaller w can be used. Even if
w is set to between 0.025 and 0.100, the proportion of
static enzymes remains at about 30% for both the meta-
bolic systems tested. Our recommendation for w for gen-
eral modelling is 0.050. At around this w value, the
sensitivity of the error to a change of w is low; thus, strict
specification of w is not required. Moreover, even if the
actual error in the constructed hybrid model becomes
considerably higher than the expected value – as in the

case of S. cerevisiae at w = 0.250 –the actual error remains
low.

Noise in metabolome data
As shown in Table 2, almost the same results in distin-
guishing dynamic/static enzymes were obtained between
the procedures using noise-free data and those using
noise-added data. This result could be predicted because
most metabolite time series were successfully reproduced
from the noisy data by the smoothing treatment, as
shown in Figure S3. This result indicates that the proposed
method for distinguishing dynamic/static enzymes can be
applied to noisy measurements if a suitable noise reduc-
tion method is employed. To remove noise and obtain the
slopes of metabolite concentration time series, a smooth-
ing technique based on an artificial neural network, pro-
posed by Voit et al. [29-31], is efficient. Many other noise
cancellation techniques have been proposed for biochem-
ical time series data [32-35]. For example, Rizzi et al. [36]
obtained time-course functions of metabolites from noisy
metabolite concentration measurements and used those
functions to tune the parameters in their dynamic model.

Toward construction of accurate hybrid models
In the HDS method, accurate kinetics should be known
not only for system boundary enzymes but also for all
enzymes assigned to the dynamic modules. For this rea-
son, high-throughput techniques for determining accu-
rate and detailed enzyme kinetics are needed for the
efficient development of models of metabolic systems. A
promising power-law approach, generalized mass action
(GMA) [37,38], may be used to solve this problem. This
method has a large representational space that enables
enzyme kinetics to be sufficiently expressed in spite of its
simple fixed form. Although modelling that uses this kind
of power-law approach from time series data is often dif-
ficult owing to their nonlinear properties, Polisetty et al.
[39] have proposed a method employing branch-and-
bound principles to find optimized parameters in GMA
models. Using this method, the global optimal parameter
set can be efficiently searched.

To ensure the validity of the predicting performance of an
HDS model, careful perturbation experiments should be
carried out to obtain the metabolome time series data to
be used for distinguishing dynamic/static enzymes. The
metabolite concentration variations used should be those
considered to be of the maximum possible magnitude
under the modelled conditions. To reproduce a rapidly
changing metabolite concentration time series by an HDS
model, a larger number of dynamic enzymes is required.
Thus, if the number of dynamic enzymes included in the
model is defined by using data showing the maximum
possible variation in magnitude, that is, the model is con-
structed with the maximum possible number of dynamic
Page 9 of 12
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enzymes, then the model can calculate all probable states
of the system. For instance, consider building a metabolic
model of cultured cells in a reactor, where the model has
no mechanism for calculating gene expression levels or
the consequent changes in protein concentrations (most
proposed metabolic models are of this type). A substrate-
pulse injection experiment giving the maximal substrate
concentration that does not cause changes in gene expres-
sion levels in the cells (i.e., enzyme concentrations in the
cells are kept constant) is useful for distinguishing
dynamic/static enzymes. To determine the maximal per-
mitted substrate concentration, many preliminary experi-
ments may be required, and this seems to decrease the
value of the HDS method, which aims to reduce experi-
mental efforts. However, fundamentally speaking, such
evaluation of the limits of a model's parameters is abso-
lutely necessary for maintaining the accuracy of calcula-
tions in any kind of modelling, not only in HDS
modelling. Therefore, this requirement for experiments to
determine the maximal possible variation is not a specific
disadvantage of the HDS method.

Conclusion
The proposed method of using metabolite concentration
time series,i.e., experimentally measurable variables, ena-
bles us to discriminate dynamic/static enzymes to con-
struct a hybrid model. In this method, the enzyme
reaction rate time series are estimated from metabolite
concentration time series data. Since this estimation relies
on only the mass balance in the system, no kinetic infor-
mation about internal enzymes is required. Therefore, the
aim of employing the HDS method – to reduce the exper-
imental effort required to obtain enzyme kinetics infor-
mation – can be achieved. Two microbial central-carbon
metabolism models were used to evaluate our method.
Central-carbon metabolism has many feedback loops and
is rigidly controlled to maintain homeostasis of a living
cell. Since our method was successfully applied for such a
strictly regulated system, we believe it will have wide-rang-
ing applicability to many types of metabolic systems. Fur-
thermore, the analysis using noisy metabolite
concentration data demonstrated that, for the most part,
the proposed method tolerates noise well.

Abbreviations
Metabolites

2PG 2-phosphoglycerate

3PG 3-phosphoglycerate

6PG 6-phosphogluconate

ACA acetaldehyde, intracellular

ACAx acetaldehyde, extracellular

CNo cyanide, mixed flow

CNx cyanide, extracellular

DHAP dihydroxyacetone phosphate

E4P erythrose 4-phosphate

EtOH ethanol, intracellular

EtOHx ethanol, extracellular

F6P fructose 6-phosphate

FDP fructose 1,6-bisphosphate

G1P glucose 1-phosphate

G6P glucose 6-phosphate

GAP glyceraldehyde 3-phosphate

Glco glucose, mixed flow

Glcx glucose, extracellular

Glyc glycerol, intracellular

Glycx glycerol, extracellular

PEP phosphoenolpyruvate

PGP 1,3-bisphosphoglycerate

Pyr pyruvate

Rib5P ribose 5-phosphate

Ribu5P ribulose 5-phosphate

Sed7P sedoheptulose 7-phosphate

Xyl5P xylulose 5-phosphate

Enzymes/reactions

ADH acetaldehyde dehydrogenase

AK adenylate kinase

ALDO aldolase

consum ATP consumption
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difACA diffusion of acetaldehyde

difEtOH diffusion of EtOH

difGlyc diffusion of glycerol

ENO enolase

G6PDH glucose-6-phosphate dehydrogenase

GAPDH glyceraldehyde-3-phosphate dehydrogenase

GlcTrans glucose transporter

HK hexokinase

lpGlyc lumped glycerol formation reaction

lpPEP lumped PEP formation reaction

PDC pyruvate decarboxylase

PFK phosphofructokinase

PGDH 6-phosphogluconate dehydrogenase

PGI glucose-6-phosphate isomerase

PGK phosphoglycerate kinase

PGluMu phosphoglycerate mutase

PGM phosphoglucomutase

PK pyruvate kinase

R5PI ribose-phosphate isomerase

Ru5P ribulose-phosphate epimerase

TA transaldolase

TIS triosephosphate isomerase

TKa transketolase, reaction a

TKb transketolase, reaction b
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