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Abstract
Background: A significant body of literature is devoted to modeling developmental mechanisms
that create patterns within groups of initially equivalent embryonic cells. Although it is clear that
these mechanisms do not function in isolation, the timing of and interactions between these
mechanisms during embryogenesis is not well known. In this work, a computational approach was
taken to understand how lateral inhibition, differential adhesion and programmed cell death can
interact to create a mosaic pattern of biologically realistic primary and secondary cells, such as that
formed by sensory (primary) and supporting (secondary) cells of the developing chick inner ear
epithelium.

Results: Four different models that interlaced cellular patterning mechanisms in a variety of ways
were examined and their output compared to the mosaic of sensory and supporting cells that
develops in the chick inner ear sensory epithelium. The results show that: 1) no single patterning
mechanism can create a 2-dimensional mosaic pattern of the regularity seen in the chick inner ear;
2) cell death was essential to generate the most regular mosaics, even through extensive cell death
has not been reported for the developing basilar papilla; 3) a model that includes an iterative loop
of lateral inhibition, programmed cell death and cell rearrangements driven by differential adhesion
created mosaics of primary and secondary cells that are more regular than the basilar papilla; 4)
this same model was much more robust to changes in homo- and heterotypic cell-cell adhesive
differences than models that considered either fewer patterning mechanisms or single rather than
iterative use of each mechanism.

Conclusion: Patterning the embryo requires collaboration between multiple mechanisms that
operate iteratively. Interlacing these mechanisms into feedback loops not only refines the output
patterns, but also increases the robustness of patterning to varying initial cell states.
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Background
Pattern formation is a defining feature of biological devel-
opment. Many mechanisms account for the emergence of
complex patterns within a group of initially equivalent
cells, including lateral inhibition, differential adhesion,
programmed cell death, cell migration, differential
growth, and asymmetric cell division [1]. A rich literature
describes computational models of each of these pattern-
ing processes and explores how these mechanisms can
generate the patterns observed during development [2,3].
These modeling studies have offered invaluable insights.
However, the vast majority of earlier computational mod-
els have explored the role of individual patterning mech-
anisms, whereas within the embryo these mechanisms
collaborate to pattern tissues. Although many details of
the timing and coordination of patterning mechanisms
remain to be determined, it is clear that during develop-
ment cellular patterns arise from the integration of multi-
ple patterning mechanisms, not from the exclusive use of
one [1]. For example, in the development of the mamma-
lian retina, axonal outgrowth, cell rearrangements, lateral
inhibition and cell death all contribute to the creation of
the regular pattern of retinal ganglion cells [4]. Similarly,
in the development of the Drosophila eye, cell migration,
lateral inhibition and multiple rounds of cell death must
be coordinated to create the stunningly regular ommatid-
ial pattern [5,6]. The development of serotonergic neu-
rons in the ventral nerve cord of Drosophila requires the
collaboration of cell selection, asymmetric division and
apoptosis [7]. As a final example, cardiac development
requires coordination of cell proliferation and apoptosis
to create the embryonic outflow tract, cardiac valves, the
conducting system and the coronary vasculature [8].

Some modeling studies have investigated the potential for
multiple, coordinated patterning mechanism to create
complex cellular patterns during development. In this
work, a cellular pattern refers to the distribution of cell
types in space. An early example of cellular pattern forma-
tion modeling is the work of Honda and Yamanaka [9]
who examined the relationship between cellular growth
and division in the formation of the polygonal cellular
pattern of the avian oviduct epithelium. Another notable
example is the work of Marée and Hogeweg [10] that
investigated how individual cells of Dictyostelium discoi-
deum organize to form the fruiting body. Their model
beautifully simulated this complex morphogenetic proc-
ess, and it required the joint operation of differential
adhesion, cell differentiation, changes in cell rigidity, and
the response of cells to a paracrine signaling molecule.
The Maree-Hogeweg model provided the first clear insight
into how the later stages of morphogenesis are achieved in
this organism.

Eglen and Willshaw [4] examined the ability of lateral
inhibition to create mosaic patterns of on- and off-center
retinal ganglion cells that matched the regularity of bio-
logical mosaics in the cat retina. In contrast to many ear-
lier studies, these investigators modeled arrays of
irregularly-shaped cells rather than simulating cells as per-
fect hexagons. Beginning with an imperfect pattern of two
cell types, they discovered that lateral inhibition alone
was insufficient to create mosaics with the regularity seen
in nature. They also found that cell death acting in isola-
tion on the initial imperfect pre-pattern did not generate
the regular pattern observed in the cat retina. Eglen and
Willshaw hypothesized that lateral inhibition and cell
death act sequentially to pattern the on- and off-center
ganglion cells of the mammalian retina.

More recently, Izaguirre et al. [11] developed a multiple
model software package for simulating morphogenesis.
They termed this model CompuCell and used it in a pilot
study to simulate vertebrate limb development. In this
study, Izaguirre et al. [11] utilized modules that involve
differential adhesion, reaction-diffusion, cell differentia-
tion, and cell division. This work has recently been
extended to understand chick wing development [12].
Taken together, these models demonstrate the necessity of
multiple interacting mechanisms to accurately reproduce
the development of complex components.

Finally, Salizar-Ciudad et al. [1][13] explored the develop-
ment of mammalian teeth through a modified reaction-
diffusion model. In this model, which considers epithe-
lium and underlying mesenchyme, a diffusing activator
and inhibitor create differentiated, non-growing enamel
knot signaling centers in the epithelium. Epithelial cells
and mesenchyme outside enamel knots grow in response
to a signal originating from the knots. The unique feature
of this model is that the growth of non-knot cells, which
drives morphogenesis, alters the reach of the growth sig-
nal. In this way, the mechanisms of pattern formation
(growth dependent on the concentration of the knot-cen-
tered signal) and morphogenesis are coupled in a
dynamic feedback loop that produces the tooth.

We are interested in learning how regular mosaic patterns
of two different cell types can form in epithelial sheets.
These patterns are common in the embryo and are seen in
such systems as the Drosophila neurectoderm [14,15] and
eye [5], butterfly and moth wing scale cells and surround-
ing epithelial cells [16], insect sensory bristle cells and
non-sensory epithelial cells [17], and sensory hairs and
supporting cells of the vertebrate inner ear [18,19] (see
Figure 1).

These mosaic patterns have been modeled [4,20-22], but
often using one or at most two developmental patterning
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mechanisms. Previous studies have only partially
explored the outcome of interactions between known pat-
terning mechanisms or the possible outcome of feedback
among mechanisms such as lateral inhibition, cell rear-
rangement driven by differential adhesion, and pro-
grammed cell death. In a recent review of developmental
patterning, Salazar-Ciudad et al. [1] distinguish between
morphostatic and morphodynamic strategies of pattern-
ing. In the morphostatic strategy, which is the basis of
many existing models, an initial inductive mechanism is
followed by a morphogenetic mechanism. Induction and
morphogenesis operate independently and do not over-
lap in time. Induction involves intercellular signaling and
morphogenetic mechanisms, as considered by Salazar-
Ciudad et al. [1], include directed mitosis, differential
growth, apoptosis, migration, and differential adhesion.
In contrast, a morphodynamic strategy involves simulta-
neous operation of inductive and morophogenetic mech-
anisms to create pattern. One example of a
morphodynamic mechanism is the combination of lateral
inhibition, an inductive mechanism that involves signal-
ing through membrane-bound molecules, with pro-
grammed cell death, a morphogenetic mechanism. In
modeling this combination, lateral inhibition is used to
establish cell fates and is followed by programmed cell
death to refine a pattern of two cell types. This sequence is
then repeated until a crisp pattern of cell types is achieved.
In contrast to a morphostatic approach, as pattern
emerges in a morphodynamic process, pattern elements
acquire new signaling properties and in so doing influ-
ence the final form the pattern will take. The process is
both iterative and dynamic.

In this work, we explore how the interplay between three
widely-utilized patterning mechanisms – lateral inhibi-
tion, differential adhesion, and programmed cell death –
can generate regular, mosaic patterns seen in development
using biologically-realistic cells that dynamically change
their shape and contact patterns. We find that combining
all three processes into a network with feedback loops
produces regular mosaics that are not achieved when lat-
eral inhibition, differential adhesion, or programmed cell
death operate independently or in simpler networks.
Moreover, as these mechanisms are coupled, the robust-
ness of pattern formation to alterations in cell-cell adhe-
sive strength is increased. We compare the output of our
models to the mosaic pattern of sensory and supporting
cells of the developing chick basal papilla as reported by
Goodyear and Richardson [18]. The power of this compu-
tational approach is that it allows exploration of the limits
of individual pattern formation mechanisms and an
examination of the potential offered by combining inde-
pendent mechanisms in a variety of ways. This may
inform thinking about the possible ways patterning mech-
anisms are deployed and coordinated to create mosaic
patterns during development.

Methods
Implementation of the models
The five models explored in this work are shown in Figure
2 and Figure 3. Each model employs one or more of three
biologically-relevant pattern formation mechanisms: lat-
eral inhibition, differential adhesion and programmed
cell death. The input to each model is a 2D sheet of 100–
400 irregularly-shaped cells expressing a random amount

Basilar papilla at E9 and E12Figure 1
Basilar papilla at E9 and E12. Images of regular mosaics at embryonic day 9 (E9) and E12 (from [18]) in the basilar papilla. 
The spatial regularity of the primary cells (white) is significantly improved in E12, compared to E9.
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of each of two proteins (Notch and Delta) that mediate
lateral inhibition.

Model 0 is a morphostatic model that executes lateral
inhibition until a fixed point (no change in expression
levels of Notch and Delta) and represents an extension of
Collier et al. [22] to a natural arrangement of cells.

Model 1 is a morphostatic model that first uses lateral
inhibition to determine cell fate, followed by cell rear-
rangement driven by differential adhesion.

Model 2 is a morphodynamic extension of Model 1,
where lateral inhibition and differential adhesion form a
feedback loop in which cell rearrangement and cell signal-
ling are interlaced.

Model 3 is a morphostatic model that investigates the
effect of lateral inhibition first determining cell fate, fol-
lowed by a feedback loop of programmed cell death and
rearrangement driven by differential adhesion.

Model 4 is a morphodynamic extension of Model 3, in
which lateral inhibition is interlaced with programmed
cell death and rearrangement.

Morphostatic computational modelsFigure 2
Morphostatic computational models. The three morphostatic computational models studied. Each model begins with the 
inductive mechanism of lateral inhibition run until a fixed point. Model 1 then runs differential adhesion. Model 3 follows lateral 
inhibition with the morphogenetic mechanisms of differential adhesion and cell death running together (interlaced in time). In 
the embryo, this is equivalent to the mechanisms running simultaneously.
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Models were terminated at quiescence, with quiescence
defined differently depending upon component mecha-
nisms in each model. Models 1 and 2 were run until the
cell defect rate (see below) showed no trend over 30
model iterations. Models 3 and 4 were run until no cell
death occurred over 30 model iterations.

The implementation of each pattern forming mechanism
and the method used to generate the random input pat-
terns as the starting point of each model is described
below.

Differential adhesion
Differential adhesion was simulated using the Cellular
Potts Model (CPM) [21]. A principle advantage of this
model is that global rearrangements within sheets of cells
are emergent properties of local interactions between sim-
ple sub-cellular components. Each cell is represented as a
set of contiguous lattice sites. Cell-cell contacts occur
through adjacent lattice sites of different cells. In outline,
the cells within the two-dimensional array have defined
adhesive properties for each other and the surrounding
medium. Cells may form new contacts and move with
restrictions in size and in shape. All cell rearrangement is
driven by a process of stochastic energy minimization.

The CPM is described by a Hamiltonian equation that
estimates the total energy of a particular arrangement of
cells. This equation is:

The first term estimates the total surface energy between

all contacting cells  and  by summing  over

all adjacent lattice sites  and  where ; the sec-

ond term implements an area constraint on cells where aσ
is the actual area (the count of lattice sites, which may

range between 64 and 144) of a cell σ, and Aσ is σ's target

area. In these simulations, a lattice site represents approx-
imately a 600 nm × 600 nm square, cells have diameters of

approximately 8 μm and the total area of simulation is

approximately 25, 600 μ2, based on dimensions given in
[18].

Two cell types and the medium are considered in the CPM
model implemented here. These are represented as τσ = p
for primary cells, τσ = s for secondary cells, and τ = m for
the medium. The area constraint is only applied to pri-
mary and secondary cells. A Jτ, τ' matrix implements the
relative surface tensions between the three types (primary
cell, secondary cell, and medium), with J values inversely

H J a A
z zz z

= + −
′′∑ ∑τ τ σ σσσ σ,

,
( )2

σ z σ ′z J
z z

τ τσ σ, ′

z ′z σ σz z≠ ′

Morphodynamic computational modelsFigure 3
Morphodynamic computational models. The two morphodynamic computational models studied. Model 2 runs lateral 
inhibition and differential adhesion together (interlaced in time). Model 4 runs lateral inhibition, cell death and differential adhe-
sion together. In the embryo, this is equivalent to the mechanisms running simultaneously.
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related to cell-cell or cell-medium adhesion. In experi-
ments that examined the trajectory of mosaic pattern
quality as each model ran, J values were fixed at: Jp, p = 21,
Js, s = 8, Js, p = 11, Jp, m = 21 and Js, m = 21, similar to values
used for the "checker board" mosaic rearrangement exper-
iments reported by Graner and Glazier [21]. In experi-
ments that investigated the robustness of the models
under varying homotypic adhesive strengths, Js, s and Jp, p
were varied between 1 ≤ Js, s, Jp, p ≤ 21, Js, p = 11 and Js, m = Jp,

m = 21.

Low energy cell arrangements are determined by repeat-
edly copying the state of one lattice site to an adjacent lat-

tice site for lattice sites belonging to different cells. Let ΔH
be the change in energy resulting from the potential copy

of one lattice site state. Then, if ΔH < 0, the state change is

always accepted, and if ΔH = 0, the state change is
accepted with probability 0.5. Otherwise the state change

is accepted with probability , where T is the temper-
ature, representing the agitation of the cells [21].

The CPM is used to create the random input pre-pattern
for each of the 5 models and is then used repeatedly after
lateral inhibition or programmed cell death in models 1–
4 (see Figure 2 and Figure 3). The input pre-pattern is gen-
erated starting from a regular square grid of 20 × 20 cells,
each composed of 12 × 12 lattice sites. The target area Aσ
of each cell is set to 144 ± q, where q is a normally distrib-
uted variable with a standard deviation of 12. The square
grid is then annealed for 1000 Monte Carlo steps (MCS)
at T = 10 (see [21] for more details), then 10 MCS at T =
0. The differential adhesion step in models 1–4 is imple-
mented as 100 MCS at T = 5 followed by 10 MCS at T = 0.

Lateral inhibition
Some early work implemented lateral inhibition using a
strategy where a single randomly chosen cell is assigned a
primary identity and its neighbors are assigned a second-
ary identity. This method is repeated until all cells are
assigned [20]. Collier et al. [22] developed a more realistic
model based on protein expression levels and cell-cell
membrane signaling. They unitized perfectly hexagonal
cells of fixed size. Our model extends this work to natu-
rally shaped cells of varying size. For each cell, σ, let Pd(σ)
be the dimensionless expression of protein Delta, where 0
≤ Pd(σ) ≤ 1.0, and let Pn(σ) be the dimensionless expres-
sion of Notch, where 0 ≤ Pn(σ) ≤ 1.0. Initially all cell pro-
tein values are set from a uniform random distribution
[0.5, 1.0]. This modeling of protein expression at the cell
level (see Merks and Glazier [23]), rather than at the lat-
tice site level, is appropriate since cell-cell signalling
occurs only across contacting membranes. The interaction

between adjacent cells is modeled as coupled differential
equations shown in Figure 4.

The expression of Pn implements cell-cell contact signal-
ling, where each cell can sense the expression levels of Pd
of its immediate neighbors via their common mem-
branes. In Collier et al. [22] cells were modeled as an exact
hexagonal mesh, implying that the influence of each
neighbor is equal. In naturally arranged cells, the influ-
ence of a neighbor cell ρ on the expression of Pn(σ) is pro-
portional to the length of the membrane shared between
σ and ρ. A longer membrane means increased Pn(σ) pro-
duction as shown in the differential equations of Figure 4.
The length of the common membrane between σ and ρ,
lρ, σ, is re-computed and cached following each cell rear-
rangement driven by a CPM-anneal.

Lateral inhibition is run by numerically solving the differ-
ential equations using the Runge-Kutta method (with dt =
0.05) until a fixed point is reached where the average
update error (the average difference in the protein values
between iterations) is ≤ 10-8 per cell. Once lateral inhibi-
tion is terminated, the type of each cell is determined by
inspecting values of Notch and Delta as illustrated in Fig-
ure 5. A cell σ becomes secondary if Pn(σ) ≥ 0.8 and Pd(σ)
≤ 0.4. A cell becomes primary if Pd(σ) ≥ 0.8 and Pn(σ) ≤
0.4. The default type for the cells is primary.

Programmed cell death
Programmed cell death occurs in Models 3 and 4 when
cells autonomously determine that they are defective
according to criteria discussed below. In cases where the
mosaic contains two or more defect cells, only one of the
cells is randomly selected to die at each iteration of the
model. One cell is picked each model iteration to simplify
the model and to avoid the need to introduce additional
parameters. The space occupied by the dead cell is con-
verted to medium and neighboring cells rearrange by dif-
ferential cell adhesion to fill the space as illustrated in
Figure 6.

Izaguirre et al. [11] modeled cell death by shrinking the
target area of the dying cell. Potential complications of
this method are the need to set a rate of target area reduc-
tion, and the fact that the shrinking cell maintains its orig-
inal adhesive properties, thus drawing in surrounding
cells. Modeling cell death by transforming the dead cell to
medium may be a more realistic method of simulating
death by apoptosis. Each iteration of cell death in the
Models is followed by a fixed annealing period of 100
MCS. Models with cell death terminate after 30 iterations
of differential adhesion (each 100 MCS) with no cell
death.

e
H
T

− Δ
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Evaluating the regularity of natural mosaics
Mosaic pattern development processes have evolved to
produce a regular mosaic of primary cells that provide effi-
cient sensory coverage for the eye [2,5,24], insect sensory
bristles [17], vertebrate inner ear [18,19] and for structural
uniformity, such as in the butterfly and moth wing scales
[16]. In this study, mosaic regularity is evaluated based on
two measures: the percentage of defect cells and the spa-
tial regularity of the the primary cells.

Mosaic defects
Cell death is used in Models 3 and 4 to improve the spatial
regularity of primary cells by selectively removing cells
that disrupt the regular mosaic. Two principal questions
are: (i) Which cells disrupt the spatial regularity con-
structed by lateral inhibition? and (ii) Is there a biologi-
cally feasible way in which such a defect cell could self-
select and choose to die?

Ideally, developmental processes will produce a mosaic of
regularly spaced primary cells, each surrounded by a sin-
gle ring of secondaries. Such a regular array would be both
efficient, in that the minimum number of primary cells
are employed, and complete, in that the area of the

mosaic would contain no gaps and be completely covered
by sensory cells. Using an array of hexagonal cells, Collier
et al. [22] analyzed the system of coupled differential
equations implementing lateral inhibition and identified
exactly three possible homogeneous solutions (repro-
duced in Figure 7), which we term solution type i, ii, or iii.
If the mosaic consisted of a uniform population of only
one of the solutions, a perfectly regular mosaic would
result. However, due to random initial conditions and
only local computation, the final mosaic consists of a mix-
ture of all three solutions. This results in irregularities,
even when modeling with uniform hexagonal cells. More-
over, with naturally shaped cells, an additional solution
exists, in which two primary cells can touch when the
shared membrane is short, termed solution type iv and
illustrated in Figure 5(b).

With naturally shaped cells, lateral inhibition will pro-
duce a mosaic consisting of a randomly distributed mix-
ture of all four possible solutions. In this work, we identify
two solutions as disrupting the ideal pattern of a regular
mosaic. First, solution type i where secondary cells only
touch one primary (see Figure 7) will tend to push pri-
mary cells apart and create gaps, thereby reducing cover-

Lateral inhibition modelFigure 4
Lateral inhibition model. Comparison between the lateral inhibition models of Collier et al. [22] that employed hexagonal 
cells and the models used in this work with naturally shaped cells. In both models, Pd(σ) (Delta) is driven to the opposite of 

Pn(σ) (Notch) within each cell, while cell-cell communication across contacting membranes regulates Pn(σ). The length of the 

common border between σ and ρ is lρ, σ, which is the count of all 8-connected lattice sites between and ρ, and σ, 
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age. Second, solution type iv where primary-primary
contacts will result in primary cells that are too close,
thereby reducing efficiency. We propose that cell death
and diffierential adhesion are utilized to eliminate cells
from these two solution types, leaving a regular mosaic
consisting of a mixture of only solution types ii and iii.

We define a defect cell as either a primary cell of solution
type iv or a secondary cell of solution type i. This defini-
tion is supported by observations of biological mosaics, in
particular by work of Goodyear and Richardson [18] (see
Figure 1). Consider that at embryonic day 9, approxi-
mately 10% of secondary cells are of solution type i and
3% of primary cells were of solution type iv. In contrast,
at embryonic day 12, no type i secondary cells or type iv
primary cells were observed.

For the model to be biologically feasible, there must be a
way for an individual cell to self-select as a defect and ini-
tiate programmed cell death. This determination can be
made locally because a secondary cell which touches only
one primary tends to express a non-saturated level of
Notch (Pn(σ) ≤ 0.8), while a secondary cell that touches
two or three primary cells tends to express Notch at a sat-

urated level (Pn(σ) > 0.8). Such a defect cell is marked c in
Figure 5. Similarly, due to mutual inhibition, a primary
cell touching another primary will express a lower level of
Delta compared with primary cells that contact only sec-
ondary cells. Such a cell is marked d in Figure 5. This local
computation contrasts with the model of cell death
described in [4] in which the decision to die was made
globally, using criteria such as choosing the smallest or
largest cell in the sheet. Significantly, Notch-mediated sig-
naling is known to control apoptosis [25]. The model's
use of low Notch levels to identify and trigger the death of
defect cells is consistent with findings that inhibition or
down-regulation of Notch induces apoptosis in murine
erythroleukemia cells [26,27].

Measuring spatial regularity
Measures of spatial regularity include the regularity index
[28] (sometimes referred to as the conformity ratio) and
packing factor [29]. These measures were found by Eglen
and Willshaw [4] to provide some discriminatory power
in evaluating mosaics formed with and without cell death.
However, the recent survey in da Fontoura Costa et al.
[30] found that neither measure provided the needed sen-
sitivity to discriminate between regular and irregular syn-

Cell protein expression levelsFigure 5
Cell protein expression levels. The color key used throughout the paper to denote the expression levels of Notch and 
Delta in each cell. Four cells labeled a, b, c and d are identified in the sheet of cells, and their corresponding expression levels 
shown in the color key. Cell a is a primary cell. Cell b is a secondary cell. Cell c is a defect since it is contacting only one pri-
mary cell. Cell d is a defect since it is touching another primary cell.
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thesized data and between center and peripheral agouti
(Dasyprocta agout) retinal photoreceptor mosaics.

We evaluated the regularity index, packing factor and hex-
agonality index [30] to determine their sensitivity in dis-
criminating between mosaics formed by all five models.
We found that none of these measure is sufficiently sensi-
tive to capture changes in regularity due to presence of
defect cells. We developed a new regularity measure called
the Voronoi Regularity Index (VRI) that exhibits high sen-
sitivity in evaluating the mosaics produced by the models.
To calculate VRI, a Voronoi tessellation is computed
[31,32] over the center point (the centroid of the cell's lat-
tice sites) of each primary cell. Let D be the set of distances
between the center of each Voronoi cell and its vertices,
then the VRI is the ratio of the mean of D divided by the
standard deviation of D. VRI ranges from ∞ for perfect reg-
ularity to near 0 for no regularity.

Results
We explored the effectiveness of the five models (Models
0 through 4 illustrated in Figure 2 and Figure 3) to create
a regular two-dimensional mosaic pattern. In the first
study, we compared the output of the models to the devel-
opment of the mosaic of sensory (hair cells) and support-

ing cells of the chick basilar papilla reported by Goodyear
and Richardson [18]. In the second study, we considered
the robustness of the models under varying cell-cell adhe-
sion values.

Model performance simulating chick basilar papilla
The performance of each model was evaluated based on
how well it simulated the mosaic of sensory and support-
ing cells of the chick basilar papilla. In this part of the
study, the cell-cell and cell-medium adhesive strengths
were fixed. We chose a set of J values similar to those used
in Graner and Glazier [33]. These values result in negative
surface tension between primary and secondary cells, and
favor formation of mosaic patterns through differential
adhesion. The values were Js, s = 8, Jp, s = 11, Jp, p = Jp, m = Js, m
= 21, giving surface tension values of γp, s = -4.5, γp, m =
17.0, γs, m = 10.5 (calculation of surface tension from J val-
ues is given in [33]).

The baseline for model performance was the mosaic pat-
tern created by one round of lateral inhibition (Model 0).
The output of Model 0 is the input pattern for Models 1–
4.

Images showing cell deathFigure 6
Images showing cell death. When the defect cell (checkered) dies, it becomes medium. As the remaining cells are annealed, 
cell adhesion causes the void to be filled, near-by cells to shift position and new cell-cell contacts are created and lengthened.

Lateral inhibition solutionsFigure 7
Lateral inhibition solutions. The three homogeneous states for the solution of the lateral inhibition model from [22]. Each 
solution is defined by the count of primary neighbors ρp of each secondary cell σs, where count is either 1, 2 or 3. Primary cells 
are black and secondary cells are white.
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Five measures were made during and at the completion of
each run of the models: the primary cell Voronoi regular-
ity index (VRI), the number of secondary cells contacted
by each primary cell, the number of primary cells con-
tacted by each secondary cell, the ratio of secondary to pri-
mary cells, and the cell defect rate. Table 1 summarizes
values of these measures and compares them with those
measured in the chick basilar papilla by Goodyear and
Richardson [18]. In the chick basilar papilla, shown in
Figure 1, supporting cells correspond to secondary cells
and sensory cells correspond to primary cells. Figure 8
shows example mosaics generated by the 5 models. Figure
9(a) shows the trajectory of VRI and defect rate during
each model run, Figure 9(b) shows the distributions of the
number of secondary cells around each primary cell and
Figure 9(c) shows the number of primary cells around
each secondary cell. Each model was run between 48 and
256 times. These results are considered below.

Trajectory of models
Model 1, which uses multiple rounds of differential adhe-
sion to drive cell rearrangements, yielded no improve-
ment in primary cell mosaic regularity (VRI) and a slight
increase in defect rate during the model run. Model 2
showed a slight improvement in defect rate. In contrast,
Models 3 and 4, which utilize death to eliminate defect
cells, showed a clear trend in the improvement of VRI as
defect cells die. There was a high degree of variation in
both cell defect rate and VRI in runs of all four models.
The trend for improvement in both measures was clear in
Models 3 and 4, and though both model outputs display
a high degree of variability, the improvement in cell defect
rate and VRI for these two models was statistically signifi-
cant based on a standard two-tailed t-test, with p < 0.05.

We also analyzed the VRI and defect rate in the published
images of Goodyear and Richardson [18] that show pri-
mary and secondary cells of the central distal region of the
chick basilar papilla between embryonic day 9 (E9) and
day 12 (E12) (see Figure 1). The mosaic of hair and sup-
porting cells emerges and is refined during this period of
development. Between E9 and E12, the cell defect rate
decreases from 9.00 ± 1.00 to 0.00 ± 0.00 and the VRI
increases from 2.31 to 3.44 (Table 1). If E9 is considered
to be the equivalent of the starting point of the models
(i.e., Model 0), then the output patterns of Models 1 and
2, which contain residual defect cells, do not effectively
simulate basilar papilla pattern development. This
implies that lateral inhibition and differential adhesion
are insufficient to explain the refinement of the primary
cell mosaic in the chick basilar papilla observed by Good-
year and Richardson [18].

The VRI of primary cell mosaics generated by all the mod-
els is higher than that observed for basilar papilla at E9
(see Table 1). There is a modest increase in VRI in Models
1 and 2 (1.02- and 1.19-fold, respectively). There is an
identical 1.49-fold increase in the VRI between E9 and
E12 in the chick basilar papilla and in Model 3. The
increase in VRI achieved in Model 4 is very similar (1.44-
fold).

Cell contact patterns
In the hair cell/supporting cell mosaic of chick basilar
papilla and in the four experimental models tested here,
there is a trend toward an increased number of primary
cells that are contacted by each secondary cell (Figure 9(c)
and Table 1 row |ρp ∈ n(σs)|), especially in Models 3 and
4. Goodyear and Richardson [18] observed a statistically
significant increase in number of primary cells surround-

Table 1: Comparison of models

CD E9 CD E12 Model 0 Model 1 Model 2 Model 3 Model 4

|ρp ∈ n (σs)| 2.48 ± 0.07 3.07 ± 0.09 2.12 ± 0.69 2.16 ± 0.71 2.25 ± 0.66 2.46 ± 0.50 2.52 ± 0.50
|ρs ∈ n (σp)| 4.56 ± 0.11 5.23 ± 0.16 5.81 ± 0.56 5.69 ± 0.51 5.65 ± 0.55 5.76 ± 0.56 5.68 ± 0.60

VRI 2.31 3.44 3.02 ± 0.24 3.08 ± 0.20 3.60 ± 0.54 4.50 ± 0.63 4.34 ± 0.61
1.85 ± 0.05 1.71 ± 0.05 2.83 ± 0.10 2.81 ± 0.11 3.00 ± 0.05 2.23 ± 0.07 2.23 ± 0.075

Defect Rate 9.00 ± 1.00 0.00 ± 0.00 8.69 ± 3.09 9.55 ± 0.64 5.81 ± 2.99 0.00 ± 0.00 0.00 ± 0.00

Comparison of the central distal (CD) chick basilar papilla cell mosaic development studied in [18] with model results. |ρp ∈ n(σs)| is the average 

count of primary cells around each secondary cell, |ρs ∈ n(σp)| is the average count of secondary cells around each primary, and  is the ratio 

of the number of secondary cells by the number of primary cells. Error bands are one standard deviation, based on 40 random repeats of each 
model.
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ing each secondary cell (|ρp ∈ n(σs)|) from 2.48 ± 0.07 to
3.07 ± 0.09 in the central distal region of the papilla
between E9 and E12. Of particular interest is the elimina-
tion by E12 of contacts between secondary cells and only
one primary cell. The same result is achieved in Models 3
and 4 through cell death.

Values of the related measure of the average number of
secondary cells contacted by each primary cell (the mean
of |ρs ∈ n(σp)|) were similar in the basilar papilla and in
the model output. The significant increase in the number
of contacts observed between E9 and E12 in the chick was
not observed as models became more complex. In fact,
the highest mean of |ρs ∈ n(σp)| was observed for Model 0.

A match of cell contact distributions between the 5 model
outputs and the centeral distal (CD) and superior proxi-
mal (SP) regions of the basilar papilla reported in [18]
was performed by computing the average root mean
squared error between each pair of distributions. The
results are shown in Figure 10, which compares the distri-
butions of primary cells around each secondary cell (no
significant differences were found when comparing the
distribution of secondary cells around each primary cell).
At E9, models without cell death (Models 0, 1, and 2) best
match observations reported in [18]. Only models with
cell death (Models 3 and 4) have a close match to the E12
pattern, implying that cell death is necessary for the for-
mation of the mosaic pattern found in the CD and the SP
regions.

Robustness of models
In this part of the study, we examined the robustness of
Models 1 – 4 across a range of cell-cell adhesive values.
While the regulation of cell-cell adhesive values is known
to be a key element of morphogenesis in many systems, it
is unclear how precisely these values must be specified to
permit the emergence of the required pattern. We exam-
ined this issue in the second part of the empirical study.

Values of primary cell-primary cell (Jp, p) and secondary
cell-secondary cell (Js, s) adhesiveness were varied across
all pairs of integer values 1 ≤ Jp, p, Js, s, ≤ 21. In every case,
the primary cell-secondary cell adhesive value, Jp, s , was
fixed at 11 and cell-medium adhesiveness, Jp, m and Js, m,
was fixed at 21. We expect that robustness is a mark of a
superior system for pattern formation. We observed
strong differences in the robustness of the models to
changes in cell adhesive strength. These results are shown
in Figures 8, 9, 10, 11.

Four measures were used to compare the performance of
the different models in producing regular mosaics. Only
one, primary cell VRI, could be used to compare all the
models. All other measures (cell defect rate, cell state
change, and death rate) allowed only pair-wise compari-
sons between models. For example, because Models 3 and
4 run until no cell defects remain, the measure of cell
defect rate is meaningless for these models. Similarly, cell
death rate is only a valid measure for Models 3 and 4, the
only ones that implement cell death. Even with a restric-
tion to pair-wise comparisons, significant conclusions can
be drawn about the robustness of all four models.

Primary cell Voronoi regularity index
As shown in Figure 11, the four models performed very
differently regarding the range of adhesive values that
allow production of a regular pattern of primary (sensory)
cells. The morphostatic Model 1, with a single round of
lateral inhibition followed by multiple rounds of cell rear-
rangements, did not produce a regular mosaic relative to
more complex models. The morphodynamic Model 2,
where lateral inhibition and differential adhesion form a
feedback loop, produced a more regular mosaic over a
range of adhesive values that span roughly the upper right
quadrant of the graph (i.e., approximately Jp, p and Js, s ≥ 9).
These correspond to negative γp, s (see [33]) and homo-
typic cell-cell adhesive strengths that are lower than the
fixed heterotypic affinity of primary and secondary cells

Examples of model end state mosaicsFigure 8
Examples of model end state mosaics. Examples of output mosaics formed by the 5 models. The cells are colored 
according to the key given in Figure 5. Defect cells are denoted by speckling.
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Evaluation of mosaicsFigure 9
Evaluation of mosaics. Evaluation of input (before) and output (after) mosaics of 4 models. (a) Trajectories of defect rate (x 
axis) and VRI (y axis); (b) Change in the distribution of secondary cells around each primary; (c) Change in the distribution of 
primary cells around each secondary cell. Error bars are one standard deviation.
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(Jp, s = 11). Outside this range of adhesive values, Model 2
became unstable with feedback between lateral inhibition
and differential adhesion producing continuous changes
between primary and secondary cell state (shown as white
in Figure 11 and discussed below).

Model 3 is a morphostatic model that utilizes one round
of lateral inhibition followed by an iterative loop of pro-
grammed cell death and cell rearrangements driven by dif-
ferential cell adhesion. It produced a significantly more
regular mosaic than Model 2. However, Model 3 failed
across significant regions of cell-cell adhesive strength due
to excessive cell death. This caused the initial sheet of 400
cells to be reduced to less than 10 cells. We term this a
death cascade and it occurs at values of Js, s d 7 and Jp, p ≤ Jp,

s .

Model 4 is morphodynamic model where lateral inhibi-
tion forms a feedback loop with programmed cell death
and cell rearrangements driven by differential cell adhe-
sion. It produced equally regular mosaics as Model 3, but
it expanded the range of usable adhesive values into
regions where Jp, p ≤ Jp, s .

Cell defect rate
Models 1 and 2 are run until the defect rate stabilizes,
defined when the percentage of defect cells shows no
trend over 30 model iterations. Figure 12 shows the defect
rate at termination of Models 1 and 2 as a function of cell
adhesive strength. By comparison, the default defect rate
of Model 0 is ≈ 10%, which forms the input mosaic of
Model 1 and Model 2.

Model 1 has a limited range of adhesive values for which

the cell defect rate improves. This range roughly spans γp, s

≤ -3 (when  ≥ 14). and Jp, p ≥ Js, p. In contrast,

Model 2 produced mosaics with net improvement of the

default rate over a much broader range, roughly γp, s ≤ 0

(when  ≥ 11) and Jp, p ≥ 5 or about 70% of the

range of homotypic cell adhesive strengths. These results
demonstrate the ability of morphodynamic systems to
extend the quality and robustness achieved by morphos-
tatic systems that utilize the same developmental mecha-
nisms. Significantly, the unstable region of homotypic cell
adhesive strengths in Model 2 corresponds to the region

J Js s p p, ,+
2

J Js s p p, ,+
2

Comparison between cell connectivity patterns generated by the models and observed in the chick basilar papillaFigure 10
Comparison between cell connectivity patterns generated by the models and observed in the chick basilar 
papilla. The horizontal axis represents the alternatives studied in [18]. On the left are the observations from embryonic day 
E9 and the right observations from embryonic day E12. Measurements from two distinct spatial regions CD (central distal) and 
SP (superior proximal) are given. The vertical axis represents the end-states of Models 0 through 4. To compare each basilar 
papilla region with each model output, the measurements of secondary-primary cell connectivity are matched by computing 
the root mean squared error (rms). This rms error is calculated by comparing the distribution of the number of primary cells 
around each secondary cell. Data for the basilar papilla is taken from the graphs shown in the right column of Figure 11 from 
[18]. Data for the models is taken from the graphs given in Figure 9(c).
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of high defect rate (≥ 20%) in Model 1. Because Models 3
and 4 are run until there are no defects, they are not
included in this comparison.

Instability of cell state
Models 2 and 4 revealed an emergent property with
potential biological significance: instability of cell state,
where cells continually switch between primary and sec-
ondary states (See Figure 13). Although the endpoints of
these two models differed (no trend in defect rate for
Model 2 and no cell defects for Model 4), both exhibited
instability in cell state determination at particular homo-

typic cell adhesive strengths. This was evident in dramatic
reversals of primary and secondary cell identity. Such
instability is shown in the video [34] that documents a
run of Model 2. Models 2 and 4 are morphodynamic and
incorporate a feedback loop between lateral inhibition
and cell rearrangement. As a consequence of allowing a
new round of lateral inhibition, many cells change their
identity from primary to secondary and vice versa, based
on the new cell contacts established by differential adhe-
sion.

Voronoi regularity index for models 1 – 4 run over varying cell-cell adhesive valuesFigure 11
Voronoi regularity index for models 1 – 4 run over varying cell-cell adhesive values. Mosaics with V RI ≥ 3.4 repre-
sent regularities found in chick basilar papilla at E12 from [18]. White areas represent unstable regions that do not produce 
solutions. Each graph cell shows the average of 40 randomized runs.
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Cell defect rates for models 1 and 2 run over varying cell-cell adhesive valuesFigure 12
Cell defect rates for models 1 and 2 run over varying cell-cell adhesive values. Each graph cell shows the average of 
40 randomized runs. White areas for Model 2 represent unstable regions that do not produce solutions.

Cell state stability for models 2 and 4 run over varying cell-cell adhesive valuesFigure 13
Cell state stability for models 2 and 4 run over varying cell-cell adhesive values. Cell state stability of Model 2 and 
Model 4. Each graph cell shows the average of 40 randomized runs. The probability of a cell changing its state as a function of 
homotypic adhesive strength is calculated by examining the last 30 model iterations and determining the proportion that 
involved any cell state change. The last 30 model iterations correspond in Model 2 to a period when the defect rate is stable 
and in Model 4 to a period when cell rearrangement is producing no defect cells and therefore no cell death.
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Programmed cell death
Figure 14 shows the percentage of cells that die as a func-
tion homotypic adhesion in Models 3 and 4. Both models
are terminated when 30 iterations result in no pro-
grammed cell death and the resulting mosaic is free of any
defect cells. For much of the homotypic adhesion space,
high levels of cell death are required to reach termination.
In substantial regions of the adhesion space almost all
cells die. Such a death cascade is shown in the video in
[34]. Death cascades occur when cell rearrangements after
a cell death tend to create more defects. Although rela-
tively high levels of programmed cell death (e.g., perhaps
as high as 50% in the developing mammalian retina
[5,6]) are observed, a system in which nearly all cells die
is unlikely to be effective in pattern generation.

Figure 14 demonstrates that the morphodynamic Model 4
is more robust to differences in homotypic cell adhesive
strength than the morphostatic Model 3. When lateral
inhibition is incorporated into a loop with programmed
cell death, subsequent defects caused by cell rearrange-
ment can often be repaired by signalling over the new cell-
cell contacts, thereby avoiding additional cell death. This
process enables Model 4 to terminate successfully in
regions of adhesive affinity where Js, s ≈ Jp, s, which result in
death cascades in Model 3.

Discussion
What mechanisms are needed to create a regular two-
dimensional mosaic of cells? We explored answers to this

question by examining the interplay of lateral inhibition,
cell rearrangements driven by differential adhesion, and
programmed cell death in creating and patterning two cell
types into a regular mosaic. The performance of four
experimental models that weave these patterning mecha-
nisms together in different ways was assessed and com-
pared with the development of a biological mosaic
pattern, the regular array of sensory and supporting cells
that emerges in the embryonic chick basilar papilla.

In the first part of this study, the output of four experi-
mental models was compared with two mosaic patterns:
the pattern generated computationally by a single round
of lateral inhibition and the mosaic of sensory and sup-
porting cells that emerges and is refined between embry-
onic days 9 and 12 in the chick basilar papilla. Modeling
studies were performed at fixed values of adhesive
strength chosen through guidance from the literature
[33].

In early work modeling lateral inhibition, Collier et al.
[22] showed that beginning from a field of equipotent
hexagonal cells, lateral inhibition alone was insufficient
to generate a perfectly regular mosaic of primary and sec-
ondary cells. They demonstrated that irregularity in the
resulting mosaic was due to the random mixing of three
alternative patterns corresponding to alternative homoge-
neous steady-state solutions to the differential equations.

Cell death rates for models 3 and 4 run over varying cell-cell adhesive valuesFigure 14
Cell death rates for models 3 and 4 run over varying cell-cell adhesive values. The death rates needed to achieve 
stable 0% defect rate. Adhesive values vary 1 ≤ Jp, p ≤ 22 and 1 ≤ Js, s, ≤ 22, with Js, p, = 11. Note that the red regions are where 
a death cascade occurs. Each graph cell shows the average over 40 randomized runs.
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In contrast to the geometrically perfect hexagonal cells of
Collier et al. [22], our models use the Cellular Potts Model
(CPM) to generate a population of irregularly-shaped,
undifferentiated cells. A refinement of our approach is
that the strength of signaling between a cell and each of its
neighbors is weighed by the length of contacting mem-
branes. Working with this more realistic model, we con-
firmed the results of Eglen and Willshaw [4] and showed
that lateral inhibition working in isolation can create an
irregular mosaic like those seen at early stages of develop-
ment.

Using the VRI as a measure of the primary cell mosaic reg-
ularity, the average VRI of the mosaics created by lateral
inhibition alone (Model 0) was 3.02, slightly less than the
primary cell VRI of 3.44 observed in the E12 chick basilar
papilla. Allowing iterations of lateral inhibition and cell
rearrangements driven by differential adhesion (Model 2)
improved primary cell regularity to 3.60. Incorporating
the programmed death of cells that make defective con-
tacts (Models 3 and 4), further improved primary cell reg-
ularity to values (4.50 and 4.35, respectively) above that
observed in the chick basilar papilla.

In their description of the development of the chick basi-
lar papilla sensory and supporting cell mosaic, Goodyear
and Richardson [18] argued that cell rearrangements must
occur after an initial pattern is created by lateral inhibi-
tion. Our results support this conclusion, but suggest that
lateral inhibition and differential adhesion are insuffi-
cient to explain the connectivity distribution (where no
secondary cells touch a single primary) seen in the E12
stage of the basilar papilla [18]. Goodyear and Richardson
[18] used a rough numerical argument based on a field of
1000 cells to discount cell death as a mechanism in the
development of the basilar papilla, but they assumed that
cell death was limited to the elimination of one member
of a pair of contacting primary cells. In contrast, in this
work cell death occurs principally in secondary cells and
accounts for the observed elimination of those secondary
cells that contact exactly one primary as observed in [18].
Additionally, death of secondary cells would have the
effect of decreasing the secondary to primary cell ratio as
the pattern refines between E9 and E12. This is exactly
what Goodyear and Richardson reported. Our results
imply that cell death is necessary to account for the
mosaic regularity and connectivity pattern observed in the
basilar papilla.

In the second part of this study, we examined the robust-
ness of each model to alterations in homotypic cell affin-
ity. Others have explored how cell rearrangements are
affected by varying levels of affinity between two different
cell types and the surrounding medium [21,35]. However,
to our knowledge, this study is the first to investigate how

additional patterning mechanisms working in conjunc-
tion with differential cell adhesion perform over a range
of adhesive values.

Mosaic formation by differential adhesion is favored
when the average affinity between primary cells is less
than the average affinity of primary-primary and second-
ary-secondary interactions, which in turn is less than the
strength of primary-secondary interactions (i.e., (Jp, p >

 > Js, p). In contrast, when Jp, p <  <Js,

p, like cells tend to aggregate. The ability of each model to

generate mosaic patterns, especially in the range of adhe-
sive values unfavorable to mosaic formation, provided an
assessment of the robustness of each patterning strategy.
We found that the set of models performed quite differ-
ently across the examined range of homotypic cell adhe-
sive values.

The primary cell VRI was examined for all four experimen-
tal models, and measures of the percentage of defective
cell contacts, instability of cell state, and percentage of cell
death required before model termination were examined
in select pairs of models. Model 1, which ran only rounds
of differential cell adhesion after one round of lateral inhi-
bition, was the only one that provided stable solutions
over the entire range of homotypic adhesive values.

Morphostatic Model 3, which ran a loop composed of cell
death and differential adhesion without lateral inhibition,
was notably sensitive to adhesive values. While each cell
death event reduced the count of defect cells by one, sub-
sequent cell rearrangements often caused additional
defects, thereby creating a death cascade that terminated
when only a few cells remained.

Morphodynamic Models 2 and 4, which incorporate dif-
ferential adhesion and lateral inhibition into iterative
loops, also failed at unfavorable homotypic adhesive val-
ues because of cell state instability. In these models, lateral
inhibition repaired defective cell contacts formed by dif-
ferential adhesion (e.g., two primary cells touching or a
secondary cell not touching a primary cell). Iterating each
model leads to an unstable cycle of mosaic disruption and
repair.

Of the four experimental models, Model 4, which iterates
a loop of lateral inhibition, programmed cell death, and
differential adhesion, provided the highest mosaic regu-
larity over the broadest range of homotypic adhesive val-
ues. The combination of programmed cell death and
lateral inhibition was able to correct many pattern defects

( ), ,J Js s p p+
2

( ), ,J Js s p p+
2
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introduced by differential adhesion run at non-optimal
values.

Conclusion
We found that lateral inhibition acting alone (Model 0)
was insufficient to create a highly regular mosaic of cells
of biologically-realistic shape. Adding cell rearrangement
driven by differential adhesion (Model 1) to the pattern-
ing strategy improved mosaic regularity. Strategies that
included programmed cell death (Models 3 and 4) per-
formed even better, yielding mosaic patterns more regular
than those seen in the chick basilar papilla. Morphody-
namic models that incorporated lateral inhibition into a
feedback loop were unstable in some regions (Model 2),
but when all three patterning mechanisms were utilized
(Model 4), patterns became significantly more robust over
a variety of homotypic cell-cell adhesion strengths.
Finally, regular patterns could be generated using local
computation based on units of single cells (as discussed
by Merks and Glazier [23]); there was no need, as was the
case in some earlier models [4], for global decisions such
as choosing the nearest neighbor among a group of con-
tacting cells or distinguishing the largest or smallest cell in
a developmental field.

Individually, each of the patterning mechanisms exam-
ined here has well documented roles in development.
What is less clear is the temporal overlap and coordina-
tion between these mechanisms during development. In
exploring how lateral inhibition, cell rearrangements
driven by differential cell adhesion, and programmed cell
death can work alone or together, we found that when
using cells of irregular size and shape, lateral inhibition is
insufficient to create mosaic patterns with the regularity
seen in nature. Coupling differential adhesion with lateral
inhibition in an iterative loop raised mosaic regularity to
the level observed in our target pattern, the mosaic of sen-
sory and supporting cells of the chick basilar papilla. Fur-
ther improvement in regularity was achieved when
programmed cell death was added to the models. These
results support the view that patterning mechanisms are
used together in a temporally-overlapping and iterative
manner in biological development.

The specification of characteristic cell adhesive values
through the expression of cell surface adhesive proteins is
a well established element of patterning. In examining
how homotypic cell adhesion affects the patterns gener-
ated by the various models, we found that a strategy that
incorporates programmed cell death and lateral inhibi-
tion into a loop with differential adhesion (Model 4) is
robust over a broad range of adhesive values, including
some values that would not allow development of a regu-
lar mosaic under simpler schemes (Models 1, 2 and 3).
This finding suggests that in addition to improving

mosaic regularity, patterning strategies that incorporate
multiple interacting mechanisms offer the advantage of
robustness in the face of poorly specified or highly varia-
ble initial conditions.
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