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Abstract
Background: The spread of infectious disease is determined by biological factors, e.g. the duration
of the infectious period, and social factors, e.g. the arrangement of potentially contagious contacts.
Repetitiveness and clustering of contacts are known to be relevant factors influencing the
transmission of droplet or contact transmitted diseases. However, we do not yet completely know
under what conditions repetitiveness and clustering should be included for realistically modelling
disease spread.

Methods: We compare two different types of individual-based models: One assumes random
mixing without repetition of contacts, whereas the other assumes that the same contacts repeat
day-by-day. The latter exists in two variants, with and without clustering. We systematically test
and compare how the total size of an outbreak differs between these model types depending on
the key parameters transmission probability, number of contacts per day, duration of the infectious
period, different levels of clustering and varying proportions of repetitive contacts.

Results: The simulation runs under different parameter constellations provide the following
results: The difference between both model types is highest for low numbers of contacts per day
and low transmission probabilities. The number of contacts and the transmission probability have
a higher influence on this difference than the duration of the infectious period. Even when only
minor parts of the daily contacts are repetitive and clustered can there be relevant differences
compared to a purely random mixing model.

Conclusion: We show that random mixing models provide acceptable estimates of the total
outbreak size if the number of contacts per day is high or if the per-contact transmission probability
is high, as seen in typical childhood diseases such as measles. In the case of very short infectious
periods, for instance, as in Norovirus, models assuming repeating contacts will also behave similarly
as random mixing models. If the number of daily contacts or the transmission probability is low, as
assumed for MRSA or Ebola, particular consideration should be given to the actual structure of
potentially contagious contacts when designing the model.
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Background
The spread of infectious disease is determined by an inter-
play of biological and social factors [1]. Biological factors
are, among others, the virulence of an infectious agent,
pre-existing immunity and the pathways of transmission.
A major social factor influencing disease spread is the
arrangement of potentially contagious contacts between
hosts. For instance, the distribution of contacts among the
members of a population (degree distribution) strongly
impacts population spread patterns: Highly connected
individuals become infected very early in the course of an
epidemic, while those that are nearly isolated become
infected very late, if at all [2,3]. For a high dispersion of
the degree distribution, the transmission probability
above which diseases spread is lower than for a low dis-
persion [2-4]. If the degree distribution follows a power
law, the transmission probability necessary to sustain a
disease even tends to zero [5-7].

Another important structural property influencing the
spread of diseases is the clustering of contacts. Clustering
deals with how many of an individual's contacts also have
contact among each other. High clustering of contacts
means more local spread (within cliques) and thus a rapid
local depletion of susceptible individuals. In extreme
cases, infections get trapped within highly cohesive clus-
ters. Random mixing is known to overestimate the size of
an outbreak [8], whereas the local depletion caused by
clustering remarkably lowers the rates of disease spread
[9,10]: Clustering results in polynomial instead of expo-
nential growth, which can be expected for unclustered
contact structures [11].

For most of the diseases transmitted by droplet particles or
through close physical contact, the number of contacts
that can be realistically made within the infectious period
has a clear upper limit. The mean value of potentially con-
tagious contacts can be interpreted in a meaningful way,
since the distribution of daily contacts is unimodal with a
clear "typical" number of contacts [12-15]. Potentially
dominant properties of the underlying contact structure
are the clustering of such contacts and their repetitiveness,
i.e. whether contacts repeat within the infectious period or
not.

A recent study combining a survey and modelling showed
that the repetition of contacts plays a relevant role in the
spread of diseases transmitted via close physical contact.
Contrarily, the impact of repetitiveness seems to be negli-
gible in case of conversational contacts [16]. However, the
generality of these findings is limited, as they are based on
a small, unrepresentative sample and as the specific pat-
terns of such contacts vary depending on the national and
cultural context [12]. A more theoretical work showed
that the dampening effect of contact repetition is further

increased by contact clustering and is more pronounced if
the number of contacts per day is low [10].

The aim of this paper is to better understand the condi-
tions under which the inclusion of contact repetition and
clustering is relevant in models of disease spread com-
pared to a reference case assuming random mixing. This is
pertinent, as many researchers still use the random mixing
assumption without thoroughly discussing its adequacy
for the respective case study [17-21]. In particular, we test
and discuss the influence of transmission probability,
number of contacts per day, duration of the infectious
period, clustering and proportion of repetitive contacts on
the total outbreak size of a disease. This helps modellers
and epidemiologists make informed decisions on
whether the simplifying random mixing assumption pro-
vides adequate results for a particular public health prob-
lem.

Methods
Stochastic SIR models
We assess the influence of repetitive contacts and cluster-
ing on the total outbreak size Itot (number of new infec-
tions over simulation time) for a simple SIR structure
[3,22] under which every individual is either fully suscep-
tible or infectious or recovered (= immune) (cf. figure 1a).
We construct two different types of individual-based mod-
els: one assuming random mixing (i.e. contacts are unique
and not clustered), the other assuming complete contact
repetitiveness (i.e. the set of contacts of a specific individ-
ual is identical for every simulation day) and allowing for
clustering (cf. figure 1b and additional file 1). Both model
types can be blended in varying proportions. In our mod-
els, every infectious individual infects susceptible contacts
at a daily probability , which is equal for all infectious-
susceptible pairs. Individuals remain infectious for an
infectious period , which is exactly defined and not sto-
chastic in its duration. Infectious individuals turn into the
recovered state as soon as the infectious period passed by.
We assume that infection confers full immunity for the
time scale of the simulation. Hence, recovered individuals
cannot be reinfected by further contacts with infectious
persons. There are no birth or death processes: Hence, the
population size is constant. All possible state transitions
are delineated in figure 1a.

Under the random mixing assumption (in mathematical
terms denoted by index ran), n contacts are randomly cho-
sen out of the whole population (including susceptible,
infectious and recovered individuals) for every individual
and every day. There is neither contact repetition nor clus-
tering, as our algorithm ensures, that no contact partner is
picked twice by the same individual.
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In fact, clustering is neither properly defined nor is it a rea-
sonable concept under the random mixing assumption
for theoretical and practical reasons: In this paper we refer
to the common definition that the clustering coefficient
CC is the ratio of closed triplets to possible triplets [23],
where a closed triplet is defined as three individuals with
mutual contact. This definition is based on static net-
works. As in random mixing models contacts change
daily, different clustering coefficients could be calculated
for every single simulation time step. However, no epide-
miologically relevant effect of such clusters could be
observed, because any new infection comes into effect
only in the following time step when contacts are already
rearranged. As a consequence, there is no local depletion
of susceptible individuals observable under this defini-
tion, even for high clustering coefficients. If clustering
would be defined for an extended time interval (e.g., the
infectious period), an enormous amount of closed triplets
would be necessary to attain only slight clustering coeffi-
cients as the total number of contacts over such a long
time is very high. For such huge cliques, there is no mean-
ingful interpretation and no analogy in the real world.

Repetitive contacts (in mathematical terms denoted by
index rep) are implemented by generating a static network
with n links for every individual. The links of this network
represent stable, mutual, daily contacts between individu-
als. As mentioned, the model type assuming repetitive
contacts exists in two variants. For the variant without
clustering, individuals are linked completely at random.
Nonetheless, for repetitive contacts, clustering is a mean-
ingful concept as contacts are static and as clusters corre-
spond to observable entities in the real world: Family or
work contacts, for instance, are usually clustered and tend
to be highly repetitive. In this paper, predefined average
clustering coefficients are achieved by alternately generat-
ing random links and triplet closures, as suggested by
Eames [10], until the clustering aim is achieved in average
for the whole population. When the target value of closed
triplets is reached, the network is filled up with random
contacts until all individuals have n contacts.

This paper compares most parameter settings for a model
assuming either full random mixing or perfect repetitive-
ness of contacts. This comparison allows for estimating
the maximal possible difference between both antipodal
simplifications of reality. However, real world dynamics
of networks are far more complicated; therein some con-
tacts are repeated daily, others on certain days of the week
and others only once in a while. In order to investigate the
effect of different proportions of repetitive contacts, we
vary the fractions of repetitive contacts.

Parameter space to be tested
In the following section, we describe some important fac-
tors in the spread of infectious diseases that will be sys-
tematically tested for their influence on the difference
between the random mixing model and the model assum-
ing repetitiveness (with and without clustering).

Important biological factors influencing the spread of
infectious diseases are the duration of the infectious
period  and the per-contact transmission probability .

The infectious period  stands for the number of days (sim-
ulation time steps) a newly infected individual will
remain infectious. The effect of repetitive contacts is tested
for diseases with  values between 2 and 14 days (see  val-
ues given for various diseases in table 1).

The transmission probability  is defined as the probability
that an infectious-susceptible pair results in disease trans-
mission within one single time step of the simulation.  is
equal for every infectious-susceptible pair. The effect of 
on the impact of repetitive contacts compared to the refer-
ence case (without repetitive contacts) is analyzed via sys-
tematic variation.

State transitions and contact structuresFigure 1
State transitions and contact structures. Subfigure a: 
Two transitions are allowed between three different states 
an individual can take: (S)usceptible to (I)nfectious and 
(I)nfectious to (R)ecovered.  denotes the transmission 
probability of one susceptible-infectious pair per time step. i 
stands for the number of infectious contacts that a specific 
susceptible individual has at the current time step. t gives the 
current simulation time, whereas tinf gives the time step at 
which the individual was infected.  is the infectiousperiod. 
Subfigure b: We compare two model types: the contacts in 
the first type change daily while those in the second type are 
constant over time. The second model type assuming repeti-
tive contacts exists in the two variants 2a and 2b.
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In the results section, we show all results for ·n·  values
instead of pure  values to assure comparability of the
outcomes: ·n·  equals the basic reproduction number
R0 for the random mixing model and thus models with
the same ·n·  result in a similar total outbreak size.
Referring to ·n·  values assures that model comparisons
are always made for a relevant range of . The effect of
repetitive contacts is tested for ·n·  values between 1.2
and 4.0 in increments of 0.2. The epidemic threshold of
random mixing models is ·n·  = 1.0. As we are only
interested in diseases that can cause an epidemic, we set
the lower boundary to 1.2. The upper boundary is chosen
arbitrarily.

Social factors considered in this paper are the number of
contacts per day n, the proportion of repetitive contacts
and the clustering coefficient.

For every single simulation run, the number of contacts per
day n is constant and equal for all individuals. n counts
every contact an individual has within one simulation
step, regardless of the alter's infection status (susceptible,
infectious or recovered) and regardless of whether the
contact is repetitive. The effect of repetitive contacts on the
simulation outcome is tested for n values between 4 and
20 with a step width of 2 (mean values for conversational
contacts lie in this range [12]).

Table 1: Key transmission parameters of selected diseases

Disease R0  [d] Transmission pathways [32]

Chickenpox (Varicella) 7–12[3] 10–11[3] Direct contact, airborne, droplet, contact with 
infectious material

Ebola 1.34[42]a

1.79[43]
1.83[42]b

2.13[43]c, a

3.07[43]c, b

14[43] Direct contact, contact with infectious material, 
monkey-to-person

Influenza 1.3; 1.8; 3.1[17]d

1.39[51]
1.58; 2.52; 3.41[52]e

1.7–2.0[53]
2–3[54]f

3.77[55]

2–3[3]
2.27[55]
3–7[56]

Direct contact, airborne, droplet [57]

Measles 5–18[3]
7.17–45.41[33]g, h

7.7[34]
15–17[32]
16.32[33] g

6–7[3] Direct contact, airborne, droplet, contact with 
infectious secretions

MRSAi 1.2[41]j as long as purulent lesions continue to 
drain[40]

Direct contact, contact with infectious 
material[40]

Mumps 7–14[3]
4.4[35]h

10–12[32]

4–8[3] Direct contact, airborne, droplet, contact with 
infectious secretions

Norovirus 3.74[37]j 1.8[37]j Direct contact, droplet (vomiting), 
contaminated food[38,39]k

SARSk 1.43[43]l

1.5[43]m

1.6[47]
2.2–3.7[48]
>2.37[49]

4[49]
5[43]

Close direct contact

Whooping cough (Pertussis) 10–18[3]
15–17[32]

7–10 [3] Direct contact, airborne, droplet, contact with 
infectious secretion

Abbreviations, data sources and methods for the calculation of R0, as far as known: a outbreak Uganda 2000 [44]; b outbreak Congo 1995 [45]; c 

regression estimates; d 1918 pandemic data from an institutional setting in New Zealand [17]; e 1918 pandemic data from Prussia; assuming serial 
intervals of 1, 3 and 5 days [52]; f 1918 pandemic data from 45 cities of the United States [54]; g data from six Western European countries [33]; h 

age structured homogenous mixing model; i MRSA, Methicillin-Resistant Staphylococcus Aureus;j hospital outbreaks; k SARS, Severe Acute Respiratory 
Syndrome;l outbreak Singapore 2003 [50]; m outbreak Hong Kong 2003 [50]



Theoretical Biology and Medical Modelling 2009, 6:11 http://www.tbiomed.com/content/6/1/11

Page 5 of 15
(page number not for citation purposes)

In order to investigate the effect of varying fractions of
repetitive contacts, we simulate the total outbreak size for
0%, 25%, 50%, 75% and 100% repetitive contacts.
Thereby, 25% repetitive contacts means that one fourth of
all contacts on a given day repeat daily but that three
fourth of the contacts on a given day are unique.

In the case of repetitive contacts, clustering coefficients
between CC = 0.0 and 0.6 with a step width of 0.2 are
accounted for. This span covers a wide range of existing
transmission systems from highly infectious diseases with
a high number of contacts per day and with clustering
coefficients close to zero to highly structured settings with
a considerable proportion of clustered contacts like in
hospitals [24].

For all runs of the simulation model, the total population
N was fixed to 20000 individuals. As initial seed 15 ran-
domly chosen individuals are set to infectious every sim-
ulation run. For each combination of model parameters
350 runs were performed to achieve stable mean values of
the outcome variables. A simulation run was terminated
when no infectious individual was left.

Overview on performed analyses
We test the influence of the abovementioned parameters
on the difference between the model typed in three dis-
tinct analyses. First, we show how strongly the total out-
break sizes Itot, ram and Itot, rep differ depending on , n and

. In the second analysis we vary n and  and the cluster-
ing coefficient CC for the case of repetitive contacts.
Thirdly, we show how the total outbreak size changes
under various n,  and CC, when repetitive and random
contacts are mixed in varying proportions. Details for the
three analyses are given in table 2.

In addition to the total outbreak size, we present further
epidemiologically relevant indicators in the additional
files. Epidemic curves can be found in additional file 2,
findings on the model differences regarding the average
peak size of the outbreaks and the average time to peak are
given in additional file 3.

Results and discussion
Analysis 1: The effect of contact repetition depending on 
, n and 

As described in the methods section, , n and ·n·  have
been varied systematically to investigate the difference

between the mean values of the outbreak sizes  and

 under different parameter constellations. Figures

2a–c show three contour plots in which the difference

between both model types  is given

for various , n and  values. Figure 2a gives

 depending on 4  n  20 and 2   

14 with a fixed ·n·  = 1.6. The total outbreak size
depends strongly on the number of contacts per day n but

only slightly on the infectious period . In case of an infec-
tious period between two and four days, there is a consid-

erable change of  with ; for 4 <  

8, slight changes are observable; in case of infectious peri-
ods over eight days, the difference between both models
depends mainly on n. Figure 2b gives

 depending on 4  n  20 and 1.2 

·n·   4.0 with a fixed  = 14. It shows that the difference
between both models depends strongly on both parame-
ters, the number of daily contacts n and the transmission

probability . Differences are large for a small n or small 

but negligible for a large n when  is large at the same

time. Figure 2c, showing  for 1.2 

·n·   4.0, 2    14 and n = 4, is consistent with the
observations made for the other two figures.

Effect of contact number

The increasing difference between  and  with

decreasing n can be explained by two lines of reasoning.

I tot rep,

I tot ran,

I I Ntot ran tot rep, ,−( )

I I Ntot ran tot rep, ,−( )

I I Ntot ran tot rep, ,−( )

I I Ntot ran tot rep, ,−( )

I I Ntot ran tot rep, ,−( )

I tot rep, I tot ran,

Table 2: Parameter settings of the analyses

n  [d] ·n· CC Proportion repetitive contacts

Analysis 1
a 4 – 20; 2 2 – 14; 1 1.6 .0 .0 vs. 1.0
b 4 – 20; 2 14 1.2 – 4.0; .2 .0 .0 vs. 1.0
c 4 2 – 14; 1 1.2 – 4.0; .2 .0 .0 vs. 1.0
Analysis 2 4 – 20; 2 14 1.2 – 4.0; .2 .0 – .6; .2 .0 vs. 1.0
Analysis 3 8 – 20; 4 14 1.2 – 3.0; .6 .0 – .6; .2 .0 – 1.0; .25

Parameter ranges are given before the semicolon; the increment is given after the semicolon. Single numbers stand for fixed values.
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First, in the case of contact repetition, there is always at
least one out of the n contacts per day that is already
infected (and thus not available for new infection): As
contacts are stable over time, the infector of a susceptible
individual is included in the subsequent contact list of
that individual even when said individual has changed to
the infectious state. Thus, at the least, the contact that orig-
inally transmitted the infection is not susceptible. In con-

trast, contacts change in every time step under the random
mixing assumption: Hence, the infector is not more likely
to appear in the contact set than any other individual. This

difference between  and  is more pro-

nounced for small n because one non-susceptible individ-
ual out of a small set of contacts means a relatively higher
decrease in local resources than does one out of a large set
of contacts.

I tot rep, I tot ran,

Model differences depending on , n and Figure 2
Model differences depending on , n and . Subfigures a-c show the difference in the total outbreak size between a pure 
random mixing model and a model assuming complete repetitiveness (without clustering) relative to the population size N. 
Contour plots are interpolated from a grid of measurement points using Microsoft® Office Excel 2003. (a) infectious period: 2 
   14, step width (sw): sw = 1; daily number of contacts: 4  n  20, sw = 2; per-contact transmission probability: ·n·  = 

1.6. (b) 1.2  ·n·   4.0, sw = .2; 4  n  20, sw = 2;  = 14. (c) 1.2  ·n·   4.0, sw = .2; 2    14, sw = 1; n = 4.
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Secondly, any new infection means that the infector will
have one susceptible contact less for all subsequent time
steps. This local depletion of resources is more pro-
nounced for small n for the same reason as in the first
argument. Further, stochasticity acts stronger in small
local environments than in large ones [25].

Both effects can also be seen in the equation 1, which
gives R0,rep as a function of R0,ran, n and  (see also figure
3a; details for equation 1 are given in additional file 4):

In this equation the number of susceptible individuals in
the local environment is reduced by 1 compared to the
random mixing case, as we assume that every contact
except the one that originally transmitted the infection is
susceptible. This number of susceptible individuals (n - 1)
is multiplied by the probability that such an individual
becomes infected during the infectious period . As (n - 1)
is smaller than n and [1 - (1 - ) ] is smaller (or equal for
 = 1) than · , the expected number of secondary cases

caused by an infectious individual in a population with a
huge number of susceptible and few infected ones is
always smaller in the repetitive case.

Effect of the per-contact transmission probability

The difference between  and  decreases rap-

idly with increasing . The reason is that practically every
individual will be reached and infected in case of large
transmission probabilities, regardless of the underlying
contact structure. Differences between both models may
appear in the shape of the outbreak curve (cf. to addi-
tional files 2 and 3), but in terms of Itot both models are

equivalent. In case of small transmission probabilities,
differences in the effective number of secondary cases gen-
erated by an infectious individual can become visible, as
only a fraction of the whole population will be infected
under both assumptions.

Effect of the infectious period

As expected, the difference between  and 

increases with increasing . However, the change in differ-

ence is largest for  in a range of low  values, but is

almost irrelevant for high values of . This observation is

explained by the -dependence of R0,rep (equation 1, see

also figure 3b): The longer the infectious period, the
smaller the chances for a specific contact to remain unin-
fected. However, this increase in individual infection

probability is partly compensated by a lower per-day
transmission probability, which is needed to achieve con-
stant R0,ran. The interaction of these antagonistic effects

results in a stabilization of R0,rep/R0,ran for a large .

Analysis 2: The effect of contact repetition combined with 
clustering depending on n and 

The results presented previously show that

 depends mainly on n and . In a sec-

ond step, we investigate how the difference between
model type 1 and 2 changes, if clustering is introduced in
the latter. Figures 4a–d show the difference between both
model types for clustering coefficients CC between 0.0

and 0.6 when  is fixed to 14 days and when n and ·n·
vary in the ranges mentioned above. As expected, cluster-
ing results in an increased difference between both model
assumptions. This increase is most pronounced for small
numbers of contacts per day. The peak of

 is constantly at n = 4 but shows a

right shift on the ·n·  axis for increasing CC.

The further dampening of disease spread by clustering can
be explained by increased locality of resources: While rep-
etition limits the number of available susceptible individ-
uals by keeping previously infected ones in the set of
contacts, clustering reduces the number of susceptible
contacts because there is a higher likelihood that contacts
of an infector have already become infected by others dur-
ing the infectious period, as infections spread rapidly
within cliques. The reason why this effect is more pro-
nounced for small n rather than for large n is the same as
in the case of unclustered, pure contact repetition: Any
reduction of susceptible individuals in the set of contacts
weights relatively stronger in the case of few contacts than
in the case of many. The right shift of the peak of

 can be explained by the increased trans-

mission probability  needed to pass the epidemic thresh-
old under increased clustering compared to the constantly

low levels of  necessary under the random mixing
assumption [26].

Analysis 3: Varying proportions of contact repetition, 
clustering and 

We simulated the difference between both model assump-
tions for all possible combinations of n = 8, 12, 16 and 20,

· n·  = 1.2, 1.8, 2.4 and 3.0,  = 14 and CC = 0.0, 0.2,
0.4 and 0.6. The simulation results are shown in figures

R n
R ran

nrep0 1 1 1 0
,

,≅ −( ) ⋅ − −
⋅

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(1)

I tot rep, I tot ran,

I tot rep, I tot ran,

I I Ntot ran tot rep, ,−( )

I I Ntot ran tot rep, ,−( )

I Itot ran tot rep, ,−( )



Theoretical Biology and Medical Modelling 2009, 6:11 http://www.tbiomed.com/content/6/1/11

Page 8 of 15
(page number not for citation purposes)

Ratio of the basic reproduction numbersFigure 3
Ratio of the basic reproduction numbers. Subfigure a shows the ratio R0,rep/R0,ran (as defined in equation 1) for 1  n  20 
(number of daily contacts) and  = 14 (infectious period). Triangles stand for ·n·  = R0,ran = 2.4, squares for R0,ran = 1.8 and cir-
cles for R0,ran = 1.2. Subfigure b gives R0,rep/R0,ran depending on the infectious period . Red lines and symbols are for n = 4, and 
blue lines stand for n = 10, whereas green lines represent n = 16. The meaning of the symbols is identical as in subfigure a.
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5a–p. The relation between the proportion of repetitive
contacts per day and the average difference between this
mixed model and a model assuming purely random mix-
ing is approximately linear in the absence of clustering
(for all tested cases, linear regressions between the propor-

tion of repetitive contacts per day and the deviation of 
from the purely random mixing model achieve R2 > .98).
However, the deviation from the random mixing model
increases disproportionately with the fraction of repetitive
contacts when clustering is introduced (cf. to figures 5b–
d, f–h, j–l and 5n–p).

One mechanism driving this non-linear relation when
clustering is present is the local depletion of resources.
Repetitive contacts of an infector have a much higher
chance of becoming infected than do non-repetitive con-
tacts. Moreover, if these repetitive contacts are also highly
clustered, it is likely that the disease will become trapped
in those cohesive social subgroups. However, if only a few
non-repetitive, non-clustered contacts are added per day,
the chances of spreading the disease between otherwise
unrelated regions of the social network greatly increase.

I tot

Dampening effect of clusteringFigure 4
Dampening effect of clustering. Subfigures a-d show the difference in the total outbreak size between a pure random mix-
ing model and a model assuming complete repetitiveness (with different levels of clustering) relative to the population size N 
for 4  n  20, 1.2  ·n·   4.0 and  = 14. Subfigure 4a is identical with subfigure 2b. The clustering coefficient CC is increased 
picture-wise in steps of .2.
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Mixed modelsFigure 5
Mixed models. Subfigures a-p show the decrease of the total outbreak size relative to the size of the total population when 
the fraction of repetitive and clustered contacts is increased. 25% rep means that one fourth of all contacts on a given day 
repeat every day but that three fourths of the contacts on a given day are unique. Clustering coefficients CC are only defined 
and calculated for the repetitive fraction of the contacts. All simulations were calculated for an infectious period of 14 days. 
Orange circles stand for ·n·  = 1.2, red squares for ·n·  = 1.8, blue triangles for ·n·  = 2.4 and green rhombi for ·n·  = 3.0. 
The number of daily contacts n increases in steps of 4 per line of the subfigures, beginning with n = 8 in the first line. The first 
column of the subfigures shows CC = .0, the second column CC = .2, the third column CC = .4 and the fourth column CC = .6.
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Limitations
This paper systematically investigates a variety of epidemi-
ologically relevant parameters needed to describe real-
world transmission systems of diseases spread by droplet
particles or direct physical contact. However, real-world
social and biological processes involved in the transmis-
sion of infectious diseases are far more complex than cap-
tured by the archetypical model structures presented.
Conceptual decisions and simplifications which could
have potentially influenced the results are critically dis-
cussed in the following:

Model structure
We designed our two model types as SIR models, assum-
ing that every individual is either susceptible, infectious or
immune with respect to a certain disease. Transitions are
only allowed from susceptible to infectious or from infec-
tious to immune. The SIR structure is a fairly good repre-
sentation for many diseases which lead to full immunity
after recovery (e.g., measles). However, many diseases
require other representations, as relevant intermediate
states need to be covered, e.g., as with a long latency
period in SEIR (Susceptible-Exposed-Infectious-Recov-
ered) models. Another common deviation from the SIR
structure arises, when recovery confers only partial or no
immunity. In such cases, SIS (Susceptible-Infectious-Sus-
ceptible) representations are often chosen. In SIR or SEIR
models, a total outbreak size can be defined (because the
disease fades out at the end of an epidemic), whereas SIS
models typically achieve an equilibrium I(t) in the long
run, but the disease does not die out. Despite all the dif-
ferences in model behaviour, we expect the rough picture
to be the same for SIR, SEIR and SIS models, as the mech-
anisms behind the observed differences for SIR models
that we discussed also apply to SIS and SEIR models. Thus,
the general conclusions derived in this paper should also
hold true for these model types.

Degree distribution
The number of daily contacts n is fixed and equal for the
entire population in both modelling approaches pre-
sented. This is a reasonable simplification for the purpose
of this paper, as it keeps the investigated number of inter-
actions manageable. However, in real world systems, the
number of daily contacts appears to follow a negative
binomial distribution [12,14] with some people having a
relatively high number of contacts and others being
almost isolated. It is known that the variance of the degree
distribution impacts the spread of infectious disease, for
instance, by decreasing the transmission probability
needed to cause an epidemic [27]. Particularly relevant for
the difference between random mixing models and mod-
els accounting for contact repetition and clustering are the
correlations between the number of contacts per day and
contact repetition and clustering, respectively. It is plausi-

ble to assume that individuals with many contacts tend to
also have many unrepeated contacts, whereas individuals
with few contacts tend to have disproportionately high
levels of repetitive contacts. If the proportion of repetitive
contacts and clustering is correlated with the number of
contacts, individuals with few contacts are likely to be
dead-end streets for infectious diseases. In contrast, highly
connected individuals could be structurally more impor-
tant than expected, as they bridge distinct cliques.

Occasional contact repetition
In our simulations, contacts repeat either daily or never.
Intermediate states between both extremes of complete
random mixing and complete contact repetition have
been investigated by combining both models in defined
proportions. However, in reality, specific persons can be
met at any frequency between never and daily. It is plau-
sible to assume that intermediate frequencies reduce the
effect of repetitiveness depending on the duration of the
infectious period : For short infectious periods, those
with low contact frequencies might appear as unrepeated
contacts whereas they unfold their full dampening poten-
tial for long infectious periods.

Contact intensity and duration
In our models all contacts between an infector and a sus-
ceptible individual are equally likely to result in the trans-
mission of the infectious disease. This simplification is
not a good representation of the real world: The transmis-
sion probability depends on the amount of infectious
material ingested by a susceptible person [28,29]. The
uptake correlates with contact duration and intensity.
Contact duration is long for highly repetitive contacts,
while unrepeated contacts tend to have short duration
(unpublished data). Accordingly, it can be expected that
the interaction of clustering, contact repetitiveness and
contact duration leads to a rapid infection of all closely
tied clusters (primarily families, then workgroups and
cliques at school and childcare institutions), leaving
behind the people connected via mainly short, unclus-
tered, occasional contacts.

Distribution of infectious period

The infectious period  is fixed in our model, which con-
trasts to the design of classical mean-field models assum-
ing exponentially distributed infectious periods [3,22].
Keeling and Grenfell argue that R0 is smaller for exponen-

tial period models than for fixed period models under
otherwise identical conditions, because individuals with a

long  rapidly exhaust the susceptible in their local neigh-
bourhood and, therefore, cannot compensate for the large
majority of individuals with extremely short infectious
periods [25,30]. However, the often assumed exponential
distribution is highly unrealistic, as observed infectious
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periods tend to be closely centred around a mean period
and are thus less dispersed [31]. Thus, assuming a fixed
infectious period is a reasonable simplification of the real-

ity that is not likely to have a major influence on  as
only very few individuals will use up their local suscepti-
ble resources during the infectious period in most cases.
Moreover, if the infection probability is high enough to
exploit almost the entire local environment (such that

deviations of  could affect the individual reproduction

ratio),  will reach the order of magnitude of the popu-
lation size in either the fixed or the exponential case.

Implications for some exemplar diseases
Information on the per-contact transmission rate  and
the number of potentially contagious contacts n is often
not easily accessible or available and has to be measured
(or fitted) if included in models of disease spread. How-
ever, rough estimates of both variables can be obtained
when R0 estimates are available and when the possible
pathways of transmission are known, because  and n are
linked to the basic reproduction number by R0,ran = ·n·
and the possible pathways reveal information on the pos-
sible number and structure of contacts at risk: At one
extreme there is transmission via close physical contacts,
which correlate mostly with intense social relations and
are typically rare, repetitive and highly clustered. The
other extreme is airborne transmission via tiny droplet
nuclei that remain suspended indoors for a long time. In
this case, vast numbers of persons can potentially be
exposed, and such casual contacts are neither highly repet-
itive nor strongly clustered.

Table 1 provides information about the infectious period
, R0 estimates and the possible pathways of transmission

for a variety of infectious diseases. The implications of
clustering and contact repetition for models of the dis-
eases listed in this table are discussed below.

Typical childhood diseases like mumps, measles, pertussis
(whopping cough) or chickenpox have comparatively
high R0 estimates [3,32-35], which means that one infec-

tor generates many secondary cases if a sufficient number
of susceptible contact partners are available. These dis-
eases are highly communicable – in fact, measles is one of
the most highly communicable diseases in the world [36]
– and thus, very short and non-intense contacts have the
potential to confer infection. Accordingly, both the
number of contacts per day n and the per-contact trans-

mission probability  are very high. We further assume
that a high proportion of the contacts are casual contacts,
because the threshold for a contact to be potentially con-

tagious is very low with respect to duration and intensity.
Consequently, the levels of repetitiveness and clustering
are low, which means that the contact patterns for such
childhood diseases are structurally similar to random
mixing. Considering that high numbers of daily contacts
n make both types of models that we discussed behave
similarly and considering that under high transmission

probabilities  almost every individual will be reached,
random mixing models achieve almost the same results as
more elaborate models including a certain amount of
contact repetition and clustering. Also in case of Norovi-

rus, the difference  is probably small, as

the infectious period of this infectious agent is very short
[37] and as at the same time the basic reproduction
number is comparatively high [37] (because the disease is
easily communicable [38,39]).

On the other side, there are diseases with comparatively
low R0 estimates and typically low numbers of contacts
that still qualify for potential transmission. Methicillin-
resistant Staphylococcus aureus (MRSA), for instance, is an
infectious agent mostly transmitted in health care and
nursing institutions. It needs close physical contact for
transmission [40] and R0 estimates given in the literature
are close to the epidemic threshold [41]. Accordingly,
both  and n are low. At the same time, health care set-
tings tend to be highly structured regarding who cares for
whom and who shares a room with whom. Hence, high
levels of contact repetitiveness and clustering can be
assumed [24]. Modelling MRSA under the random mixing
assumption is likely to overestimate the total number of
cases for given n,  and . If, in contrast, a random mixing
model is fitted to measured data from an outbreak, either
the infectivity or the number of potentially infectious con-
tacts will be underestimated to meet the measured out-
break size. A similar argumentation applies to Ebola,
which is transmitted via direct contact with infected
blood, secretions, organs or semen (thus, n is rather low)
and seems to be only moderately infectious [42-45]. As a
consequence, random mixing models of Ebola [46] are of
limited validity.

Finally, there are some diseases not easily attributable to
one or the other class. Severe Acute Respiratory Syndrome
(SARS) and Influenza, for instance, have a range of R0 esti-
mates between 1.43 and 3.7 [43,47-50] and between 1.3
and 3.77 [17,51-56], respectively. No definite consensus
has been reached on whether Influenza is transmitted pre-
dominantly by large droplets and close contact or by very
small droplets that disseminate quickly and stay sus-
pended in indoor air for a long time [57]. In the latter
case, a large amount of people would be at risk of infec-

I tot

I tot
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tion, so random mixing would be a reasonable approxi-
mation of the real contact patterns. In the case of
transmission by close contact and large droplets (that fall
out quickly), the mean number of potentially contagious
contacts per day lies between 8 and 18, depending on the
national and cultural context [12]. Considering that not
all contacts are equally likely to transmit influenza, but
that long and intense contacts (such as household con-
tacts [58]) are more prone to do so and that such contacts
also tend to be more repetitive and clustered, it is likely
that random mixing models also overestimate the out-
break size for given n,  and . However, problems will
definitely arise when the impact of social distancing meas-
ures (decrease of n) or of antiviral treatment (decrease of

) are estimated under the random mixing assumption:
Both interventions will be much more effective in a more
elaborate model than in a random mixing model when n,
 and  are the same for both model types. This argumen-

tation is consistent with recent findings on the impact of
other network properties on influenza spread: Heteroge-
neity in degree distribution does not influence the out-
break size in case of highly contagious influenza strains,
but does so for moderately contagious strains; however, it
does influence the total outbreak size when interventions
are simulated – even in case of highly contagious strains
[4].

Conclusion
Real-world contact patterns are complex. They typically
show all kinds of intermediate states ranging from con-
tacts repeating on a daily basis to and never again. There
are various clearly defined, cohesive groups with typically
high intra-group clustering coefficients (e.g. households,
workgroups, peer groups at school) and, at the same time,
random contacts, e.g., in a leisure setting. Moreover, con-
tacts differ in intensity and duration, which further com-
plicates the dynamics of disease spread in such settings.
This paper simplifies these complex patterns to a manage-
able model and parameter space that can be investigated
systematically. Our research applies to diseases transmit-
ted via conversational or direct contact, for which a typical
number of contacts per day can be defined. For such dis-
eases, our findings can help modellers judge whether a
specific transmission system consisting of a specific infec-
tious agent and a specific human system at risk can be rep-
resented by a simple random mixing model or if more
elaborate models are necessary.

Random mixing models result in acceptable estimates of

the total outbreak size  even if the real world contacts
are highly repetitive and clustered

• if the number of potentially infectious contacts per day
is high and

• if the transmission probability for a single infectious-
susceptible pair is high and

• particularly, if the infectious period is just one to three
days.

If the number of contacts per day or the transmission
probability is low, particular consideration should be
given to the actual structure of potentially contagious con-
tacts in designing the model.
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