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Abstract

Objective: Observations of microcirculation reveal that the blood flow is subject to
interruptions and resumptions. Accepting that blood randomly stops and resumes,
one can show that the randomness could be a powerful means to match oxygen
delivery with oxygen demand.

Method: The ability of the randomness to regulate oxygen delivery is based on two
suppositions: (a) the probability for flow to stop does not depend on the time of
uninterrupted flow, thus the number of interruptions of flow follows a Poisson
distribution; (b) the probability to resume the flow does not depend on the time for
flow being interrupted; meaning that time spent by erythrocytes at rest follows an
exponential distribution. Thus the distribution of the time to pass an organ is a
compound Poisson distribution. The Laplace transform of the given distribution gives
the fraction of oxygen that passes the organ.

Result: Oxygen delivery to the tissues directly depends on characteristics of the
irregularity of the flow through microcirculation.

Conclusion: By variation of vasomotion activity it is possible to change delivery of
oxygen to a tissue by up to 8 times.

Introduction
The irregular pattern of blood flow through the microcirculation has been described for

all organs and tissues of the body [1]. Estimations of the irregularity of flow by the spec-

tral analysis of a Laser-Doppler signal established that low level of fluctuations in flow is

a sign of the pathology [2], particularly of the low level of oxygen consumption [3].

We hypothesized that the consideration of irregularities as a stochastic process

reveals the ability of randomness be a regulator of oxygen delivery. The aim of the

paper is to test this hypothesis. To reveal the ability of vasomotion to be a regulator of

oxygen delivery we start with two well-established facts (a) any organ at rest has only a

fraction of microvessels perfused [4], (b) there are about a hundred agents influencing

the vasomotor fibers when changing flow from a total stop to a maximum. As a conse-

quence, we can assume that the state of microvessels (open or close) is governed by

random causes (a summation of all influences). If a stochastic approach is accepted,

then it is reasonable to start with a model based on the assumption that the state of

the microvessels depends on the current influences and not previous effects, mathema-

tically speaking, we accept a markovian property for the microvascular system). Main
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result of the paper can be formulated as follows the less blood flow through an organ,

the more effective vasomotion regulation could be.

Stochastic description of microcirculation
We start with the simple stochastic model: Let T be the time needed for any erythro-

cytes (RBC) to pass an organ if the RBC is in the move, and T is constant for given

organ. The total time to pass an organ by a RBC will be denoted as t, and t - T is the

time spent in the interruptions of flow. To find the t let assume that a probability of

flow to stop does not depend on the time of uninterrupted flow. Given assumption

leads to a Poisson distribution of the number of the interruptions of flow [5] with

probability to have, during time T, n interruptions (pn) given by:

p T
T n

nn = −exp( )
( )

!
β β (2:1)

where b is the measure of the intensity of the interruption, and b equals to the mean

number of interruptions during 1 sec.

Let also assume that the probability to resume the flow does not depend on the time

for the flow being interrupted; meaning that the time τ to resume the flow (after stop-

ping) follows an exponential distribution [5]:

fμ τ μ μτ, ( ) exp( )1 = ⋅ − (2:2)

where μ is the measure of the intensity to resume the flow and 1/μ is the mean time

for resuming of flow.

Since the time t-T is the time spent in n interruptions of flow, then the sum of n

independent random variables with distribution given by (2.2), has the distribution:
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Combination of (2.1) and (2.3) leads to the distribution of the time to pass an organ,

P(t):
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We assume also that the flux of oxygen into tissue, along any microvessels, follows

an equation of first order [6].

dO dt O2 2/ ,= −λ (2:5)

with l as the intensity of oxygen consumption. Thus the content of oxygen in blood

drops from 1 to exp(-lt) if the time t is the time of transition along the given path.

Since the time to pass an organ has the distribution (2.4) then fraction of oxygen that

passes the organ is integral of exp(-lt) with respect to P(t):

p t P t dt( ) exp( ) ( )λ λ= −
∞

∫
o

(2:6)
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One can see in (2.6) Laplace transform of the distribution P(t), and for P(t), as (2.4),

Laplace transform is well known [5]:
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Estimation of the consumed fraction is given by:
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Equation (2.4), and the consequence of (2.4), equation (2.8) are obtained under sup-

position that capillaries system is the system of homogenous parallel pathways (time T

is constant). However, this is simplification since we have two additional sources of

heterogeneity of flow, besides interruption-resuming flow. They are (a) the tortuosity

of microvessels, and (b) induced by different causes (local viscosity, tone of vessels,

pressures) the changes of flow in any given capillary with time. As the consequence of

these heterogeneities of flow, the time T to pass microcirculation if no interruptions

happen becomes the variable. If T has a distribution {B(T)}, then the randomization of

(2.7) by B(T) will transform (2.8) into the equation with T as mean transit time to pass

organ without interruption, Tmean [5], and the estimation of the consumed fraction is

given by:

1 − ≈ + +
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Thus heterogeneity of flow does not exclude the influence parameters of interrup-

tion-resuming on the oxygen consumption.

Result
The (2.8) reveals that both stochastic characteristics, b and μ, are included into the

expression for oxygen consumption. To estimate possible influence of b and μ we

should have the ranges of the variation for all variables of (2.8). It should be noticed

that parameters of interest (l, b and μ) have the dimension as [sec-1] = [Hz].

Let estimate l, the intensity of oxygen consumption. It is known [7] that 100 ml of

arterial blood contains approximately 18 ml of oxygen. During the time of one second

the body consumes, on average, 3 ml of oxygen. Thus, for lT the estimation is 3/18 =

0.17, with T about 5 sec (range 2-7 sec) [8] the l is about 0.04 (range 0.02-0.08).

Intensity of irregularities estimated by the spectrum of vasomotion activity is from 0

to 2 Hz [9] thus the estimation for the range of and is from 0 to 2.

Introduced stochastic characteristics of microcirculation determinate also the frac-

tion of open microvessels, no. Under a steady state condition, the fraction of micro-

vessels with interrupted flow should correspond to the fraction of vessels with

resuming flow, or

n t n to oβ μΔ Δ= −( )1 (3:1)
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Thus the expected fraction of open microvessels is:

no = +μ μ β/ ( ) (3:2)

For muscles at rest, no is about 0.05 - 0.1 [7], if no is a constant then one can see

from (2.8) that variation of μ and b from small values to the higher values will vary the

oxygen consumption about 8-fold (from lT to about 8lT).

Discussion
Krogh presented the first mathematical model of oxygen consumption by muscular tis-

sue [10]. His model is based on homogeneous presentation of microvascular system,

and is known as the Krogh-Erlang cylinder model. Krogh suggested that main mechan-

ism to respond on the increase of the demand of oxygen is the recruitment of micro-

vessels, and thus the increase of blood flow. Homogeneous model of Krogh is the

significant simplification of reality. Direct observations of PO2 in the blood leaving

capillary system reveal heterogeneity of PO2 that is impossible for homogeneous flow

[11]. An attempt to introduce heterogeneity into description of microcirculation was

presented by Pittman as he considered the spatial distribution of microvessels to follow

a Poisson distribution [11]. Another approach to introduce heterogeneity of blood flow

was presented by Kendal. He introduced compound Poisson-gamma distribution, simi-

lar to (2.4), and successfully used it for the description of the self-similarity of micro-

circulation structure [12].

Another Krogh’s assumption that recruitment of microvessels is the leading response

of tissue if demand for nutrients is up is well established [4,10], meaning that signifi-

cant part of microvessels for any organ is out of perfusion.

Model presented in given paper is based on two assumptions (a) the interruption and

resuming of flow is Markov process and (b) the probability of more then one interrup-

tion/resuming for short period of time is negligible.

Main result (2.8a) is the observation that about 8 fold variation of the demand of

oxygen can be satisfied without variation of blood flow by only the changes in intensity

of vasomotion. Additionally, the increase of fraction of open microvessels given by (3.2)

is result of two independent stochastic processes. The no could be increased if intensity

of interruption of flow (b) is down, and also the no could be increased by increase of

intensity to resume the flow (μ), thus the recruitment of microvessels becomes com-

plex process.

In publications [13-15] was established that the irregularity of flow due to vasomo-

tion, from periodic to stochastic could be a regulator of oxygen consumption. How-

ever, in [13,15] is investigated how oscillation of flow around mean value could

influence oxygen consumption. Such, possible, influence on consumption is not con-

sidered in given paper. Publication [14] is based on unrealistic assumption of homoge-

neous perfusion and discrete time. The application of Laplace transform to the

distribution of the time to pass an organ, presented in given manuscript, reveals the

sensitivity of oxygen consumption to the irregularity of blood flow.

Conclusion
1. Irregularities of blood flow within microcirculation considered as an stochastic

process lead to an compound Poisson distribution for the time to pass an organ.
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2. Laplace transform of the time to pass an organ reveals the sensitivity of oxygen

consumption to the irregularity of blood flow.

3. By variation of vasomotion activity it is possible to change delivery of oxygen to

tissue by up to 8 times.
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