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Abstract

Background: Avida is a computer program that performs evolution experiments
with digital organisms. Previous work has used the program to study the
evolutionary origin of complex features, namely logic operations, but has consistently
used extremely large mutational fitness effects. The present study uses Avida to
better understand the role of low-impact mutations in evolution.

Results: When mutational fitness effects were approximately 0.075 or less, no new
logic operations evolved, and those that had previously evolved were lost. When
fitness effects were approximately 0.2, only half of the operations evolved, reflecting
a threshold for selection breakdown. In contrast, when Avida’s default fitness effects
were used, all operations routinely evolved to high frequencies and fitness increased
by an average of 20 million in only 10,000 generations.

Conclusions: Avidian organisms evolve new logic operations only when mutations
producing them are assigned high-impact fitness effects. Furthermore, purifying
selection cannot protect operations with low-impact benefits from mutational
deterioration. These results suggest that selection breaks down for low-impact
mutations below a certain fitness effect, the selection threshold. Experiments using
biologically relevant parameter settings show the tendency for increasing genetic
load to lead to loss of biological functionality. An understanding of such genetic
deterioration is relevant to human disease, and may be applicable to the control of
pathogens by use of lethal mutagenesis.

Background
The standard explanation for the origin of biological complexity is that it arises

through the Darwinian process of mutation and natural selection. Beneficial mutations

accumulate through positive selection, and deleterious mutations tend to be eliminated

by purifying selection. However, developments in genomics suggest theoretical pro-

blems with this view, and many features of living systems cannot be explained without

recourse to nonadaptive processes [1-4].

Because of the slow pace of evolutionary change, it has generally been difficult to

empirically test long-term evolutionary scenarios. A computational approach known as

digital genetics [5,6] attempts to overcome this limitation by using digital organisms,

short computer programs that replicate and compete in a virtual environment. Genera-

tions take only a few seconds, making it possible to observe the outcome of large num-

bers of mutation and replication events in relatively short periods of real time. Further,

Nelson and Sanford Theoretical Biology and Medical Modelling 2011, 8:9
http://www.tbiomed.com/content/8/1/9

© 2011 Nelson and Sanford; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:cwnelson88@gmail.com
http://creativecommons.org/licenses/by/2.0


the user is able to alter parameters of interest (e.g., mutation rates) to observe their

influence on important population factors (e.g., fitness).

Early versions of digital life culminated in the program Tierra [5], which demon-

strated adaptive genome shrinkage, cooperation, and parasitism. Genomes were simu-

lated as computer code, distinguishing the software from numerical simulation.

Mutating digital organisms competed for computer processing time, undergoing adap-

tive change over many generations. Recognizing the importance of local interactions,

the program Avida [7,8] advanced the field by implementing a virtual world in which

organisms were housed on a two-dimensional grid and underwent interactions with

neighbors.

Researchers have claimed a high degree of biological relevance for Avida, comparing

its digital organisms to organic viruses [9]. Titles like “The biology of digital organ-

isms” [10], “Evolution of biological complexity” [11], and “Testing Darwin” [12] evi-

dence Avida’s impact on biological theory. In addition to the evolution of biological

complexity [11,13], the software has been used to study the evolution of sex [9,14,15],

the evolution of altruism [16], the dynamics of long-term adaptation [17-21], ecosys-

tem dynamics [19,22-24], and the effects of mutation on genetic architecture

[14,25-28], among other topics.

Avida is used in the present study to better understand the evolutionary conse-

quences of low-impact mutations in digital organisms. Though many studies report the

occurrence of neutral mutations, Eyre-Walker & Keightley [29] note that:

... it seems unlikely that any mutation is truly neutral in the sense that it has no

effect on fitness. All mutations must have some effect, even if that effect is vanish-

ingly small. However, there is a class of mutations that we can term effectively neu-

tral... As such, the definition of neutrality is operational rather than functional; it

depends on whether natural selection is effective on the mutation in the population

or the genomic context in which it segregates, not solely on the effect of the muta-

tion on fitness.

This point applies to viruses as well as more complex systems [30]. The term selec-

tion threshold has been introduced [Gibson P, et al., in preparation] to describe the

mutational fitness effect that marks the “tipping point” between natural selection and

random genetic drift in an evolving system. Mutations with fitness effects below this

critical value are primarily affected by random genetic drift. One of the first to allude

to this phenomenon was Muller [31], who noted: “There comes a level of advantage...

that is too small to be effectively seized upon by selection.”

The selection threshold is elevated by any factor that influences replication rate in a

manner independent of the genotype, decreasing the efficacy of selection as more

mutations behave in a neutral fashion. Population size has typically been the primary

focus of these factors [32], and its role is described in Kimura’s [1] well-known expres-

sion, |s| < 1/(2Ne). This inequality states that random genetic drift will dominate a

mutation’s fate if its selection coefficient (s) is less than the reciprocal of twice the

effective population size (Ne). However, numerous other factors also influence the

selection threshold, including environmental noise and developmental canalization, and
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the efficacy of selection is highly dependent on the complexity of the system under

study.

The present study takes an empirical approach to determining the selection thresh-

old by measuring the mutational fitness effect at which selection successfully captures

half of the beneficial mutations that arise. Previous experiments using Avida have stu-

died the evolutionary emergence of complex features resulting from high-impact bene-

ficial mutations [13]. Avida’s default settings provide mutational fitness effects of 1.0 -

31.0 for beneficial mutations that give rise to certain computational operations, where

fitness effects are measured as w - 1, and w is the relative fitness of the organism

expressing a given operation. For example, a mutation producing the NAND operation

will multiply an organism’s fitness by 2, corresponding to a fitness effect of 1.0. How-

ever, fitness effects this large are extremely rare in nature (see Discussion). In the pre-

sent study, we approximate the selection threshold in Avida by performing

experiments with more biologically common mutational fitness effects of 1.0 and

below. The effects of low-impact mutations are explored and the biological relevance

of digital life is discussed.

Avida

An experiment with Avida begins by seeding a two-dimensional grid with a short com-

puter program (the ancestral organism) that has been designed to self-replicate. By

default, a 60 × 60 grid is seeded with a single Avidian organism that consists of 100

computational instructions. This artificial geography allows the population to grow to

a maximum of 3,600 organisms. Avidians replicate asexually for approximately 10,000

generations, incurring an average of 0.85 mutations per genome per generation. Muta-

tions randomly substitute, insert, or delete single instructions in an Avidian genome,

drawing upon 26 available instructions defined in the software. The ancestral genome

devotes about 15 instructions to the essential replication code, while the remaining 85

positions are occupied by benign no-operation instructions, analogous to inert “junk

DNA” that can be used as raw material for evolutionary tinkering.

Once an experiment begins, replication ensues, and multiple organisms arise and

compete with one another. When an Avidian replicates, its offspring is randomly

placed in one of eight positions surrounding the parent organism, effectively killing the

previous resident. Speed of replication therefore defines fitness in Avida; the programs

that replicate fastest replace their slower counterparts and increase in number.

Speed of replication is itself determined by two factors. The first and primary way

that Avidians replicate faster is by earning additional computer resources. The alloca-

tion of computer time is based upon an organism’s merit, a numerical value that

reflects its ability to perform one or more simple computational tasks. Specifically, Avi-

dians may evolve any of nine logic operations, for which they are rewarded with addi-

tional computer time to execute and replicate their genomes. Secondarily, speed of

replication in Avida is influenced by genome size. Organisms with larger genomes

naturally require more computer time and replicate at a slightly slower rate. However,

under default settings, this factor is offset by artificially rewarding larger genomes with

additional computer time, such that genome size is not under direct selection in most

experiments. More detailed descriptions of the software are available elsewhere [33-35].

Nelson and Sanford Theoretical Biology and Medical Modelling 2011, 8:9
http://www.tbiomed.com/content/8/1/9

Page 3 of 17



The evolution of complex features has been a central focus of Avida research, and

some of the details are relevant for the present experiments. Whenever an Avidian

mutates to perform one of nine computational operations, Avida rewards the lucky

organism with a merit bonus (increasing its total merit). Specifically, this occurs when

an organism performs logic operations using strings of bits provided by the Avida soft-

ware. These operations are analogous to solving simple equations using the input

values and then reporting the result. When an organism mutates to perform such an

operation, the Avida software multiplies its merit by the corresponding bonus, thereby

increasing its replication rate (Table 1). For example, if an organism performs the

NAND operation, it will receive a bonus of 2 (fitness effect of 1.0), effectively doubling

its relative replication rate (fitness). Organisms are rewarded for each operation only

once, i.e., multiple bonuses are not received for performing the same operation multi-

ple times. EQUALS (EQU) is the most complex logic operation rewarded in the Avida

environment, conferring a merit bonus of 32 (fitness effect of 31.0).

Avida may be conceptualized as a computational Darwinian search designed to dis-

cover the EQU operation. The simplest operations in Avida are easy to evolve, i.e.,

NAND and NOT are performed by a single genomic instruction, provided instructions

for correctly inputting and outputting numbers are present. Any logic operation can be

built using different combinations of NAND and NOT. Therefore, EQU can itself be

constructed using any of the eight simpler operations as precursors, providing a scal-

able fitness landscape for the evolution of complexity - beneficial changes are useful

for constructing more complex beneficial features. When NAND or NOT arises, the

software rewards the lucky organism by doubling its fitness. Fitness bonuses for the

other operations increase exponentially with complexity (Table 1). The evolution of

EQU may therefore proceed one advantageous step at a time, each step requiring rela-

tively few mutations. Dembski and Marks [36] have suggested the term “stair step

active information” to describe this type of reward scheme.

Some of the ways Avida has been implemented (e.g., its parameter settings) are dis-

tinctly “un-biological” [33]. These factors include the distribution of mutational fitness

Table 1 Default rewards for performing nine logic operations in Avida

Logic
operation

Computation Number of NAND
operations needed (n)

Default multiplicative
bonus (2n)

Default fitness
effect (w - 1)

NOT ~A; ~B 1 2 1.0

NAND ~(A and B) 1 2 1.0

AND A and B 2 4 3.0

ORNOT (A or ~B); (~A or B) 2 4 3.0

OR A or B 3 8 7.0

ANDNOT (A and ~B); (~A and
B)

3 8 7.0

NOR ~A and ~B 4 16 15.0

XOR (A and ~B) or (~A
and B)

4 16 15.0

EQU
(XNOR)

(A and B) or (~A
and ~B)

5 32 31.0

Default rewards for performing nine logic operations in Avida, adapted from Lenski et al. [13]. Complexity (n) is
measured arbitrarily as the number of NAND operations necessary for performing the logic operation. Combinations of
NOT and NAND can be used to construct all other logic operations. Beneficial fitness effects are calculated as w - 1,
where w is the relative fitness of an organism that incurs the mutation of interest.
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effects, the fitness terrain, and the artificial rewards given to organisms with larger gen-

omes. The present study pursues several lines of experimentation with altered muta-

tional fitness effects to improve biological relevance and aid in the interpretation of

Avida results. The first set of experiments removed merit bonuses to determine which

logic operations arise by mutation alone, without selection. The second set of experi-

ments examined Avida’s default settings to quantify typical aspects of evolutionary

change in this system. In order to test the hypothesis that mutation pressure prevents

the fixation of beneficial operations in Avida, a third set of experiments examined logic

operation frequencies at a reduced mutation rate. Finally, a fourth set of experiments

implemented fitness effects falling in the normal biological range (0.01 - 1.0), rather

than Avida’s default range (1.0 - 31.0). The effects on evolutionary dynamics were

observed.

Results
Mutation and drift

Twenty experiments were performed in which no logic operations were rewarded.

Across these experiments, an average of 6.4 (± 0.8) operations drifted into a population

at least once over the course of 10,000 generations, indicating that they are easily pro-

duced by random mutation. Because of this, a distinction was made between those

operations that arose by chance in Avida (those that arose) and those that selection

was able to propagate (those that successfully evolved, i.e., rose to a frequency of 50%

or greater, following the precedent of biological studies [37,38]).

Table 2 describes the dynamics of mutational production and drift for specific logic

operations (see additional file 1 for further information). Seven of the operations in

Avida were produced by random mutation alone, without selection for any beneficial

precursors, indicating that they are relatively simple given the instruction set provided

in Avida (i.e., Avida’s chemistry or physics). Some of these operations reached appreci-

able frequencies by drift, and even the relatively complex operation ANDNOT arose in

Table 2 Dynamics of mutation and drift for nine logic operations in Avida

Logic
operation

Proportion of
experiments in which
operation arose by
mutation

Average
maximum
frequency in
population

Average
maximum
number of
organisms

Maximum
frequency
observed

Maximum
number of
organisms
observed

NOT 1.0 0.027 (± 0.0062) 97 0.038 134

NAND 1.0 0.017 (± 0.0046) 61 0.028 101

AND 0.95 0.0015 (± 0.00099) 5 0.0036 13

ORNOT 1.0 0.0063 (± 0.0020) 27 0.013 47

OR 0.8 0.00089
(± 0.00091)

3 0.0036 13

ANDNOT 1.0 0.0030 (± 0.0019) 11 0.0072 26

NOR 0.6 0.00053
(± 0.00062)

2 0.0022 8

XOR 0 0 (± 0) 0 0 0

EQU
(XNOR)

0 0 (± 0) 0 0 0

Dynamics of mutation and drift for nine logic operations in Avida. Though none of the operations reached high
frequencies without a selective advantage, mutation alone produced all operations except XOR and EQU, and many
drifted to appreciable frequencies. The simpler operations are best viewed as alternative potential precursors to XOR
and EQU.
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all 20 experiments. The EQU and XOR operations did not arise, indicating that they

require advantageous precursors, and are unable to be generated by chance alone

given the probabilistic resources of 10,000 generations in Avida, in agreement with

results reported elsewhere [13,39]. In light of this, the seven simpler operations are

best viewed as alternative potential precursors of XOR and EQU, rather than inter-

mediates in a specific succession of operations.

Evolution under default settings

Thirty experiments were performed using Avida’s default settings. An average of 8.6 (±

0.7) logic operations successfully evolved. Fitness increased by an average of 19,749,130

(± 14,174,227), corresponding to an average increase of approximately 100.17% per

generation, in agreement with results reported elsewhere [13]. The large variance of

this estimate results from populations that reached considerably higher fitnesses. Fit-

ness tended to approach a maximum as the logic operations spread through the popu-

lation (Figure 1), corresponding to the limited availability of high-impact beneficial

mutations (i.e., only nine logic operations). See additional file 2 for further information.

Mutation pressure and clonal interference

Interestingly, no operations reached fixation under default settings, despite their

remarkably high fitness bonuses. The average end-of-experiment frequency for opera-

tions that successfully evolved was only 84.5% (± 13.5%). This contrasts with the rapid

fixation of high-impact beneficial mutations observed in biological experiments. For

example, in one study of E. coli [37], the Rbs- mutation increased fitness only by about

1.4%, yet reached fixation (97-100%) in only 2,000 generations.

We hypothesized that the failure of fixation in Avida is due to mutation pressure

resulting from a relatively high mutation rate per genome (0.85). To test this, 30

experiments were performed with a reduced rate of 0.5 mutations per genome per

0 

5000000 

10000000 

15000000 

20000000 

25000000 

30000000 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Av
er

ag
e 

Fi
tn

es
s 

Generations 

Figure 1 Trajectory of average fitness in a case study population under default settings. Fitness
reached a maximum as the logic operations approached maximum frequencies. The population reached
an end-of-experiment fitness of just under 30 million. Fitness was measured as the merit divided by the
generation time, and reported relative to the ancestral organism.
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generation to compare end-of-experiment frequencies. Overall logic operation frequen-

cies in the lower mutation environment were significantly (P = 1.84 × 10-5) higher,

reaching an average frequency of 90.0% (± 14.8%). These differences were individually

significant (P < 0.05) for five of the nine operations (Table 3), and all reached higher

frequencies in the low mutation environment. Interestingly, an average of only 8.2 (±

0.9) operations evolved in the low-mutation environment, fewer than those in the

default environment, but this difference was not highly significant (P = 0.059). Further

information is available in additional file 3.

The competition of different beneficial mutations, known as clonal interference in

asexual systems [40], was commonly observed in our study. Because they cannot

recombine into a single genotype, such mutations can hinder one another’s progress

toward fixation, with highly beneficial mutations driving more moderate ones to

extinction. For example, in one experiment (Figure 2), a mutation appeared to

Table 3 The effects of mutation rate on phenotype frequencies

Logic
operation

Frequency with default mutation
rate

Frequency with reduced mutation
rate

P-value

NOT 0.93 0.96 0.00018*

NAND 0.91 0.93 0.68

AND 0.77 0.84 0.29

ORNOT 0.87 0.95 0.013*

OR 0.86 0.92 1.7E-07*

ANDNOT 0.88 0.92 0.00017*

NOR 0.85 0.90 8.5E-08*

XOR 0.73 0.77 0.51

EQUALS 0.78 0.83 0.15

The effects of mutation rate on phenotype frequencies. This table shows the average end-of-experiment frequencies for
logic operations evolving (1) in the default environment and (2) in an environment with a reduced mutation rate. P-
values are for two-tailed two-sample t-tests with equal variances, and significant values are marked with an asterisk*. All
calculations used only nonzero frequency values (operations that were not present were not considered).
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Figure 2 Phenotype frequencies in a case study population under default settings. A mutation
producing the XOR operation also deactivated NOT and AND around generation 6,580. Clonal interference
resulted in the near-extinction of NOT and AND. However, a compensatory mutation restored the NOT
operation, and it regained a high frequency.
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deactivate the NOT and AND operations (fitness effects of 1.0 and 3.0, respectively) to

produce the XOR operation (fitness effect of 15.0) around generation 6,580, driving

the former operations to near extinction. The success of XOR followed expectation,

because the advantage of XOR exceeds the combined fitness bonuses of NOT and

AND. However, because NOT arises very commonly in Avida, a compensatory muta-

tion produced it in the XOR genotype within about 100 generations, allowing it to

regain a high frequency in the population.

Evolutionary consequences of low-impact mutational fitness effects

To explore the evolutionary consequences of low-impact mutational fitness effects in

Avida, experiments were performed with multiplicative fitness effects of 0, 0.01, 0.05,

0.075, 0.1, 0.25, 0.5, and 1.0, with 0 being neutral and 1.0 corresponding to a doubling

of fitness (100% increase). This allowed an empirical estimation of Avida’s selection

threshold, the critical “tipping point” between random genetic drift and natural selec-

tion. Because most operations arise readily by chance in Avida, evolution of an indivi-

dual operation was again considered successful only if its end-of-experiment frequency

was 50% or greater. Two sets of 20 replicates were performed, one for beneficial muta-

tions and one for deleterious mutations, with each replicate consisting of eight experi-

ments (one experiment for each fitness effect). For beneficial mutations, experiments

were simply initiated with uniform fitness effects of the specified value (e.g., for a fit-

ness effect of 0.1, all nine operations multiplied fitness by 1.1). For deleterious muta-

tions, experiments were performed first under Avida’s default settings to allow the

evolution of complexity, and then continued for an additional 10,000 generations with

the alternative beneficial fitness effects. A range of fitness effects could also have been

used, with rare operations incurring greater benefits; however, uniform fitness effects

were ideal for the purpose of approximating the selection threshold in Avida, and

using a range would not appreciably alter our results. Since mutation pressure is a sig-

nificant force in Avida, it was expected that the existing operations would incur deacti-

vating mutations, and that the fitness bonuses would determine selection’s efficacy in

maintaining those operations.

Results are summarized in Figure 3. Complete selection breakdown occurred for

mutational fitness effects in the 0.075 - 0.1 range. No operations were produced or

maintained by selection for fitness effects ≤ 0.075, implying that mutations affecting fit-

ness by approximately 7.5% or less are entirely unresponsive to selection in Avida.

Both deleterious and beneficial mutations had similar selection thresholds in the range

of 0.1 - 0.25, or approximately 0.2, indicating that the fate of mutations affecting fitness

by 20% or less in this system is determined primarily by genetic drift, not selection.

This threshold is far below the smallest fitness effect implemented in the default set-

tings. Further information is contained in Additional file 4 and Additional file 5.

Discussion
Although Avida has routinely been used to address biological questions, some aspects

of the program are not amenable to direct biological comparison. For example, key

terms such as nucleotide, gene, heritability, selection, and fertility lack a clear equiva-

lent in the software. Because of this, several approximations were necessary in this

study. Allele frequencies were measured as phenotype frequencies, ignoring the
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potential for chance performance. Mutation rates were measured as the rate of random

substitution of single instructions, though these monomers can perform multiple com-

putations and are not comparable to biological nucleotides. Generation times changed

substantially over the course of a typical experiment, so the average end-of-experiment

generation time was used to measure experiment length. Finally, genome size also fluc-

tuated in these experiments, causing the genomic mutation rate to change. For simpli-

city, the mutation rates reported were those for the ancestral genome size (100).

In these experiments, all but two logic operations in Avida arose via mutation alone,

despite conferring no fitness rewards (Table 2). Most operations are therefore very

simple to produce in the Avida environment, with relatively short waiting times. The

genomic monomers (instructions) themselves do most of the computational work that

these operations require; this underlying information is included in the artificial phy-

sics of Avida and is not subject to mutational change. Interestingly, un-rewarded

operations did not accumulate to produce the more complex operations XOR and

EQU. This suggests difficulties for traditional models of evolution by gene duplication

in which novel functions arise by neofunctionalization of unconstrained loci [41,42].

Previous work has explored the evolution of EQU when other operations are made

neutral [13,39], and further Avida studies should explore the dynamics of neutral evo-

lution in digital organisms.

Several studies have focused on the evolution of “robustness” in Avida under elevated

mutation rates [25-28,43]. These studies have shown that, when functional genomes

experience high mutation rates, functionality is generally lost, with some operations
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Figure 3 Selection threshold for mutations affecting fitness. The number of logic operations evolved
or maintained is shown as a function of the beneficial mutational fitness effect used. For beneficial
mutations, the end-of-experiment average number of operations was reported; e.g., when logic operations
had fitness effects of 0.25, an average of 5.8 operations evolved by positive selection. For deleterious
mutations, the number of operations remaining after evolution with alternative fitness effects was used; e.
g., when logic operations had beneficial fitness effects of 0.25, an average of 7.65 were maintained by
purifying selection. In both cases, the number of operations evolved or maintained was reported relative to
the beneficial fitness effect of an operation-creating mutation for simplicity. Deleterious mutations therefore
correspond to the reversal of beneficial mutations with the fitness effects indicated on the x-axis. No
operations evolved or were maintained for fitness effects of ≤ 0.075. Half of the operations evolved or
were maintained at a fitness effect of approximately 0.2.
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evolving to utilize fewer genomic positions. This is consistent with the results reported

here, which suggest that mutation pressure is a significant force preventing the fixation

of beneficial genotypes in Avida (Table 3). Reduced mutation rates allowed advanta-

geous phenotypes to reach higher frequencies; however, fewer operations evolved, evi-

dencing a tradeoff between reducing genetic load and increasing the waiting time to

beneficial mutation.

The decelerating rate of adaptive change in Avida (Figure 1) is somewhat reminiscent

of biological evolution experiments, e.g., with bacteriophage [44] and E. coli [45,46].

However, the explosive fitness increases observed in Avida are roughly seven orders of

magnitude greater than those observed in biological experiments of similar duration.

Because fitness is defined as relative replication rate in Avida, the program’s results

may be directly compared with those from biological studies. For example, in experi-

ments with E. coli, growth rate increased by an average of ~37% after 2,000 generations

[47], ~48% after 10,000 generations [45], and ~75% after 20,000 generations [46].

These changes, resulting from numerous mutations, are negligible compared to those

observed under Avida’s default settings. Yet the fitness leaps observed in Avida are due

primarily to the large multiplicative fitness effects of just nine simple innovations. For

example, when fitness effects for all logic operations were set to 1.0, the average end-

of-experiment fitness plummeted from almost 20,000,000 to just 180 (still an immense

increase relative to biological organisms).

An analogy will help to elucidate the preceding point. Consider species A, a large

mammal with a generation time of 30 years, and species B, a bacterial species with a

generation time of 1 day. In terms of replication rate, species B is about 10,950 times

fitter than species A. Yet this number pales in comparison to the increases observed in

Avida. After only 10,000 generations, the fitness (replication rate) of digital organisms

in Avida increased by 20 million. Such an increase would allow mammalian species A

to evolve a generation time of just 1.6 minutes in this time. This phenomenon occurs

because the bonuses readily available to digital organisms in Avida are large and multi-

plicative, producing exorbitant gains in fitness (i.e., the product of all possible bonuses

is 22 × 42 × 82 × 162 × 32 = 33,554,432). Fitness bonuses this large are extremely rare

in nature (but see references [48,49]).

Mutations of smaller effect (i.e., fitness effects of ≤ 1.0) can occur in Avida when the

generation time is altered by insertions or deletions within an organism’s replication

loop. However, the rewards gained by performing logic operations dominate fitness

dynamics in Avida, and these are the only fitness effects that can be user-specified.

Mutations disabling any of the evolved operations have similarly large (but not identi-

cal) deleterious effects. It is our view that the distribution of fitness effects used in

Avida has severely limited its relevance to biological systems.

Though many details of the biological distribution of mutational fitness effects have

yet to be understood [50], a general picture has emerged. There is a continuum of fit-

ness effects and, with few exceptions [51,52], advantageous mutations are exponentially

distributed, being much more rare than deleterious mutations [29,30,53-56]. The distri-

bution of deleterious mutations is likely multimodal, with a distinct class being lethal

and another class having very small effects [29]. In most systems studied, deleterious

mutations of small effect are more abundant than those of large effect [29,54], such

that selection coefficients in the range of 0.01 to 0.1 are considered large [48]. For
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example, over 90% of gene knockouts in E. coli are viable [57], decreasing fitness by an

average of ≤ 3% [58]. Similarly, a recent study of mutations in Salmonella typhimurium

[54] reported average deleterious selection coefficients of 0.0096 and 0.0131 for synon-

ymous and nonsynonymous mutations, respectively. No significantly advantageous

mutations were found, and no mutations caused a complete loss of function.

Viruses are somewhat peculiar because of their high mutational sensitivity, with

approximately 20 to 41% of mutations being lethal, and many mutations being neutral

or nearly neutral [30,55,56,59]. However, viable deleterious mutations of small effect

are still more common than those of large effect. A recent review [55] of several

viruses reported a mean fitness effect of 0.10 to 0.13 (though some estimates have

been considerably lower [60]). Lind et al. [54] note that the high frequencies of neutral

mutations reported in some studies may be a consequence of assays that lack sufficient

sensitivity, and that nearly neutral mutations may be more common than previously

thought. Some studies have reported the fixation of highly beneficial mutations in

viruses [48,49], but they have not consistently measured fitness effects as they are

defined here. These reports have suggested that beneficial mutations in viruses may be

described by a uniform distribution with an upper bound [49]. It is clear that muta-

tional fitness effects in biological organisms are substantially smaller than those used

heretofore in digital life research.

The term selection threshold has been introduced to describe the critical mutational

fitness effect for which natural selection and random genetic drift contribute equally to

a mutation’s fate [Gibson P, et al., in preparation]. Though many studies report the

occurrence of neutral mutations, it is unlikely that any mutation is truly neutral [29],

including those in viruses [30]. It is increasingly being recognized that most mutations

in multicellular organisms fall far below the selection threshold, having fitness effects

so slight that they cannot be measured [29,49]. It is also noteworthy that highly benefi-

cial mutations have gone undetected in most evolution experiments with eukaryotes

[53]. Clearly, the results of evolution experiments with microorganisms cannot be

extrapolated to eukaryotes with larger genomes, greater phenotypic complexity, and

smaller population sizes. In light of this, some may ask whether the results of experi-

ments with digital organisms have any relevance to living systems. We conclude that

digital genetics is a valid platform for studying some biological questions, but that the

applicability of results will depend critically upon the parameters used.

Population size has routinely been used as the sole predictor of selection efficacy. To

our knowledge, the present study is the first that uses an empirical approach to esti-

mate the selection threshold in an evolving system. This approach implicitly considers

all factors affecting selection, including (but not limited to) population size, the prob-

abilistic nature of selection, and environmental effects. We find that, given the sources

of noise inherent in the Avida world, mutations with fitness effects below the 0.075 -

0.1 range are entirely invisible to selection, despite arising frequently. Fitness effects of

approximately 0.2 are necessary for selection to successfully capture half of the benefi-

cial mutations that arise, corresponding to the selection threshold. Though the value of

this threshold is certain to differ among biological and digital systems, its existence has

important theoretical and medical implications. Other Avida experiments [39] using

single organisms and truncation selection have improved the program’s performance,

suggesting that local interactions and the probabilistic nature of selection are
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important sources of noise in the Avida world. Some readers might object that, due to

this noise, fitness effects in Avida do not directly correspond to fitness effects in biolo-

gical organisms. If there is truly no correspondence, then experiments using Avida are

not capable of shedding light on biological questions. However, there are several rea-

sons why these experiments are broadly relevant to biology. Importantly, there is also

noise in biology. The information contained in the heritable material is processed

through multiple levels, including transcription, mRNA processing, protein folding,

physiological interactions, and more. Each level is subject to mechanisms of canaliza-

tion and homeostasis that obscure the effects of mutations on fitness. Further, most

noise in Avida may be attributed to the probabilistic nature of selection, yet probability

selection is also operative in nature, and may be considerably weaker [61] than the

scheme implemented in Avida. It is therefore probable that biological organisms

experience more fitness noise than digital organisms.

The present study used uniform mutational fitness effects. A range of fitness effects

could also have been used, with rare logic operations incurring greater benefits. How-

ever, uniform fitness effects are often employed, and were ideal for the purpose of

approximating the selection threshold. Even the simplest operations did not evolve at

fitness effects of ≤ 0.075, demonstrating that the threshold exists independent of a

mutation’s rarity or the length of an evolutionary experiment. Moreover, because each

operation is rewarded only once per organism, the evolution of simpler operations

should not prevent the subsequent evolution of additional complexity. Further research

should attempt to better approximate the selection threshold in this and other systems

using varying fitness effect distributions.

The distribution of mutational fitness effects has serious implications for genetic dis-

ease. Numerous analyses have confirmed that the accumulation of slightly deleterious

mutations can cause gradual fitness loss leading to extinction in asexual species

[31,62-66], and similar processes are relevant to sexual species [67,68], including

humans [69-74]. The results reported here reveal a quantifiable selection threshold,

below which random genetic drift dominates the behavior of advantageous and deleter-

ious mutations alike. Biological studies elucidating the extent of sequence-dependent

functionality in nonprotein-coding DNA regions will continue to inform estimates of

the rates of mutations affecting fitness in various species, allowing a realistic evaluation

of the severity of genetic decline that can be expected in coming generations.

We observed that, when fitness effects in Avida are small, all advantageous logic

operations are lost. Though digital organisms are peculiar in that they can survive such

a loss, these data confirm that the accumulation of slightly deleterious mutations can

lead to decreasing biological functionality and potentially eventual extinction. Because

deleterious mutations are much more common than advantageous mutations in most

systems studied, reduction in the efficacy of selection imposes strong directionality on

evolution by favoring the fixation of deleterious mutations [2]. The conditions under

which fitness recovery may be possible [75] should be studied more thoroughly using

computational approaches. An understanding of these issues may be applicable to the

lethal mutagenesis of pathogen populations [66,76], and is relevant to human health

[74]. It is clear that mutation accumulation may affect human health at various levels,

including the nuclear and mitochondrial genomes as well as immune cells. For exam-

ple, mutation accumulation may play a key role in the deterioration of the immune
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system during HIV infection [77]. It may also influence the longevity of pathogen

populations. Various factors relevant to pathogen attenuation, including the conse-

quences of periodic bottlenecking and elevated mutation rates, should be studied using

computational models. Understanding the interplay of these co-evolutionary processes

may allow for substantial advances in medicine, including novel treatments and an

increased awareness of the role of mutation in disease.

Conclusions
Avida has previously been used as a powerful demonstration of adaptation resulting

from high-impact beneficial mutations. However, there are several ways in which Avida’s

default settings produce results which conflict with observations from biological experi-

ments. Precursors necessary for the most complex logic operation in the program, EQU,

are frequently produced by random mutation, yet confer very large fitness rewards. Fit-

ness effects of beneficial mutations under Avida’s default settings range from 1.0 to 31.0,

values that are extremely rare in the natural world. As a result, fitness increases by an

average of 20 million in only 10,000 generations. This is roughly seven orders of magni-

tude greater than the changes observed in biological evolution experiments.

In contrast to Avida’s default settings, most mutations in biological organisms are

low-impact [29], and this class of mutations may dominate evolutionary change [1,2].

When Avida is used with more realistic mutational fitness effects, it demonstrates a

clear selection threshold. Mutations that influence fitness by approximately 20% or less

come to be dominated by random genetic drift. Mutations that affect fitness by 7.5 -

10.0% or less are entirely invisible to selection in this system. These results provide evi-

dence that low-impact mutations can present a substantial barrier to progressive evolu-

tion by natural selection. Understanding mutation is of primary importance, as

selection depends on the mutational production of new genotypes. Numerous changes

that would be beneficial may nevertheless fail to occur because mutation cannot pro-

duce them in the time available. Further, it is important for biologists to realistically

appraise what selection can and cannot do under various circumstances. Selection may

neither be necessary nor sufficient to explain numerous genomic or cellular features of

complex organisms [2-4].

Future studies should explore the interaction of low-impact fitness effects with other

evolutionary factors, such as alternative fitness terrains [21], to elucidate their synergistic

effects on evolutionary dynamics. Additionally, researchers should attempt to further

quantify the selection threshold for various systems, and determine the phenotypic con-

sequences of accumulating low-impact mutations. The accumulation of slightly deleter-

ious mutations may pose an important health risk for numerous species, including

humans [74], and warrants further study using computational approaches. Reducing the

rate of mutation in the human genome may be an important step in fighting genetic dis-

ease. Additionally, the connection between mutation accumulation and pathogen

attenuation should be studied. Finally, we recommend that future experiments with digi-

tal organisms employ more biologically relevant mutational fitness effects.

Methods
This study used Avida version 2.8.1 [78]. For all experiments, random number seeds

were chosen randomly as an integer in the range 1 to 1000000000. These values are
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reported in the supplemental data. Settings were manipulated using the configuration

files present in the Avida home folder.

In Avida, time is measured in arbitrary units called updates in which the population

is allowed to execute about 30 instructions per organism. The ancestral organism exe-

cutes 389 instructions per generation to execute and copy its genome. However, gen-

eration times change as organisms evolve. Average end-of-experiment generation time

under default settings was 310, corresponding to approximately 9,679 generations over

100,000 updates. Thus 10,000 generations was used as an approximation of experiment

length, with 1 generation corresponding to roughly 10 updates.

Fitness in Avida is measured as an organism’s total merit divided by its generation

time. Thus an increase in merit will increase fitness, while an increase in generation

time will decrease it. However, this value has no intuitive meaning and the software

does not consistently report it, e.g., at generation 0. For consistency and ease of biolo-

gical comparison, fitness in this study was re-calculated and reported relative to the

ancestral organism’s fitness. Thus the average fitness of a generation was equivalent to

the average merit divided by the product of average generation time and the ancestral

organism’s fitness (scaling the ancestral organism’s fitness to 1.0). Fitness effects of

mutations producing the logic operations were measured as w - 1, where w is the rela-

tive fitness of the organism carrying the mutation. Thus a mutation producing the

EQU operation, multiplying fitness by 32, had a fitness effect of 31.0.

To study mutation and drift, 20 experiments were performed in which no logic

operations were rewarded. Merit bonuses in the environment.cfg file were defined mul-

tiplicatively (type = mult) as 1.0 (value = 1.0), corresponding to fitness effects of 0. All

other settings maintained their default values. The output file tasks.dat was examined

to determine which operations arose in an experiment. As allele frequencies are not

reported by Avida, phenotype frequencies were measured as the number of organisms

performing a logic operation divided by the total number of organisms, the latter of

which is reported in the count.dat file.

Logic operations readily arose independent of selection. In order to distinguish those

mutations that selection promoted, a mutation was said to have simply arisen until its

frequency reached 50%, at which point it was considered to have successfully evolved, a

measure that has precedent [37,38]. For analysis of end-of-experiment frequencies of

logic operations, averages were taken using only nonzero values (operations that did

not arise were not considered).

Thirty experiments were performed under default settings. The case study reported

in Figure 1 occurred when using a random seed of 574423164. Thirty experiments

were also performed with a reduced mutation rate. For these runs, the copy mutation

rate was changed from the default of 0.0075 to 0.004 in the avida.cfg file (COPY_-

MUT_PROB 0.004). Probabilities of insertions and deletions at the time of replication

each remained at 0.05. Thus the default mutation rate corresponded to an average rate

of 0.85 mutations per genome per generation, and the lower rate to an average of 0.5

mutations per genome per generation. P-values reported in Table 3 were for two-tailed

two-sample t-tests with equal variances (homoscedastic) comparing all nonzero end-of-

experiment frequencies from the two environments. The case study shown in Figure 2

occurred when using default settings and a random seed of 13903545.
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To study the consequences of alternative mutational fitness effects, merit bonuses

were modified in the environment.cfg file. Fitness effects of 0, 0.01, 0.05, 0.075, 0.1,

0.25, 0.5, and 1.0 were used, with 0 being neutral and 1.0 corresponding to a doubling

of fitness. Uniform effects were used, such that all advantageous operations conferred

the same bonus. For example, for a fitness effect of 0.01, merit bonuses were defined

multiplicatively (type = mult) as 1.01 (value = 1.01) for all nine operations. Two sets of

20 replicates were performed, one for beneficial mutations and one for deleterious

mutations. Each replicate for beneficial mutations consisted of eight experiments, one

for each of the fitness effects tested. Each replicate for deleterious mutations consisted

of eight similar experiments in which evolution proceeded first under default settings,

and then continued an additional 10,000 generations using the alternative fitness

effects and a new random number seed. Because fitness bonuses were multiplicative in

our experiments, fitness effects would in reality be slightly different for mutations

creating and destroying the same operation. For example, a mutation creating an

operation with a bonus of 1.25 would have a beneficial fitness effect of (1 - 1.25 / 1.0)

= 0.25, but a mutation destroying the same operation would have a deleterious fitness

effect of (1 - 1.0 / 1.25) = 0.2. For simplicity, the consequences of deleterious muta-

tions were simply reported (Figure 3) relative to the beneficial fitness effect. Addition-

ally, while deleterious fitness effects could have been indicated as negative values, the

absolute values were used for simplicity.

Additional material

Additional file 1: Mutation and drift. Dynamics of Avidian mutation and drift across 20 experiments in which no
logic operations were rewarded.

Additional file 2: Evolution under default settings. Dynamics of Avidian evolution across 30 experiments using
default settings.

Additional file 3: Evolution with reduced mutation rate. Dynamics of Avidian evolution across 30 experiments
in which a genomic mutation rate of 0.5 per generation was used.

Additional file 4: Selection threshold for beneficial mutations. Dynamics of Avidian evolution across 20
replicates (160 experiments) employing alternative mutational fitness effects of ≤ 1.0.

Additional file 5: Selection threshold for deleterious mutations. Dynamics of Avidian evolution across 20
replicates (160 experiments) employing alternative beneficial mutational fitness effects of ≤ 1.0. Evolution first
occurred under default settings to allow the evolution of logic operations, then continued with alternative
mutational fitness effects.
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