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Abstract

Objective: Develop and validate particular, concrete, and abstract yet plausible in
silico mechanistic explanations for large intra- and interindividual variability observed
for eleven bioequivalence study participants. Do so in the face of considerable
uncertainty about mechanisms.

Methods: We constructed an object-oriented, discrete event model called SUBJECT
(we use small caps to distinguish computational objects from their biological
counterparts). It maps abstractly to a dissolution test system and study subject to
whom product was administered orally. A SUBJECT comprises four interconnected
grid spaces and event mechanisms that map to different physiological features and
processes. DRUGS move within and between spaces. We followed an established,
Iterative Refinement Protocol. Individualized mechanisms were made sufficiently
complicated to achieve prespecified Similarity Criteria, but no more so. Within
SUBJECTS, the DISSOLUTION space is linked to both a product-SUBJECT Interaction
Space and the GI TRACT. The GI TRACT and Interaction Space connect to PLASMA,
from which DRUG is eliminated.

Results: We discovered parameterizations that enabled the eleven SUBJECT
simulation results to achieve the most stringent Similarity Criteria. Simulated profiles
closely resembled those with normal, odd, and double peaks. We observed
important subject-by-formulation interactions within SUBJECTS.

Conclusion: We hypothesize that there were interactions within bioequivalence
study participants corresponding to the subject-by-formulation interactions within
SUBJECTS. Further progress requires methods to transition currently abstract SUBJECT
mechanisms iteratively and parsimoniously to be more physiologically realistic. As
that objective is achieved, the approach presented is expected to become beneficial
to drug development (e.g., controlled release) and to a reduction in the number of
subjects needed per study plus faster regulatory review.

Background

Large intrasubject variability in drug bioequivalence (BE) coupled with weak in vitro-

to-in vivo correlation can pose significant problems in assessing bioequivalence [1-3].

We observed examples of large intra- and interindividual variability in data from a

bioequivalence study. A proposed strategy for exploring plausible explanations, one

that has since been abandoned, was individual BE. The focus was to investigate import-

ant subject-by-formulation interactions, if they exist [4,5]. When faced with such data,
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an obvious question is, what are plausible, mechanistic, root causes of that variability?

We used an unconventional modeling and simulation strategy to develop particular,

concrete, parsimonious yet plausible abstract answers that strove to avoid accumulating

tenuous assumptions. We present individualized answers in the form of subject-

by-formulation interactions that emerged within models for a set of eleven subjects

drawn from one BE study.

Plausible, conceptual explanations for such variability have been discussed [6].

Several pharmacokinetic modeling and simulation strategies have been offered for

deciphering atypical drug absorption profiles, including using a sum of inverse

Gaussian functions to describe absorption [7] as part of a parametric, nonlinear

mixed effects analysis [8]. Such analyses may fail because mechanisms underlying

the data contradict one or more of the assumptions on which the formal approach

rests. Sparse data aggravates the problem. That problem can be solved when popu-

lation mathematical descriptions within nonlinear mixed effect pharmacokinetic

models can be expanded to cover more mechanistic assumptions [9-11]. When data

are rich, the problem may be addressable using two-stage techniques [9], which

allow more flexibility in specifying absorption characteristics of the structural

model. However, if the failure is because different mechanisms (i.e., different struc-

tural models) seem to apply to subsets of individuals, but not on all occasions,

then multiple assumptions made by such mathematical models are violated. In that

case, even with rich data, such analyses cannot be relied upon to provide trustable

mechanistic insight. The latter situation occurs for many complex controlled release

formulations. Hénin et. al. [11] describe an example involving a complex felodipine

tablet formulation, and discusses the problem from the conventional modeling per-

spective. In such situations, different methods, like those presented herein, are

needed.

In concluding a review of methods of deciphering atypical drug absorption profiles,

Zhou [6] opined, “it can be envisioned that . . . absorption analysis may move toward

more mechanism-based rather than simply abstract number crunching. It may also be

expected that more and more novel research techniques and computational tools will

be used to greatly facilitate the in-depth understanding of absorption processes.” Such

progress would expand the “personalized medicine” vision to include complicated oral

dosage forms [10,12]. Before we can develop methods that provide exploitable explana-

tions of atypical drug absorption profiles, we need means to begin achieving deeper,

concrete insight into mechanisms that may underlie intra- and interindividual differ-

ences in bioavailability data, including subject-by-formulation interactions [5], when

they exist.

Why do we need a modeling and simulation approach that is fundamentally different

from conventional physiologically based and population pharmacokinetic approaches?

The circumstances of a BE study can be characterized by indicating an approximate lo-

cation on the two scales in Figure 1. For an established dosage form, for which we have

repeated, good correlations between in vitro measures of dissolution and bioavailability

measures, little intra-individual variability, and explainable interindividual variability,

we would select locations somewhat right of center. Being on the far right (characteris-

tic of many engineering problems) favors developing inductive models that can be pre-

cise, accurate, and predictive: the generators of underlying phenomena are well



Figure 1 Scales characterizing bioavailability studies. Any feature or property of a specific study subject
following dosing (the system) can be characterized by an approximate location on both scales. Uncertainty
example: we know very little about the likely state of the extended release dosage in a particular subject
at a particular time after dosing. Consequently, for that feature, we are left of center on the Uncertainty
Scale. Mechanistic knowledge: we know very little about the actual mechanisms responsible for differences
in drug plasma profiles. Consequently, here too, we are on the left side of the scale. We need plausible
mechanisms that can explain the large intra- and interindividual variability in bioavailability.
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understood, ample quantitative data is available, and precise knowledge about mechan-

isms is available at all levels of granularity. One’s location shifts left when dealing with

living systems because uncertainty increases and precise knowledge diminishes. Con-

ceptual mechanisms are less validated (thus less trustworthy) and more hypothetical.

The reliable, quantitative data that would be needed to validate (or falsify) even a mod-

estly complicated, explanatory, mechanistic model are often lacking or scarce. When

intra- and interindividual variability increases (e.g., complex, extended release formula-

tions), one’s location shifts further left, and the risks and associated problems of relying

on induction and inductive models begin accumulating. Yet the need for more compli-

cated, particular (rather than generalized) individualized explanations increases. Prior

to the introduction of object-oriented methods, there was no sound option but to con-

tinue relying on equation based, inductive models such as those used to study oral

absorption [6,13,14]. The method for doing so is straightforward and effective under

many circumstances, but hinges on an idealized scenario that enables moving far right

in Figure 1, a scenario that is easily described by an equation-based model when some

set of assumptions are met. Herein, we are not interested in idealized scenarios, so we

elected to explore the approach described below.

We began answering the question posed above by discovering plausible, abstract yet

concrete mechanistic explanations for eleven examples (exhibiting the most intra- and

interindividual variability from a study involving 32 subjects) of intra-individual differ-

ences in bioavailability and its role in the determination of BE of a generic and origin-

ator product. For reasons stated above, we sought new methods that would provide the

flexibility needed given considerable uncertainty.

We used object-oriented, discrete event, modeling and simulation methods to build

concrete software devices composed of three or more discretized spaces and mobile

objects (mapping to drug) that, when measured during simulation, mimic measured

features of drug release from a dosage form along with important features of the

plasma drug concentration versus time profiles. The device is an analogue of a subject

participating in a bioequivalence study. Hunt et al. [15] describe how the approach is

fundamentally different from conventional physiologically based and population phar-

macokinetic approaches. Our objective was to discover separate, individualized
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analogues that produce “drug dissolution” and individual “disposition” profiles that

closely match their counterparts, as determined by prespecified Similarity Criteria (SC).

We adhered to a strong guideline: make each analogue and its mechanisms no more

complicated than needed to achieve the SC. We conjectured that once targeted SC

have been achieved for a given subject, we could hypothesize that in silico mechanistic

details might have had BE-study-subject counterparts [15] at a comparable abstraction

level. When simulation results fail to achieve the SC, we can state that the analogue

and its mechanisms do not have real world counterparts.

Starting with a simple, prototypal analogue, we used an Iterative Refinement Protocol

(IR Protocol) to improve similarity between in silico and corresponding subject plasma

profiles. We used medium and stringent, multi-attribute SC. We evaluated three struc-

turally different versions of SUBJECT, one simple and two somewhat more compli-

cated. All three achieved the medium SC for all subjects. The gastro-intestinal (GI)

component of each SUBJECT mapped to a non-homogeneous GI tract. The third

SUBJECT, the focus of this report, had a two-component, heterogeneous, individualiz-

able “GI tract.” Parameterizations were discovered that achieved the stringent SC for all

eleven plasma profile pairs. Originator and test product mean dissolution profiles were

different; a corresponding difference was built into SUBJECTS. To achieve the stringent

SC, it was necessary to specify additional, modest intra- and interindividual differences

in analogue counterparts to product dissolution. It was also necessary to specify both

intra- and interindividual differences in drug disposition within SUBJECTS.

The parameterized SUBJECTS are simple and intuitive. Coarse-grained dynamic

details can be observed during simulations. We hypothesize that all had BE study coun-

terparts. In achieving the stringent SC, SUBJECT parameterizations and executions

brought into clear focus plausible subject-by-formulation interactions. If evidence

becomes available that falsifies one or more events or processes, it is straightforward to

use the IR Protocol to make adjustments that reestablish validation. It is easy to

conceptualize mappings from events occurring during simulations and counterparts

occurring during product dissolution, drug absorption, and disposition within individ-

ual subjects. In that way, the simulations facilitate thinking more deeply about the real

system. Insights gained from this new class of simulation models may lead to ideas for

improving complicated formulations to achieve bioequivalence or enable controlled

individualization of product performance.
Methods
Bioequivalence studies

A randomized, single-dose, two-way crossover study design under fasting conditions

was used to evaluate the bioequivalence of drug X in originator and test, controlled re-

lease formulations. All 32 volunteers were healthy adults. Two subjects failed to

complete the study resulting in a final N = 30, from which we selected eleven that exhib-

ited especially large or atypical variability. A validated assay (liquid chromatography -

mass spectrometry and liquid chromatography - tandem mass spectrometry) was used

to determine drug X and its metabolite levels in plasma. The assay was linear between

1 and 400 ng/ml. The overall inter-day precision (% coefficient of variation) and accur-

acy for the standards and quality control samples were within the range of 2.4 to 9.3%
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and 92.4 to 108%, respectively. Dissolution studies were conducted using USP basket at

100 rpm in 900 ml of pH 7.2 buffer solutions at 37°C. Samples were taken at time 0, 0.5,

1, 1.5, 2, 4 hours and then every 2 hours thereafter to 24 hrs.
In silico approach

We seek in silico mechanisms that will provide plausible, mechanistic explanations of

variability in BE. The requirements for models to be explanatory are well established

[16,17]. We constructed an object-oriented, discrete event model that maps abstractly

to two key components of a bioequivalence study: a dissolution test system and a study

subject to whom originator product and test formulation were administered orally. We

use SMALL CAPS when describing SUBJECT features and components to avoid confu-

sion and make clear that SUBJECTS cannot be the same as the BE study counterparts

to which they map. SUBJECT and its framework are illustrated in Figure 2. Because

methods that follow are different from those used for conventional pharmacokinetic
Figure 2 Framework. The system comprises a core, in silico model supported by framework features
for simulation and analysis. The framework simulates whole-body drug disposition experiments. The basic
design has three grid spaces that abstractly map to the dissolution compartment, GI tract, and plasma.
The arrows indicate grid-to-grid connections. DRUG objects move between the interconnected spaces,
and exit from the PLASMA grid. Simulated diffusion occurs within each grid. GI tract can be represented
using multiple grids to introduce structural and functional heterogeneity. A reservoir space is an option,
which can be added and connected to GI TRACT. Spaces shaded differently within GI TRACT indicate that
their properties can be customized, should that be needed. Supporting framework components include a
Data Processing Agent and graphical user interface. The Data Processing Agent parses parameter files and
referent data for simulation setup, and accesses SUBJECT during simulation to automatically record and
analyze measurements.
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and pharmacodynamic modeling and simulation, some terminology is also new. Gloss-

aries are available at (http://furm.org/glossary.html) and in [15].
Iterative refinement protocol

Simulation experiments must follow protocols, analogous to bioequivalence studies.

We followed the IR Protocol in Figure 3, which is based on the scientific method:

cycles of SUBJECT assembly; testing and evaluation; validation or falsification; assess-

ment; cogitation; and feature or scenario revision. The process continues until prespeci-

fied SC are achieved or not. The protocol has features in common with protocols used

for modeling and simulating complex ecological systems [18,19]. SC are discussed

below. They typically begin weak and then are strengthened, as done in [20-22]. We

used the IR Protocol successfully for different model types [20-23]. For this work, the

attributes targeted include the product dissolution profile and features of the plasma

drug level versus time profile (hereafter, simply plasma profile).

Mechanisms should be sufficiently complicated to achieve IR Protocol goals, but no

more so. There is a strong impulse to add mechanistic details (specific regions of the

intestine and flow through them, for example) before their need in achieving SC has

been demonstrated, simply because we have knowledge of those details and evidence

that they can contribute to plasma profile shape. Doing so too early is a mistake for

two reasons. 1) As explained in [15], we are not trying to build an accurate, detailed

model of typical subject. 2) It can lead to inscription error, which is the logical fallacy

of assuming the conclusion and programming in (consciously or otherwise) aspects of
Figure 3 Iterative Refinement Protocol was used to systematically develop and improve a SUBJECT
and the outcomes of in silico bioequivalence studies.

http://furm.org/glossary.html
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the result we expect to see. Because a SUBJECT is an extensible, modular device, we

know that we can add additional detail when needed, and doing so will be relatively

straightforward. Adhering to that parsimony guideline encourages resisting making a

SUBJECT any more complicated than needed to achieve current SC, while leaving un-

specified the many other mechanisms that might influence the plasma profile. Adhering

to that guideline is analogous to avoiding overparameteriztion of an equation-based

model. We keep framework components simple by conflating fine-grained physiologic

and anatomic details for which we have not yet demonstrated a need, and representing

them collectively using abstract objects, spaces, and/or agents having relatively simple

operating rules. Once SC and thus a degree of validation have been achieved, the beha-

viors of current components during simulation can be used for cross-model validation

during development of alternative SUBJECTS having greater mechanistic detail, as

done in [20,21,24].

When cycling through the IR Protocol, three attribute spaces are sampled and

explored: SUBJECT mechanisms (types and properties of SUBJECT components, and

their connection), parameter (including the mapping from time steps to clock time),

and phenotype (a SUBJECT’S behavior space). For this project we focused on a narrow

set of attributes, but as demonstrated in other projects [20-22,25], the focus can be a

diverse set of phenotypic attributes. For complicated phenomena like a plasma profile

during and following drug absorption, the reverse mapping from a phenomenon (e.g.,

curve shape) to plausible generators is one-to-many [15]; many, equally plausible

mechanisms (networked events) can generate any one plasma profile. When dealing

with people undergoing drug treatment, the mapping will be one-to-many no matter

how much data we have, in part because of intra- and interindividual differences. Given

ample resources, the ideal scientific strategy for gaining insight into mechanisms that

may be responsible for a given plasma profile [15] would be to sample a variety of

mechanisms and let them compete for survival through many IR Protocol cycles.

For specific mechanisms, like those depicted in Figure 2 and described below, only a

subset of all possible parameter vectors (i.e., parameter value combinations) can

achieve validation targets, in part because we are striving to be parsimonious, and

some parameter value combinations are unrealistic or abiotic. However, when the

number of attributes targeted is increased, that subset shrinks, sometimes to zero (see

[20]); in the latter case, the mechanism is falsified. However, because of framework de-

sign, when that occurs, revision is easy. Similar shrinkage occurs when SC stringency

is increased.
System and SUBJECT components

We rely on object- and agent-oriented, discrete space, discrete event, software engin-

eering methods [15,26,27] coupled with relational grounding (discussed below). The

methods are analogous in several ways to established methods used for biological [28]

and ecological research [18,19]. The basic methods have been described in [20,29,30].

Instructions for conducting in silico experiments and a description of the software are

provided as Additional file 1. The following are provided in Additional file 2: a list

objects, spaces, and their referents; descriptions of system components and an architec-

ture diagram; and detailed descriptions of SUBJECT parameters.
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A SUBJECT comprises a set of interconnected grid spaces and event mechanisms

that map to different physiological features and processes (Figure 2). Our early, base

model had three two-dimensional (2D), toroidal grid spaces, one each mapping to dis-

solution, GI, and plasma (plus all equilibrating tissues). All grid spaces are the same

size: 100 x 100. Larger grid sizes did not measurably change SUBJECT outcome (results

not shown). At each grid location is a simple container that can hold objects or numer-

ical values. The spaces shaded differently within GI TRACT in Figure 2 illustrate that

GI TRACT’S mechanistic properties can be made heterogeneous as needed by using

multiple, independently parameterized grid spaces. The DISSOLUTION space is linked

to both the GI TRACT and an Interaction Space. We hypothesize that the Interaction

Space maps to individualized mechanistic heterogeneity that is a consequence of dosage

form–GI tract interactions. GI TRACT and Interaction Space connect separately to

PLASMA. The DISSOLUTION space and PLASMA are not connected. Not shown is

somewhat less complicated SUBJECT, in which a “reservoir” space exists in place of

Interaction Space. DRUG can move from the DISSOLUTION space to GI TRACT and

reservoir, and between GI TRACT and reservoir, but not from reservoir to PLASMA.

Framework components include a graphical user interface and data processor. The

user interface allows the user to visualize and interactively probe SUBJECT and various

parameter values during execution. The Data Processing Agent parses parameter files

and experimental data for visualization and basic analysis. The agent is also responsible

for making and recording measurements during simulation. SUBJECT and the support-

ing framework are designed to be configurable, extensible, and modular so that add-

itional, individualized components and detail can be added easily as needed.
Simulating drug and its movement

Along one simulation path, drug can be represented as individual objects; along

another path, it can be represented as numerical values. We used the numerical repre-

sentation to simplify simulation and analysis. A numerical value designates the number

of mobile DRUG objects at a grid location. For the reported studies, DOSE= 10,000.

One DRUG maps to the amount of referent drug in a small aliquot of a referent fluid,

plasma for example. Related works provide examples of using individual objects to rep-

resent compounds [20,25,30,31]. An advantage of using discrete objects is that each

can carry identification information, such as a list of physicochemical properties of its

referent, as done in [31]. The object representation enables one to obtain dynamic,

fine-grained information on event histories and activities of individual DRUGS [25],

however so doing significantly increases computation costs and complexity.

Time advances discretely in time steps (also called simulation cycles). One time step

maps to several minutes; the exact number depends on other quantitative mappings, is

subject-specific, and is specified by the parameter XScale. One time step maps to 0.5 h

when XScale= 0.5. During each time step, all grid sites are updated. An update algo-

rithm computes new values for all sites in sequential order: (0, 0), (0, 1), . . .(0, n), (1, 0),

(1, 1), . . .(n, n). Once computing is complete, the update is finalized. Simulation results

are recorded at the end of each time step. That data map to snapshots of referent system

details taken at regular intervals. No assumptions are made about events occurring

between time steps.
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Inter-grid transfer and intra-grid relocation control DRUG movement. Inter-grid

transfers occur between interconnected grids as illustrated in Figure 2. They are gov-

erned by a set of adjustable parameters. During each time step, a fraction of DRUG is

transferred from one grid to another. In general, when Grid A has an incoming connec-

tion from Grid B and outgoing connection to Grid C, the amount of DRUG at site (i, j)

is updated during time step t as follows:

Ai;j t þ 1ð Þ ¼ Ai;j tð Þ þ wBA fBABi;j tð Þ
� �� wAC fACCi;j tð Þ� � ð1Þ

where fBA specifies the fraction transferred from Grid B to A, fAC is the fraction trans-

ferred from Grid A to C, wBA and wAC are Boolean variables with parameter-controlled

probabilities. For example, DRUG transfer from GI TRACT to PLASMA is governed

by the parameters GtoPProb and GtoPFract; they specify the probability of transfer oc-

curring and the fraction of DRUG present at that site that is transferred during a time

step. For each decision, a pseudorandom number is drawn from the uniform distribu-

tion; wGP is set to ‘true’ if the drawn number <GtoPProb, otherwise ‘false’.

Intra-grid relocation simulates drug movement within (but not between) plasma, GI,

and other structures. It uses a discrete approximation algorithm: Ai;j t þ 1ð Þ ¼
Ai;j tð Þ þ d Ni;j tð Þ � Ai;j tð Þ� �� �

, where d is the relocation rate, t is the relocation step

counter, Ai,j(t) is the DRUG amount at grid site (i, j), and Ni,j(t) is the average DRUG

amount across grid site (i, j) and its four neighboring sites. Higher relocation rates ap-

proximate well-stirred compartments (i.e., rapid distribution). Maximum relocation

rate = 1 was used for all simulations. An iteration parameter sets the number of times

the relocation algorithm executes per time step, and that was set to 2 for all simula-

tions. Relocations execute independently of transfers.

System dynamics are a consequence of discrete events executed every time step. At

the start of simulation, the DISSOLUTION grid is initialized with DRUG DOSE distrib-

uted across that space. Within a time step, grid-to-grid transfer events execute in the

following sequence: 1) elimination from the PLASMA; 2) transfer from the GI

TRACTS to PLASMA; and 3) transfer from DISSOLUTION to GI TRACT. All other

events executed in pseudorandom order. Measurements are taken automatically every

time step and recorded to output files at the end of simulation.

Similarity criteria and quantitative comparisons

Similarity Criteria were specified arbitrarily, guided by examples of good and poor non-

linear mixed effect pharmacokinetic fits available in the literature. They are boolean

tests that determine whether or not the simulated outcome is sufficiently similar to a

feature (aspect) of the referent profile. Recent examples are provided in [25], which

compared hepatic and simulated outflow profiles of diltiazem disposition in normal

and diseased rat livers using similar, quantitative metrics. The SC specify that a simu-

lated profile be within some factor of the referent values. They define upper and lower

bounds around the target profile, and require that a specified number or ratio of simu-

lated values occur within those bounds. In this study, we expected the consequences of

a change in absorption details would be most evident in changes in ascending and des-

cending portions of disposition profiles. Consequently, when specifying similarity, we

gave more weight to those portions of the plasma profile. We specified two levels of
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stringency, starting with a medium stringency SC for baseline, initial SUBJECT develop-

ment and testing. A higher stringency SC guided further refinement so that SUBJECT

profiles matched referent more closely than did those obtained using conventional

compartmental models (Additional file 2). The medium stringency SC used the follow-

ing metrics for all nonzero values. For 0–10 h, all values must lie within a band ± 50%

of referent values; in addition, four or more values must lie within ± 20% of referent

values. For 10–48 h, all values must lie within ± 100% of referent values; in addition

three or more values must lie within ± 30%. During iterative refinement, we also modi-

fied the mean in vitro dissolution profile, within limits, when doing so was needed to

achieve plasma profile SC. The medium stringency SC for DISSOLUTION and referent

profiles required that no more than two nonzero values lie outside ± 50% of referent

values. Once we achieved the medium SC for all subjects, we applied the stringent SC,

which tightened the threshold band for plasma profiles to require all nonzero values lie

within ± 25%; in addition, four or more values must lie within ± 10% of referent values

for the 0–10 h period.

A simple quantitative comparison metric was used to assess similarity between the

simulated and subject profiles. We used the metric to guide selection of model parame-

terizations that provided for closer approximations to the referent profile. The metric

gives an average of all values computed using the following formula:

exp � y� y0ð Þ=yj jð Þ ð2Þ

where y is the referent value, and y' is the simulation value. Metric values closer to 1 in-

dicate tighter approximations. The metric was applied to both the dissolution and

plasma profiles.

We used dose fraction values for comparisons described above. DOSE fraction refers

to the fraction of initial, total DRUG objects at some location within the simulation.

For example, with an initial dosage of 10,000 DRUG objects, a DOSE fraction of 0.005

translates to 50 DRUGS. We use dose fraction because it is unitless and enables direct

superposition of in silico and clinical data. It also facilitates using relational than abso-

lute grounding [32]. Comparisons were made on individual (vs. averaged) profiles; aver-

aging over multiple runs did not provide statistically meaningful or useful insights.

From simple to more complicated SUBJECTS

Adjustable delay parameters (initially DtoGDelay and GtoPDelay; later also G2toPDelay)

were needed to better approximate observed plasma profile time lags and enable

achieving the medium SC. However, when using only three grids, we failed to identify

parameterizations to achieve the stringent SC. Major confounding factors included bi-

phasic plasma profiles and the appearance of ratcheted or multiple peaks in plasma

profiles. To achieve the stringent SC, we connected a second grid space to GI TRACT

and called it reservoir; we refer to those models as R-SUBJECTS. We allowed DRUG to

move between the reservoir and GI TRACT. So doing enabled R-SUBJECTS to pro-

duce sharper and multiple peaks. It also enabled achieving the stringent SC for some

but not all subjects. Failure to achieve the stringent SC falsified that R-SUBJECT. While

reviewing failed cases, we noted that PLASMA profiles fared poorly in matching mul-

tiple peaks in the 0–15 h period. We then created new SUBJECTS having two, inde-

pendently parameterized grids (GI TRACT and Interaction Space in Figure 2) that
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together map to referent subject’s GI tract. So doing enabled simulations to better

match peaks. Having dual grids enabled achieving the stringent SC for all eleven

subjects. We refer to those models (Figure 2) as heterogeneous GI SUBJECTS, here-

after HGI SUBJECTS. Additional details and parameter descriptions are provided in

Additional file 2.

In addition to the parameters already specified, SUBJECTS with GI TRACT and

Interaction Space used the following parameters. DtoGFract, and DtoGProb define the

DOSE fraction transferred and the probability of transfer from DISSOLUTION grid to

both grids. DiffGRatio specifies the fraction transferred to GI TRACT and Interaction

Space; for example, when DiffGRatio= 0.8, 80% of transferred DRUG goes to GI

TRACT and 20% to Interaction Space. A difference in DiffGRatio (or another param-

eter) between the ORIGINATOR and TEST version of a SUBJECT instantiates an in

silico counterpart of a subject-by-formulation interaction.

GtoPFract, and GtoPProb govern DRUG relocation from GI TRACT to PLASMA;

G2toPFract and G2toPProb govern movement from Interaction Space to PLASMA.

PtoEDelay, PtoEFract, and PtoEProb are the probabilities controlling DRUG elimination

from PLASMA each time step. YScale is a scalar. It is applied to DOSE fraction in

PLASMA to account for differences between dissolution and plasma concentrations

measurements.
Hardware and software

The framework code and instructions are available from the Corresponding Author.

SUBJECTS and supporting modules were implemented in Java using a multi-agent

simulation library, MASON (http://cs.gmu.edu/~eclab/projects/mason). Batch simula-

tion experiments were performed on a small-scale server. For model development, test-

ing, and analysis, we used personal computers. We used R 2.7 (http://www.r-project.

org) for data analysis and graph production.
Results
Prior experience with this class of models provided informal heuristics for manually

searching parameter space for parameter vectors that would enable achieving the

medium SC. When cycling through the IR Protocol, we typically first adjusted para-

meters to mimic the dissolution profile. Next, we strove to mimic the plasma profile. As

indicated by how SC are specified above, we placed more emphasis on matching Cmax

and Tmax and less on matching the plasma profile tail, in part because Cmax and Tmax

are emphasized in BE studies. For each originator-test pair, we completed simulations

to first match the originator profile, and once successful, we shifted focus to matching

the test profile in new, separate simulations. With simple SUBJECTS, we discovered

parameterizations that enabled achieving the medium SC for all eleven subjects.

Having achieved the medium SC, we next focused on the stringent SC, which

required greater similarity for the 0–10 h interval. For subjects 1 and 7, we located par-

ameter vectors that enabled achieving the stringent SC for both the dissolution and

plasma profiles of the test product. However, we failed to achieve the stringent SC for

the remaining profiles, some of which exhibited noteworthy volatile patterns (e.g., sub-

jects 5 and 8). Those failures falsified the simple SUBJECT mechanisms. We shifted to

http://cs.gmu.edu/~eclab/projects/mason
http://www.r-project.org
http://www.r-project.org
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R-SUBJECTS. In so doing, we increased the model granularity, increased mechanistic

detail, and expanded SUBJECT phenotype as reflected in plasma profiles. At that stage,

because relevant individual subject physiological details were absent, we did not get

into issues of mapping R-SUBJECT mechanisms to human reality: to do so would be

purely speculative. The increased mechanistic detail enabled achieving the stringent SC

for several additional cases (details not shown) but failed to do so for others. Again,

those failures falsified the reservoir SUBJECT mechanisms.

We then shifted attention to HGI SUBJECTS. Other strategies for increasing event

options within SUBJECTS could have been explored. Our task was simply to discover

one that could achieve the stringent SC. We did not increase model granularity (rela-

tive to R-SUBJECTS), but we did marginally increase mechanistic detail, while also

expanding SUBJECT phenotype. Again, we did not get into issues of mapping HGI

SUBJECT mechanisms to specific GI details. The increased mechanistic detail enabled

achieving the stringent SC for all cases. We located parameter vectors (Table 1) that

produced the PLASMA profiles in Figure 4 that more closely resembled the observed

profiles, and achieved the stringent SC. Having the additional Interaction Space feature

was sufficient for approximating profiles with odd peaks like those observed in subjects

5, 8, and 10. Three additional matched profiles are provided in Additional file 2.
Discussion
A rationale for this new approach is that we can improve insight into the mechanisms

responsible for differences in Figure 4 plasma profiles by making the individual map-

ping from simulated to actual profile concretizable. That can only be done if the simu-

lated profiles are a consequence of actual, observable, processes. At the start of such a

process (that is where we are with this report), the actual in silico processes needed for

validation will necessarily be abstract and coarse grain.
Table 1 Parameter values for HGI SUBJECTS. Order: originator/test

Subject

Parameter 1 Default 1 3 4 5 7 8 9 10

XScale 1 0.5 0.5/1.0 0.25/0.5 .125 .25/.5 .5 .125/.5 .125

YScale 120 330 220/120 120/330 220/110 110/330 110 110 110

DtoGDelay 1 1 1 1 1 1 1 1 1

DtoGFract .1 0.1/0.2 .13/.33 .05/0.2 .03/.05 .05/.16 .13/.28 .05/.25 .025/.05

DtoGProb .8 0.8 0.8 0.8 0.8 .8/.85 .8 .4/.9 .8

DiffGRatio 1 0.8/1 .65/.93 .94/.9 .75/.65 .6/1 .6/.4 .9 .88/.9

GtoPDelay 0 5/4 0 4/0 7/21 4/6 0/3 12/6 0/8

GtoPFract .1 1.0/0.3 .78/.88 .065/.14 .25/.1 .34/.46 .65/.4 .2/.38 .12/.1

GtoPProb .8 1.0/0.8 .78/.88 0.89 0.27/.3 .34/.46 .65/.4 .2/.38 .12/.1

G2toPDelay 20 32/20 18/15 19/23 96/86 39 20/21 97/26 0/58

G2toPFract .1 0.3/0.1 0.2/0.5 1.0/0.3 0.12 .13 .23/.24 .11/.23 .05/.23

G2toPProb .8 0.3/0.8 0.2/0.5 1.0/0.3 .13/.12 .13 .23/.24 .11/.23 .05/.23

PtoEDelay 0 7/0 10/3 14/7 36/0 18/11 1/11 20/0 35/48

PtoEFract 0.1 .25/.11 .14/.26 .69/.9 .125/.24 .15/.1 .14/.12 .22/.48 .11

PtoEProb 0.8 .6/.88 .8/.93 .3/.86 0.5/.4 1/.8 1/.9 .5/.4 .8
1 Additional parameter information is provided in Additional file 2.



Figure 4 Plasma profiles. Profiles for three additional subjects are provided in Additional file 2. We used
default parameter values to initialize HGI SUBJECTS and execute initial simulations. Grid size was set to
100 x 100, and probability parameters governing DRUG movement as specified in Table 1. Once initialized,
the simulation was executed and stopped after a predefined number of time steps. Simulated plasma
values were recorded each cycle and scaled in DOSE fraction to directly compare with the referent values.
If the outcome failed to satisfy the prespecified SC, we adjusted parameter values and repeated simulation.
We repeated the process for each referent profile until simulation measures achieved the SC. All simulations
with Table 1 parameter values achieved the stringent SC. Red: referent plasma profile from the BE study;
black: simulated profile from HGI SUBJECT.
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A traditional, inductive, dissolution-absorption-pharmacokinetic model of the type

used in nonlinear mixed effects analyses hypothesizes an explanation of patterns in

plasma profile data. The mathematics describe data features predicted to arise from

conceptualized mechanisms, which in turn are typically described in sketches and prose

[1-3,6]. There is an unverifiable, conceptual mapping between equations and envisioned

mechanisms [15]. The methods used herein are different. They provide three capabil-

ities: 1) an independent, scientific means to challenge, explore, and better understand

any inductive mechanism and, importantly, the assumptions on which it rests; 2) an

additional experimental means of exploring, discovering, and testing the plausibility of

subject-by-formulation interaction details at coarse grain level, along with causes of

intra- and interindividual variability observed in bioequivalence study results; 3) a

means to leverage the investment in BE studies and the research that preceded them by

constructing and studying mechanistic analogues of dissolution and absorption pro-

cesses contemporaneously with product development.
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Measures of PLASMA during simulation experiments provide a test of the mechanis-

tic hypotheses built into that SUBJECT. An acceptable similarity between in silico and

BE study data is evidence that a concretizable mapping may exist between the dynamics

occurring during simulation and corresponding dynamics thought to occur within that

BE study subject, even though the actual events and processes in the two systems are

different. To the extent that the mapping is accepted as realistic, we can posit that the

implemented mechanisms may also have real counterparts.

However, given complex phenomena such as the profiles in Figure 4, there are, for a

prespecified level of granularity, many, equally plausible biomimetic generators. To bet-

ter understand intra- and interindividual variability, we will need to narrow the set of

competing mechanistic explanations, and zero-in on causes of subject-by-formulation

interactions, when present. To do that, we need modeling and simulation methods like

those presented herein that are intuitive, heuristic, flexible, adaptable, and easily indivi-

dualized [15,33]. Even though we present just one plausible, mechanistic explanation

for each plasma profile, it is straightforward to develop others when that is needed. An

understanding of these mechanisms may be useful in controlled-release formulation de-

velopment to minimize the type of intra-subject variation observed in Cmax for subjects

1, 2, 3, 5, 9, 10, and 11. So doing would improve in vivo absorption performance.

SUBJECTS have been designed to use relational grounding [15,32] for maximum

flexibility. For mappings to be quantitative, as in Figure 4, an additional model— a

method of scaling; a quantitative mapping— is needed to relate a SUBJECT’S PLASMA

profile directly to the referent plasma profile. That was done using the parameters

XScale and YScale. For several SUBJECTS, achieving the stringent SC required varying

the XScale and/or YScale values between the test and originator plasma profiles. XScale

maps time steps to BE study time. By changing the XScale value, we alter the time

granularity of simulation relative to in vivo time, which enables adjusting simulation for

differences in the subject’s physiological condition (as influenced by stress, for example,

or the previous day’s activities), which affect GI physiology, metabolism or other ab-

sorption and disposition related features. XScale does not influence product dissolution.

A change in YScale maps to systemic variations in plasma concentration measurements

between experiments, which may include changes in effective volume of distribution

and bioavailability. It should be noted that changes in XScale and YScale values within

or between SUBJECTS are evidence that the subject’s physiology changed between

occasions. If we were to move these scaling models into each SUBJECT, we would im-

mediately reduce SUBJECT flexibility, which is scientifically undesirable [32].

The levels of temporal, spatial, and mechanistic granularity (which control reso-

lution) are somewhat arbitrary: they need to be sufficiently fine-grain so that a SUB-

JECT’S PLASMA profile meets the stringent SC. Granularity can be easily increased

or decreased when that is needed. Because interactions within and between SUB-

JECT components are grounded relationally, an algorithm can be implemented when

needed to automatically adjust parameter values to accommodate new levels of

granularity so that the consequences of mechanisms and events can remain essen-

tially unchanged.

One might object that the SUBJECT in Figure 2 is too abstract: distinguishable GI-

like features are absent; there is no DRUG movement through sequential GI spaces,

etc. Such features are absent because they were not needed to achieve the stringent SC.
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A scientific modeling and simulation good practice is to avoid inclusion of detail that is

not part of the validation strategy. However, there is a scientific approach to drill down

to additional, plausible, concrete, mechanistic detail. It requires expanding the list of

targeted attributes and using the IR Protocol in the context of cross-model validation

[24] to validate or falsify the need for that detail. Such attributes may include fine-

grained details such as distinct cell types, enzymes, and transporters (see [25] for

example). The approach is especially useful because of the scientific role played by

experimentation on the current, validated SUBJECT analogue.

Further knowledge about specific formulation and dissolution details, which we do

not have, can be used to specify additional SC that when met will shrink the space of

plausible SUBJECT mechanisms, which may bring informative details into focus. That

process may lead to identification of patient factors that correlate with subset member-

ship. The insights are expected to enable developing an improved formulation. The

SUBJECT model on which we focused represents the initial step in that direction. As

relevant findings and data from in vivo dissolution become available, we may proceed

to iteratively incorporate the information into SUBJECTS and achieve new validation.

If successful, the descendant models could provide quantitative, mechanistic, clinically

useful insight into how and why the in vitro dissolution differs (or not) from in vivo

mechanisms. That insight could guide the design and development of formulations to

optimize desired dissolution/absorption while minimizing adverse or otherwise undesir-

able characteristics.
Conclusion
In summary, we used object-oriented, discrete event modeling and simulation methods

to build and individually parameterize a SUBJECT— a software device— so that when

events are measured during simulations, results mimic essential features of drug X dis-

solution profiles and individual plasma profiles measured during a BE study. In time,

the proposed methods may be beneficial to drug development (e.g., controlled release)

and to a reduction in the number of subjects needed per study plus faster regulatory re-

view. For a new molecular entity, the strategy is expected to be useful during bridging

studies (e.g., change in formulation from clinical to a new to-be-marketed version).
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