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Abstract

In this paper, a new mathematical model is developed to represent the interaction
between healthy and cancer cells in the human body, focusing on the role of
environmental factors and quality of life in the progression of cancer. We have
investigated the dynamic effects of inputs on cancer growth, and provide an
explanation of how cancer has variable behavior patterns throughout the lives of
different patients. The behavior of the system with input and its trajectory patterns
are investigated using trajectory patterns and stability analysis. The analysis suggests
that a proper treatment method should change the dynamics of the cancer instead
of only reducing the population of cancer cells and treatment burden.

Background
Some of the existing studies on cancer therapy are based on the assumption that can-

cer growth is a time invariant dynamic system [1]. They have been focused on the fol-

lowing objectives:

(i) To reduce and control the tumor mass such that a specified volume is obtained

at the end of the treatment [2].

(ii) To lessen the treatment burden of patients. This method considers some con-

straints on the treatment policy [3].

(iii) To evaluate the number of injected cells that affect the equilibrium points of

the immune system and thus may ultimately be dangerous [4].

Previous studies have investigated the effects of therapeutic inputs, which are consid-

ered to have direct effects on the system states [5]. However, the behavior of cancer

changes as the disease progresses [6]. External stresses that represent destructive inputs,

such as environmental and quality of life factors, can cause disability in the DNA repair

genes [7]. They can also interfere with, and alter, the functions of regulatory growth sig-

nals (TGF-a), growth-inhibiting signals (TGF-b), and apoptosis (TP53) [6].

We are interested in analyzing how inputs alter the dynamics of the human body,

and whether this is the main factor involved in the occurrence of cancer. This paper

deals with a comparison between the responses of human body cells in a set of twin

identical brothers who live under two different conditions, or inputs. In the next sec-

tion, a modified model for the human body cells is presented. In the third section, the

equilibrium points of the system and its linear approximation are calculated. The

fourth section investigates the stability analysis of the system, using stability theorems
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and trajectory patterns. The fifth and final section discusses the results and

summarizes the conclusions.

Model

We have considered a set of identical twin brothers who were born with the same

genetic structures. It is assumed that, after the birth, they reside and grow up in two

different locations, and under different environmental conditions. One of them, say A,

lives in a polluted environment and under external stresses, but brother B does not.

The presented population model originates from [8]. The modifications in this model

are described here. The dynamic behavior of an organ of the body that is affected by

the cancer is given by the following time-variant equations.

d

dt

[
x
y

]
=

[
f1

(
x, y, u, t

)
f2

(
x, y, u, t

)
]

(1)

Where:

f1 = a1x
(
1 − x

K1

)
− (d1 + c) x − b1xy, (2)

f2 = a2y
(
1 − y

K2

)
− d2y + cx − (

b2x + g
)
y. (3)

The auxiliary equation of the system is

dc
dt

= c1u(1 − c
K3

) (4)

In Eq. 1, x and y are the healthy and cancerous cell concentrations, respectively.

Because the state variables are physiologically possible, their values are nonnegative, i.

e., x ≥ 0 and y ≥ 0. The coefficients a1 and a2 represent the growth rates of the healthy

and cancer cells, respectively. The growth of both healthy tissue and tumor decelerates

as the concentrations of both the healthy and tumor tissues approach the carrying

capacities K1 and K2, respectively [9]. The effect of the immune system is to kill the

mutated and cancer cells in proportional rates d1 and d2. The immune system agents

force the cancer cells to suicide through apoptosis [10]. The coefficient c represents

the proportion of healthy cells whose genome has been disordered by external stresses.

These cells initiate the neoplastic transformation, and are added to the tumor cells

[11].

The tumor competes with healthy tissue for resources, such as blood, nutrients, and

space, so the organ “feels” the tumor [12]. Moreover, these same cancer cells compete

with each other. The competition coefficients between different cells are b1, b2, and g.

The effects of the input on the dynamics of the system are introduced by the regis-

tration of input history in the system coefficients. The destructive inputs, in addition

to increasing cell mutation, predispose the cancer cells to intensification of the growth

rate, and reduce the death rate by conferring the ability to evade the intracellular con-

trolling mechanism and the immune system.

Cancer progression represents a macro-evolutionary process where karyotype change

or genome replacement plays the key dominant role [13]. In the present work, the
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transformation rate of healthy cells to cancer cells is assumed to be proportional to the

input magnitude u. The biotransformation coefficient saturates at a definite limit K3,

which is related to the biological limits of body organs and the accumulation of exter-

nal effects. The other variant parameters have similar formulations, but with different

values and rates. When the destructive inputs terminate, their effects remain in the

body and may or may not be compensated by the therapeutic inputs or by the body

recovery.

The parameter values are listed in Table 1. These values should not be used for clin-

ical applications, and are merely a means to approximate the cancer dynamics in the

numerical analysis [8]. It may be shown by implementation of the Lipschitz theorem

that Eq. 1 has a unique solution. The stability of the system is analyzed at the specified

time intervals when the parameter variation can be ignored owing to low rates.

Some important properties of the model are presented here, as described in the fol-

lowing two statements.

Statement 1. Let
[
x(t)
y(t)

]
be the solution of Eq. 1. Then the nonnegative orthant is

invariant, i.e.,
[
x(t)
y(t)

]
≥ 0 .

Proof:

i) Notice that input u has no direct effect on the variables x and y, it can be con-

cluded that if
[
x(0)
y(0)

]
=

[
0
0

]
, then

[
x(t)
y(t)

]
=

[
0
0

]
for all t ≥ 0.

ii) If the solution of Eq.1 approaches the horizontal axis from nonnegative orthant

then, ẋ|x=0 = 0 , ẏ
∣∣
x=0 =

[
a2

(
1 − y

K2

)
− (

d2 + g
)]

y ≥ 0 and y does not decrease,

so its value becomes negative.

Table 1 Parameter estimations

Parameter Unit Estimated value Source

Birth Youth Middle age Old After Old

A, B A B A B A B B

a1 week-1 5 3.5 5 4.9 Estimated

a2 week-1 0.12 3.816 1.152 6 1.872 6.7 1.934 3.531 [4]

K1 Cell 80 × 1000 [4]

K2 Cell 90 × 1000 Estimated

d1 week-1 0.1 Estimated

d2 week-1 2.5 1 2.26 0.05 2.09 0.03 1.94 1.167 Estimated

C week-1 0.001 0.032 0.010 0.05 0.016 0.05 0.019 0.028 Estimated

b1 Cell-1 0.06 0.191 0.063 0.3 0.107 0.6 0.115 0.206 [9]

b2 week-1 0.4 0.320 0.381 0.2 0.342 0.11 0.307 0.272 [3]

G week-1 0.002 0.064 0.002 0.1 0.005 0.1 0.007 0.016 Estimated

c1 week-1 0.001 [4]

K3 week-1 0.05 Estimated
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iii) If the solution of Eq.1 approaches the vertical axis from nonnegative orthant

then, ẏ
∣∣
y=0 = 0 , ẋ|y=0 =

[
a1

(
1 − x

K1

)
− (d1 + c)

]
x ≥ 0 and x does not decrease, so

its value becomes negative.

Hence, there is no solution that exits the first orthant. □
Statement 2. The sum of state variables in Eq. 1 is exponent convergent in the first

orthant. The region of convergence is contained in

A =
{(
x, y

) | 0 ≤ x + y ≤ W1max
}

(5)

Proof:

Let W = x + y. Then

W1 = Ẇ + rW = x
[
a1 + r −

(
a1 + r
K1

x + d1 + b1y
)]

+y
[
a2 + r −

(
a2 + r

K2
y + d2 + b2x + g

)]

Also the gradient of W1 may be shown as;

∇W1 =

⎡
⎢⎢⎣

a1 + r −
(
2
a1 + r
K1

x + d1 + (b1 + b2) y
)

a2 + r −
(
2
a2 + r
K2

y + d2 + g + (b1 + b2) x
)

⎤
⎥⎥⎦

W1 decreases when x and y converge to infinity, thus it has a maximum value.

∣∣HW1

∣∣ =
∣∣∣∣∣∣∣

−2
a1 + r
K1

− (b1 + b2)

− (b1 + b2) −2
a2 + r

K2

∣∣∣∣∣∣∣
= 4

(a1 + r) (a2 + r)
K1K2

− (b1 + b2)
2 > 0

If the chosen value r is large enough, the above inequality is valid over the whole

domain of analysis. The first element of HW1 is negative, thus (xext, yext) is the single

maximum of W1 and the maximum value is W1max = W1(xext, yext). After some simpli-

fications and letting

W2 = W1 +
1
r
W1max. (6)

the following inequality is achieved:

Ẇ2 + rW2 ≤ 0 (7)

It may be shown [14] that for Eq.7 we have;

W2 (t) ≤ W2 (0) e−rt. (8)

Finally, with respect to Eqs. 6 and 8, the exponent convergence region is A . □
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Equilibrium points

Four equilibrium points of Eq. 1 with u = 0 are calculated as:

1)x = 0, y = 0 (9)

2)x = 0, y =
K2

(
a2 − d2 − g

)
a2

= −β2

α2
(10)

3)x = α6 + α7, y = α1 (α6 + α7) + β1 (11)

4)x = α6 − α7, y = α1 (α6 − α7) + β1 (12)

Where:

α1 = − a1
K1b1

, β1 =
a1 − d1 − c

b1
, α2 = − a2

K2
, β2 = a2 − d2 − g, α3 = α1 (α1α2 − b2) ,

α4 = 2α1α2β1 − b2β1 + α1β2 + c, α5 = β1 (α2β1 + β2) , α6 =
−α4

2α3
, α7 =

√
α4

2 − 4α3α5

2α3
.

The linear approximation of Eq.1 is given by
[
ẋ∗

ẏ∗

]
= AZ∗ + BH.O.T. + C (13)

Where:

A =

⎡
⎢⎣
b1(β1 − ȳ) − 2

a1
K1

x̄ −b1x̄

c − b2ȳ a2 − 2
a2
K2

ȳ − d2 − g − b2x̄

⎤
⎥⎦ ,

BH.O.T. = −

⎡
⎢⎣

a1
K1

x∗2 + b1x∗y∗

a2
K2

y∗2 + b2x∗y∗

⎤
⎥⎦ , C =

⎡
⎢⎣ (a1 − d1 − c) x̄ − a1

K1
x̄2 − b1x̄ȳ(

a2 − d2 − g
)
ȳ − a2

K2
ȳ2 − b2x̄ȳ + cx̄

⎤
⎥⎦

The higher order terms are neglected around the origin (x*, y*) = (0, 0) and the last

term C is equal to zero at the equilibrium points.

Stability analysis

We study the stability of the equilibrium points of Eq. 1 in this section. The results of

the analysis are stated as follows;

i. If the equilibrium point 3 is located in the first orthant and the equilibrium point 2

is not, then the state variables of Eq. 1 will converge to equilibrium point 3 (the healthy

state).

ii. If the equilibrium points 2 and 3 are located in the first orthant, then the state

variables of Eq. 1 will converge to one of these two points.

iii. If the equilibrium point 2 is located in the first orthant and the equilibrium point

3 is not, then the state variables of Eq. 1 will converge to the equilibrium point 2 (the

cancer state).
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Proof:

1) At the equilibrium point 1, x = 0, y = 0, the eigenvalues of A are;
{

λ1 = a1 − (d1 + c)
λ2 = a2 − (

d2 + g
)

As shown in Table 1, the values of a1 are larger than the sum of d1 and c. Also a2 is

larger than the sum of d2 and g. Thus the eigenvalues of equilibrium point 1 are always

positive and the origin is an unstable node.

2) At the equilibrium point 2, x = 0, y = −β2

α2
, the eigenvalues of A are;

⎧⎨
⎩

λ1 = b1

(
β1 +

β2

α2

)

λ2 = − (
a2 − d2 − g

) ,

In Eq.10 y is positive, then b2/a2 < 0. Also, we notice from Table 1 that if the value

of b2/a2 is larger than b1, then the equilibrium point 2, if it exists, is a stable node.

3) At the equilibrium point 3, x = a6 + a7, y = a(a6 + a7) + b1.
Noticing that x and y in Eq. 11 are in the first orthant, then a6 + a7 > 0 and a1(a6 +

a7) + b1 > 0. The principal minors of -A at this equilibrium point are as follows:

�1 =
a1
K1

(α6 + α7) > 0,

�2 = {2 a12a2
K1K2b1

[
1 − 1

K1
(α6 + α7)

]

+
a1
K1

(2b2 (α6 + α7) + d2 + g − 2
a2 (d1 + c)

K2b1
− a2)

+b1

(
c − b2

a1 − d1 − c
b1

)
} (α6 + α7) > 0

This means that the coefficient matrix A is negative definite at this equilibrium point

and it is a stable node.

4) At the equilibrium point 4, x = a6 - a7, y = a1(a6 - a6) + b1.
Noticing that x and y in Eq.12 are in the first orthant, then a6 - a7 > 0 and a1(a6 -

a7) + b1 > 0. The principal minors of -A at this equilibrium point are as follows:

�1 =
a1
K1

(α6 − α7) > 0,

�2 = {2 a12a2
K1K2b1

[
1 − 1

K1
(α6 − α7)

]

+
a1
K1

(2b2 (α6 − α7) + d2 + g − 2
a2 (d1 + c)

K2b1
− a2),

+b1

(
c − b2

a1 − d1 − c
b1

)
} (α6 − α7) < 0

Therefore, if this equilibrium point exists, then it is an unstable saddle point. □

Numerical analysis

In this section, the trajectory patterns of the dynamic systems for the twin brothers are

evaluated. The life spans of both brothers are divided into three stages and the
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dynamic behaviors of the systems are analyzed before and after the presence of inputs.

The first stage is from the birth to 850 weeks, the second stage is from 850 to 1950

weeks, and the third stage is from 1950 weeks to 2900 weeks.

The following figures illustrate the trajectory patterns of the dynamic systems repre-

senting twin brothers A and B at the beginning of the three stages of their life.

Figure 1 shows the trajectory patterns at the beginning of the first stage of life (at

birth) for both brothers A and B. It shows that the equilibrium points 2 and 4 are not

located in the positive orthant. Therefore, they are not feasible in any organs of the

newborn bodies. This figure also indicates that the only stable equilibrium point of the

system is point 3 and the equilibrium point 1 is unstable. The system converges to the

equilibrium point 3, if the initial values are in the positive orthant for two newborn

brothers.

Figure 2 shows the trajectory pattern at the beginning of the second stage of life for

the twin brothers, where brother A has been under the effect of destructive inputs dur-

ing the first stage of life, but brother B has not.

Figure 2-a shows that for brother A, the equilibrium points 2 and 4 are brought to

the positive orthant by receiving the destructive input for a limited time, and the tra-

jectories converge to the healthy equilibrium point 3 from a large portion of the state

space. However, the behavior of the system for brother B, as shown in Figure 2-b, is

similar to Figure 1, with the positions of the equilibrium points 2 and 4 showing only

minor changes.

Figure 3 shows the trajectory pattern at the beginning of the third stage of life for

the twin brothers, where brother A has been under the effect of destructive inputs dur-

ing the second stage of life, but brother B has not. Figure 3-a indicates that the attrac-

tion area of equilibrium point 2 is larger than 3 for brother A. The position of

equilibrium point 3 remains approximately constant, but the equilibrium points 2 and

4 change as A becomes older and encounters more destructive inputs. These changes

Figure 1 Trajectory pattern at the beginning of the first stage of life (at birth) for both brothers A
and B.
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lead to an increase in the probability of the incidence of cancer. The destructive input

affects the system dynamics and the effects are accumulated in the body of A. The

input is assumed to end, but the behavior of the system is changed.

(a)

(b)
Figure 2 Trajectory patterns at the beginning of the second stage of life, (a) for brother A (affected
by cancer) and (b) for brother B (healthy brother).
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The body organ of B is changed a little, but the system does not pose any unstable

behavior in the first orthant, as is seen in Figure 3-b. The small variation is due to

aging and the probable effect of limited destructive inputs.

(a)

(b)
Figure 3 Trajectory patterns at the beginning of the third stage of life, (a) for brother A (affected
by cancer) and (b) for brother B (healthy brother).
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Figure 4 shows the trajectory pattern at the end of the third stage of life for the twin

brothers, where brother A has been under the effect of destructive inputs during the

third stage of life, but brother B has not. The only stable equilibrium is equilibrium 2

which is located in the nonnegative orthant at the end of the third stage of life for

(a)

                                         (b) 
Figure 4 Trajectory patterns at the end of the third stage of life, (a) for brother A (affected by
cancer) and (b) for brother B (healthy brother).

Ghaffari and Khazaee Theoretical Biology and Medical Modelling 2012, 9:4
http://www.tbiomed.com/content/9/1/4

Page 10 of 13



brother A, as is shown in Figure 4-a. This brother will die of cancer if the dynamics of

the system is not modified. All trajectories in the positive orthant converge on to the

cancer equilibrium point 2. Therefore, the cancer is not treated by minimizing the

number of cancer cells. There is a low rate of dynamics change in the body of B. The

behavior of the system does not transform such that equilibrium point 2 is located in

the nonnegative orthant and thus affects the health condition of B. However the equili-

brium points 2 and 4 near the positive orthant of state space. The health margin of B

is not as it was at birth.

Finally, a situation is analyzed in which B (the healthy brother) encounters destruc-

tive inputs from 2900 to 3200 weeks.

Figure 5 shows the trajectory patterns for brother B, where he has been under the

effect of destructive inputs from 2900 to 3200 weeks. It shows that the destructive

inputs change the dynamics of the body organ such that the equilibrium points 2 and

4 enter the nonnegative orthant. The behavior of the system in this figure is similar to

Figure 2-a for brother A, but the dynamics change in Figure 2-a occurs over a period

of 850 weeks, while Figure 5 shows the change within 300 weeks.

Discussion and conclusion
The stable dynamics for the newborn brothers at birth means that they do not have

cancer. If the equilibrium points of the system are in the nonnegative orthant then the

system will settle in the equilibrium points 2 or 3. The history of the body organ’s

dynamics during the life of brother B indicates his healthy condition over his life (Fig-

ures 1, 2-b, 3-b, and 4-b). This brother is not afflicted by cancer since he has not faced

the destructive inputs. The variation of the system dynamics where the destructive

inputs are sufficiently effective, demonstrate cancer formation and its progress in the

body of brother A (Figures 1, 2-a, 3-a, and 4-a). The stable behavior for A at birth is

gradually converted to less stable conditions. The attraction domain of equilibrium

Figure 5 Trajectory patterns at the 3200th week of of life, for brother B (healthy brother) after the
presence of destructive inputs for some years.
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point 2, indicating the cancer cells, becomes larger than equilibrium 3, indicating

healthy cells. Thus, the cancer incidence is increased. In such a system, if the number

of cancer cells reaches a specified limit, then the patient will die. In our model, brother

A reaches the stage in which no treatment is able to cure the patient completely and

he dies.

This research shows that focusing on the “indelible changes of the system dynamics”

is the best way to describe the cancer formation process. The other major conclusions

are as follows:

a) The changes in the dynamics of the system occur gradually in the body of the

patient. Thus, the duration of effective destructive inputs is directly related to the

probability of the cancer occurrence. This can be seen in Figures 2-a and 3-a.

b) As shown in Figures 2-b, 3-b, and 4-b, the behavior of the system for the healthy

brother B, who is not subjected to the destructive inputs, also changes as he becomes

older.

c) The effects of environmental and life quality factors are the main causes for the

onset of cancer, in bodies where there are no dominant hereditary genetic disorders.

d) The sensitivity of the old healthy brother B to the destructive inputs is greater

than that of the young affected brother A, and the system dynamics changes more

rapidly for him.

Our next objective is to find a proper therapeutic input that can move equilibrium

point 2 out of the nonnegative space. This treatment method would guarantee the

impossibility of tumor recurrence. The undesirable changes of the system should be

modified by using the corrective inputs, and the treatment not restricted to the system

outputs. Furthermore, in future work, the parameters, especially the input, should

relate to the qualitative conditions of a patient’s life and to the clinical data.
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