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Abstract

Background: A deterministic model is developed for the spatial spread of an
epidemic disease in a geographical setting. The disease is borne by vectors to
susceptible hosts through criss-cross dynamics. The model is focused on an outbreak
that arises from a small number of infected hosts imported into a subregion of the
geographical setting. The goal is to understand how spatial heterogeneity of the vector
and host populations influences the dynamics of the outbreak, in both the
geographical spread and the final size of the epidemic.

Methods: Partial differential equations are formulated to describe the spatial
interaction of the hosts and vectors. The partial differential equations have
reaction-diffusion terms to describe the criss-cross interactions of hosts and vectors.
The partial differential equations of the model are analyzed and proven to be
well-posed. A local basic reproduction number for the epidemic is analyzed.

Results: The epidemic outcomes of the model are correlated to the spatially
dependent parameters and initial conditions of the model. The partial differential
equations of the model are adapted to seasonality of the vector population, and
applied to the 2015–2016 Zika seasonal outbreak in Rio de Janeiro Municipality in Brazil.

Conclusions: The results for the model simulations of the 2015–2016 Zika seasonal
outbreak in Rio de Janeiro Municipality indicate that the spatial distribution and final
size of the epidemic at the end of the season are strongly dependent on the location
and magnitude of local outbreaks at the beginning of the season. The application of
the model to the Rio de Janeiro Municipality Zika 2015–2016 outbreak is limited by
incompleteness of the epidemic data and by uncertainties in the parametric
assumptions of the model.
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Background
The Zika virus is a mosquito borne flavivirus that was first isolated in Uganda in 1947
[1]. Subsequently, it has become prevalent in parts of Africa, Asia, and Central and South
America. The geographic distribution of the virus has been steadily increasing since 2015
and its further geographic spread to additional countries that are home to competent
mosquito vectors is highly probable. As of September 15, 2016, the World Health Orga-
nization reports that local circulation of the virus has been reported by 72 countries and
territories. Although there have been reports of transmissions through sexual contact [2],
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Zika virus appears to be primarily spread through the human population through bites
fromAedesmosquitos. The virus incubates in a human host over an asymptomatic period
lasting from three to twelve days and once fully developed, the virus disease persists for
about a week. It is characterized by low grade fever, rash, joint pain, and conjunctivitis (red
eyes). Typically it is mild and seldom requires hospitalization. However the virus has two
severe complications which make it a menace to public health. The virus has been linked
to an increased risk of Guillian-Barre syndrome which is a severe autoimmune disorder
[3]. Perhaps even more serious is its linkage to microcephaly birth defects in newborn
babies [4].
Zika epidemics are both year-round and seasonal, dependent upon the year-round

prevalence or seasonality of the resident mosquito populations. A recent study [5]
describes in detail the potential spread of Zika epidemics into African and Asian-Pacific
regions by the importation of infected people. The generation of Zika epidemics by the
importation of infected people into year-round or seasonal environments is a major pub-
lic health concern. Recent mathematical models have been developed to understand these
concerns [6–13]. We develop a model that describes both year-round and seasonal host-
vector epidemic population dynamics in a geographical region. The disease is borne by
vectors to susceptible hosts through criss-cross dynamics in a region of spatially dis-
tributed vectors and hosts. The epidemic outbreak begins with the arrival of a small
number of viremic hosts in one or more locales in which the disease is not yet present.
Our goal is to aid understanding of how the introduction of a small number of infected
hosts, in a specific location in a geographic region, will result in a dissipated or a sus-
tained epidemic. The focus of the study is examine the influence of spatial effects on these
possible outcomes.
We formulate a criss-cross reaction-diffusion partial differential equations model to

describe the spatial evolution of an epidemic. Criss-cross reaction-diffusion models for
the circulation of disease between vectors and hosts have been used to describe the spatial
spread of malaria [14], the spatial spread of Dengue outbreaks [15, 16], and the spatial
spread of other diseases by many authors [17–24]. We apply our model to the 2015–2016
Zika seasonal outbreak in the urban area of Rio de Janeiro Municipality in Brazil. We
numerically simulate the model to analyze varied scenarios of Zika seasonal epidemics in
Rio de Janeiro, dependent upon the input of local spatial outbreaks at the beginning of the
season and the time-limitation of seasonality.

Methods
The geographical region is denoted by � ⊂ R2. The background population of uninfected
and susceptible hosts in � has geographic densityHu(x, y), which is assumed unchanging
in time in the demographic and epidemic context of the outbreak. Thus, the model is
viewed as applicable to an early phase of the epidemic, during which the epidemic does
not alter the local geographic and demographic population structure of hosts. The model
consists of the following compartments:

The density of infected hosts Hi(t, x, y) at time t at (x, y) ∈ �, with initial condition
Hi0(x, y).
The density of uninfected vectors Vu(t, x, y) at time t at (x, y) ∈ �, with initial
condition Vu0(x, y).
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The density of infected vectors Vi(t, x, y) at time t at (x, y) ∈ �, with initial condition
Vi0(x, y).

Equations of the model

The equations of the model in the case that transmission from vectors to hosts is year-
round are

∂

∂t
Hi(t, x, y) = ∇ · δ1(x, y)∇Hi(t, x, y) − λ(x, y)Hi(t, x, y) (1)

+σ1(x, y)Hu(x, y)Vi(t, x, y),
∂

∂t
Vu(t, x, y) = ∇ · δ2(x, y)∇Vu(t, x, y) − σ2(x, y)Vu(t, x, y)Hi(t, x, y) (2)

+β(x, y) (Vu(t, x, y) + Vi(t, x, y))

−μ(x, y) (Vu(t, x, y) + Vi(t, x, y))Vu(t, x, y),
∂

∂t
Vi(t, x, y) = ∇ · δ2(x, y)∇Vi(t, x, y) + σ2(x, y)Vu(t, x, y)Hi(t, x, y) (3)

−μ(x, y) (Vu(t, x, y) + Vi(t, x, y))Vi(t, x, y).

In addition, the following boundary and initial conditions are satisfied:

∂

∂η
Hi(t, x, y) = 0,

∂

∂η
Vu(t, x, y) = 0,

∂

∂η
Vi(t, x, y) = 0, (x, y) ∈ ∂�, t > 0,

Hi(0, x, y) = Hi0(x, y), Vu(0, x, y) = Vu0(x, y), Vi(0, x, y) = Vi0(x, y), (x, y) ∈ �.

The spatially dependent parameters of the model are as follows: λ(x, y) is the loss rate of
the infected host population (due to recovery or other removal). β(x, y) is the breeding
rate of the vector population. μ(x, y) is the loss rate of the vector population due to envi-
ronmental crowding. σ1(x, y) is the transmission rate of uninfected hosts and σ2(x, y) is
the transmission rate of uninfected vectors. The transmission terms for both hosts and
vectors are assumed to be of density-dependent form, rather than frequency-dependent
form [25]. A comparison of the two forms for spatially dependent models is given in [26].
Since we assume, during the early phase of the epidemic, that the populations of infected
hosts (infected vectors) are relatively small fractions of the populations of uninfected
hosts (uninfected vectors), the two forms are essentially the same. δ1(x, y) and δ2(x, y) are
the diffusion rates of the infected hosts and infected vector populations, respectively.
In the Appendix we prove the well-posedness of the model.

The local basic reproduction number

Define the local basic reproduction number of the model (1), (2), (3) as follows:

R0(x, y) = σ1(x, y)σ2(x, y)Hu(x, y)
λ(x, y)μ(x, y)

.

R0(x, y) is interpreted as the average number of new cases generated by a single case at a
given location (x, y) in �. An analysis of local reproduction numbers for spatially depen-
dent models is given in [27] and in [28]. Our motivation for this definition is the basic
reproduction number R0 of the spatially independent model (Appendix). Simulations of
the spatially dependent model show the following behavior: (1) If R0(x, y) < 1 everywhere
in �, then the populations of both infected hosts and infected vectors extinguish, and the
populations converge to the disease free equilibrium. (2) If R0(x, y) > 1 in some subregion
�0 ⊂ �, then the populations of both infected hosts and infected vectors may converge
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from an initial local outbreak to an endemic equilibrium in �, even if the average value of
R0(x, y) in all of � is < 1.

Equations of the model when the vector population is seasonal

If the vector population is seasonal, then equations of the model must be modified to
account for seasonality. We assume that the vector population breeding term β(t, x, y)
is dependent on time. We assume that in addition to the vector loss parameter μ(x, y)
corresponding to carrying capacity, there is a time-independent vector loss term μ1(x, y),
corresponding to the average vector life-span 1/μ1(x, y). The modified equations are

∂

∂t
Vu(t, x, y) = ∇ · δ2(x, y)∇Vu(t, x, y) − σ2(x, y)Vu(t, x, y)Hi(t, x, y) (4)

+β(t, x, y) (Vu(t, x, y) + Vi(t, x, y)) − μ1(x, y)Vu(t, x, y)

−μ(x, y) (Vu(t, x, y) + Vi(t, x, y))Vu(t, x, y),
∂

∂t
Vi(t, x, y) = ∇ · δ2(x, y)∇Vi(t, x, y) + σ2(x, y)Vu(t, x, y)Hi(t, x, y) (5)

−μ(x, y) (Vu(t, x, y) + Vi(t, x, y))Vi(t, x, y)

−μ1(x, y)Vi(t, x, y).

The 2015–2016 Zika outbreak in Rio de Janeiro municipality

We apply the model (1), (4), (5) to the 2015–2016 Zika epidemic in Rio de Janeiro, Brazil.
The host population are the people in the Municipality, which in 2016 is approximately
6,000,000, in a geographical region of approximately 1,200 square kilometers (Source:
Instituto Brasileiro de Geografia e Estatistica). The vector population is the female Aedes
aegypti mosquito. The Municipality comprises 33 sub-districts, with population densi-
ties ranging from 1,000 to 50,000 inhabitants per square kilometer (Fig. 1). The period
November through July can be viewed as the seasonal Zika transmission period of the
epidemic in the Municipality.
A small number of cases were recorded in the Municipality into the summer of 2015,

with the highest number of cases in the eastern region of the Municipality [29, 30]. The

Fig. 1 Rio de Janeiro Municipality sub-districts. The sub-district population densities range from 1,000 to
50,000 inhabitants per square kilometer. The Municipality is approximately 50 kilometers east-west by 20
kilometers north-south, with the highest population density in the eastern region. The total population is
approximately 6,000,000. (Source: http://www.citypopulation.de/php/brazil-rio.php)

http://www.citypopulation.de/php/brazil-rio.php
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Brazilian Health Ministry [31] reported that Rio de Janeiro State (population approxi-
mately 16,000,000) registered a count of 60,176 cumulative cases from January 1, 2016
to August 13, 2016 (incidence of approximately 364 cases per 100,000 inhabitants). In
[32] the weekly case data for Rio de Janeiro Municipality is given from November 1, 2015
through April 10, 2016, during which time the reporting of cases became mandatory. The
cumulative number of reported cases in the Municipality during this period was 25,400
[32] (incidence of approximately 423 cases per 100,000 inhabitants).

Parameterization of the Rio de Janeiro model

We simulate the model (1), (4), (5) for Rio de Janeiro Municipality with some parameters
assumed. The available epidemic data used for comparison to our simulations for the Rio
de Janeiro Municipality 2015–2016 Zika outbreak is very limited. Further, the number of
unreported cases, necessarily unknown, is a limitation of the applicability of the model for
this application. A more precise fitting of parameters μ, σ , and β requires much higher
data accuracy specific to the Zika epidemic in theMunicipality. Our purpose is to provide
a qualitative description of a typical vector-borne epidemic spatial outbreak, and our sim-
ulation of this particular outbreak, with its limitations on parameterization, serves this
purpose.
Explanations for our assumptions on specific parameter values are as follows: The time

units for our simulations are weeks. The spatial units are kilometers and � = (−25, 25)×
(−12, 12). The boundary conditions for � are a reasonable simplification of the costal
boundaries and the less populated northern boundary of Rio de JaneiroMunicipality. The
average length of the infectious period of infected people is approximately 1 to 2 weeks
and we set λ(x, y) = 1.0 [33, 34]. The average lifespan of female Aedes aegyptimosquitoes
is approximately two weeks in an urban environment [35, 36], and we set μ1(x, y) = 0.5.
The total uninfected host population is approximately approximately 6,000,000, with geo-
graphical density functionHu(x, y) = 50.0+102 (1.0+sin(0.02πx) cos(0.03πy)) (Fig. 2a),
which corresponds approximately to the population density distribution in Fig. 1.
We set the density dependent mosquito loss function μ(x, y) = 0.0015(1.0 +

100 gauss(20.0, 30.0, x) × gauss(0.0, 30.0, y)) (Fig. 2b), which corresponds to higher lev-
els of mosquito control in the eastern region of the Municipality, where the popu-
lation density is highest. Here gauss(m, sd, x) is the probability density function in x

Fig. 2 a The population of susceptible people Hu(x, y) in Rio de Janeiro Municipality, which agrees
approximately with the geographical population density in Fig. 1. b The spatially dependent mosquito loss
function μ(x, y), which is higher in locations of higher population density due to mosquito control measures
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of the normal distribution function with mean m and standard deviation sd. Set the
transmission parameters σ1(x, y) = 0.00000049, σ2(x, y) = 0.78 (we assume that
individual mosquitoes bite multiple people, people receive multiple bites, and the prob-
ability of infection of mosquitoes is much higher than the probability of infection
of people).
The diffusion terms for the infected people, uninfected mosquitoes, and infected

mosquitoes in the model are understood as idealizations of the indirect spatial spread of
the Zika virus infection agent. The spatial spread of the virus is dependent on the direct
spread of infected people and uninfected/infected mosquitoes. The spatial movement
of people in an urban setting is extremely complex, and a major challenge for epidemic
modeling. We set the infected people diffusion parameter δ1 = 0.2, which provides a sim-
plified way of describing the movement of infected people, in the context of the epidemic,
with respect to the spatial spread of the virus. We set the mosquito diffusion parameter
δ2 = 0.2, which is consistent with an estimated adult mosquito dispersal of 30− 50m per
day [36].
For simplicity, we assume that the mosquito life-span is independent of spatial location,

and also independent of time in the season, although for some Aedes species, in some
environments, the life-span is correlated to temperature [35].We take the time dependent
mosquito breeding function as β(t, x, y) = 300.0 emg(t, μ̄, σ̄ , λ̄), where emg is the shifted
exponentially modified gaussian

emg(t, μ̄, σ̄ , λ̄)) = λ̄

2
Exp

(
λ̄

2
(2μ̄ + λ̄σ̄ 2 − 2 t)

)
Erfc

(
1√
2 σ̄

(λ̄σ̄ 2 + μ̄ − t)
)

Here Erfc is the complementary error function. The parameters are μ̄ = −2.0, σ̄ = 5.0,
λ̄ = 0.2. The graph of the seasonal mosquito breeding function β(t) is given is Fig. 3.
The assumptions on the parameters of the mosquito population yield a very rapidly
rising population at the beginning of the season, which quickly stabilizes to maximal
capacity of approximately 14 million, and then declines gradually to very low levels from

Fig. 3 The time dependent mosquito breeding function β(t) for the 2015–2016 seasonal mosquito
population in Rio de Janeiro Municipality. The graph of β(t) rises rapidly in November 2015, to its maximum
in early January 2016, and then falls steadily to a low value in May 2016
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midway through the season to the end of the season. The total mosquito population,
both uninfected and infected, remains mostly uniformly spatially distributed through-
out the Municipality throughout the season. The infected mosquito population spatial
distribution is very similar to the spatial distribution of infected people. During much of
mosquito season, the ratio of total mosquitoes to total people is approximately 2 to 1,
which agrees with the ratio in [15].
We set the initial outbreaks in variable locations in the Municipality. For the ini-

tial spatial distribution of infected people we set Hi(0, x, y) = Hi0 gauss(x0, 1.0, x) ×
gauss(y0, 1.0, y), centered at (x0, y0). The initial number of infected people at the location
(determined by Hi0) is viewed as small and above a threshold level capable of outbreak.
It includes imported cases (first order) and possibly some cases generated by first order
cases (higher order).

Results
Simulations of the model for Rio de Janeiro

We provide four simulations of the model with initial outbreaks in different locations in
the Municipality.
Example 1. In Example 1 the outbreak begins at time 0 on November 1, 2015 in a

small eastern location of the Municipality, where R0(x, y) is very high. The total number
of infected people at time 0 is 10 (Hi0 = 10), with spatial distribution centered at x0 = 15
and y0 = 0, R0(15, 0) ≈ 2.27. At time 0 the total number of uninfected mosquitoes is
120,000, distributed uniformly throughout theMunicipality. The total number of infected
mosquitoes at time 0 is 100, with spatial distribution Vi(0, x, y) = 10.0Hi(0, x, y). The
simulation of the model (1), (4), (5) over the time period November 1, 2015 to May 21,
2016 is graphed in Figs. 4, 5 and 6. The simulation agrees qualitatively with the weekly
reported case data for Rio de Janeiro Municipality in [32] (Fig. 4). The spatial distri-
bution of infected people expands from a very small number of initial cases in a small
eastern subregion of the Municipality, and disperses throughout the eastern region of
the Municipality (Fig. 5). In Fig. 6 we graph the total number of infected people and

Fig. 4 Example 1. Simulation of the reported infected cases in the Rio de Janeiro Municipality from the
beginning of the epidemic season at week 44 in 2015 to week 21 in 2016 (blue graph). The reported case
values of the simulation agree qualitatively with the number of reported cases of the Brazilian Health Ministry
during this period (grey bars)
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Fig. 5 Example 1. Model simulation of the spatial distributions of infected cases in the Rio de Janeiro
Municipality during the 2015–2016 epidemic season. At time 0 (November 1, 2015) a very small number of
cases are located in a small region in the eastern central region of the Municipality. The spatial distributions
are graphed at time=1 (week 45 in 2015), time=4 (week 49 in 2015), time=10 (week 3 in 2016), time=15
(week 8 in 2016), time=20 (week 13 in 2016). The cases concentrate in the eastern central region of the
Municipality. Top: Density plots. Bottom: Heatmap plots (color magnitude scaled at each time point)

the total cumulative number of infected people throughout the season. The simulation
agrees qualitatively with the weekly reported case data for Rio de Janeiro Municipality
given in [32], with approximately 25,500 reported cases between week 44, 2015 and
week 15, 2016.
Example 2. We repeat the simulation with the only change from Example 1 the location

of the initial outbreak.We take the initial outbreak location as the center of theMunicipal-
ity with x0 = 0 and y0 = 0, R0(0, 0) ≈ 1.26. The total number of infected people at time 0
is 20 (Hi0 = 20). The infected population again expands from the initial location and dis-
perses throughout the eastern region of the Municipality, but at approximately one-tenth
of the number of infected cases as in Example 1 (Figs. 7 and 8). The reason is that R0(x, y)
is much lower in this initial location than the initial location in Example 1, and the rise of
the epidemic is much slower than in Example 1. In Fig. 8 (bottom) we repeat the exam-
ple with the center of the outbreak location at x0 = −10, y0 = 0, R0(−10, 0) ≈ 0.52. The
infected cases decrease rapidly to 0, because R0(x, y) is even lower in the region of the
outbreak.
Example 3. We again repeat the simulation with the only change from Example 1 the

location of the initial outbreak. We take the initial outbreak with two locations in the
center of the Municipality with

1stlocation : x0 = 0, y0 = 5, Hi0 = 20,R0(0, 5) ≈ 1.26,

2ndlocation : x0 = 5, y0 = −5, Hi0 = 10,R0(5,−5) ≈ 1.60.

Fig. 6 Example 1. a Spatial density of infected people at time t = 0 (approximately 10). b The total number
of infected people as a function of time. c The cumulative total number of infected people as a function of
time, which converges to approximately 26,000 at the end of the 2015–2016 season
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Fig. 7 Example 2. Model simulation of the spatial distributions of infected cases in the Rio de Janeiro
Municipality during the 2015–2016 epidemic season (at the same time points as in Example 1). At time 0
(November 1, 2015) a very small number of cases are located in a small region in the center of the
Municipality. The cases concentrate in an eastern central region of the Municipality. Top: Density plots.
Bottom: Heatmap plots (color magnitude scaled at each time point)

The total number of infected people at time 0 is 30. The infected population again expands
from the initial location and disperses throughout the eastern region of the Municipality,
but at approximately one-third of the number of infected cases as in Example 1 (Figs. 9
and 10). The reason is that the R0(x, y) is again lower in the initial outbreak locations than
the initial outbreak location in Example 1.
Example 4. We again repeat the simulation with the only change from Example 1 the

location of the initial outbreak. We take the initial outbreak with three locations in the
eastern region of the Municipality with

1stlocation : x0 = 5, y0 = −5, Hi0 = 10,R0(5,−5) ≈ 1.60,

2ndlocation : x0 = 0, y0 = 5, Hi0 = 30,R0(0, 5) ≈ 1.26,

3rdlocation : x0 = 15, y0 = 5, Hi0 = 5,R0(15, 5) ≈ 2.16.

The total number of infected people at time 0 is 45. The infected population again expands
from the initial locations and disperses throughout the eastern region of theMunicipality,

Fig. 8 Top: Example 2. a Spatial density of infected people at time t = 0 (approximately 20). b The total
number of infected people as a function of time. c The cumulative total number of infected people as a
function of time, which converges to approximately 2,500 at the end of the 2015–2016 season. Bottom;
Example 2 modified with the initial outbreak shifted to x = −10 and y = 0. The cumulative total converges
to 50
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Fig. 9 Example 3. Model simulation of the spatial distributions of infected cases in the Rio de Janeiro
Municipality during the 2015–2016 epidemic season (at the same time points as in Example 1). At time 0
(November 1, 2015) a very small number of cases are located in two small regions in the center of the
Municipality. The cases concentrate in the eastern region of the Municipality. Top: Density plots. Bottom:
Heatmap plots (color magnitude scaled at each time point)

with the number of total cumulative infected cases the same as in Example 1 (Figs. 11
and 12). The reason is that R0(x, y) is high in the third location, as it is in the initial location
in Example 1.
Example 5. We provide a simulation of the model Eqs. (1), (2), (3) to illustrate

that the solutions may approach an endemic steady state even if the average value of
R0(x, y) < 1 in the spatial domain. We use the same parameters as in Rio de Janeiro
Municipality, except that σ1(x, y) = 0.0000001, σ2(x, y) = 0.1, μ(x, y) = 0.00005(1.0 +
100 gauss(−20.0, 10.0, x) × gauss(0.0, 10.0, y)), δ1 = 0.1, δ2 = 0.3, and β is set at the con-
stant value 0.5 (the mosquito population is assumed to be present year-round rather than
seasonal). The average value of R0(x, y) in the whole region is ≈ 0.984. The results are
illustrated in Figs. 13 and 14. For initial data in the eastern region (where R0(x, y) > 1),
the number of infected cases increases and converges to an endemic steady state. For ini-
tial data in the western region (where R0(x, y) < 1), the number of infected cases first
decreases, and then increases to the same endemic state. The simulations indicate the
importance of spatial heterogeneity in epidemic models, especially for outbreak scenar-
ios. The importation of a small number of infected cases to isolated localities, may at first
dissipate in sub-regions with R0(x, y) < 1 , but later rise and spread to sub-regions with
R0(x, y) > 1, and establish endemicity in the greater geographical region.

Fig. 10 Example 3. a Spatial density of infected people at time t = 0 (approximately 30). b The total number
of infected people as a function of time. c The cumulative total number of infected people as a function of
time, which converges to approximately 9,000 at the end of the 2015–2016 season
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Fig. 11 Example 4. Model simulation of the spatial distributions of infected cases in the Rio de Janeiro
Municipality during the 2015–2016 epidemic season (at the same time points as in Example 1). At time 0
(November 1, 2015) a very small number of cases are located in three small eastern regions in the
Municipality. The cases concentrate in the northeastern region of the Municipality. Top: Density plots. Bottom:
Heatmap plots (color magnitude scaled at each time point)

Discussion and conclusions
The model (1), (2), (3) describes criss-cross vector-host transmission dynamics of an
epidemic outbreak in a geographical region �, where the vector population is present
year-round. The outbreak occurs with a small number of infected hosts in a small sub-
region of the much larger geographical region �. The diffusion terms describe the
on-going average spatial spread of the disease microbial agent within infected vectors and
infected hosts in the geographical region. The focus of the model is to describe the geo-
graphical spread from an initial localized immigration into the region, in terms of the
epidemiological properties of the outbreak vector-host transmission dynamics.
We prove that the partial differential equations model (1), (2), (3) is mathematically

well-posed, and compare its properties to an analogous ordinary differential equations
model in the spatially independent case (Appendix). The outcomes of the model depend
on the spatially distributed local reproduction number R0(x, y). In the case of year-round
vector settings, simulations indicate that the connection of R0(x, y) to the outcome of an
outbreak is as follows: if R0(x, y) < 1 everywhere in �, then the epidemic will extinguish;
if R0(x, y) > 1 in some subregion of �, then the epidemic has the possibility to spread
from an initial outbreak to an endemic equilibrium in �, even if the average value of
R0(x, y) < 1 throughout all of �.
The model Eqs. (1), (2), (3) are modified to incorporate seasonality of the vector popu-

lation in Eqs. (1), (4), (5), and applied to the 2015–2016 Zika outbreak in Rio de Janeiro
Municipality. Simulations of the model (Examples 1 and 4) provide qualitative agreement

Fig. 12 Example 4. a Spatial density of infected people at time t = 0 (approximately 30). b The total number
of infected people as a function of time. c The cumulative total number of infected people as a function of
time, which converges to approximately 26,000 at the end of the 2015–2016 season (the same number as in
Example 1.)



Fitzgibbon et al. Theoretical Biology andMedical Modelling  (2017) 14:7 Page 12 of 17

Fig. 13 Example 5. Top: Model simulation of the spatial distributions of infected cases at time=0, 10, 40, 130,
with the initial data located in the eastern region. Bottom: Model simulation of the spatial distributions of
infected cases at time=0, 20, 40, 130, with the initial data located in the western region. Both simulations
converge to the same limiting density, but the one with the initial data in the western region first decreases
before increasing and converging

with the reported case data in the Municipality [32]. We argue that the assumption of an
unchanging number for the susceptible population is reasonable for the Zika outbreak
in Rio de Janeiro Municipality. The justification for this assumption is based on cur-
rent demographic data for the Municipality [37]. Between 2010 and 2016 the population
increased from approximately 6.000,000 at approximately 0.49% per year. The total num-
ber of reported cases during the 2015–2016 outbreak is less than 1% of the susceptible
population, which is not significantly depleted during the outbreak.
A limitation of our model is the difficulty of estimating the number of unreported cases,

and in some examples of Zika epidemics the ratio of reported cases to unreported cases
has been quite high. In one study, the Federated States of Micronesia in 2007, the num-
ber of reported cases was 108 and the number of unreported cases (estimated through
seroconversion testing) was estimated at 74% of the total population of 7,391 [38]. In
another study, the French Polynesia outbreak in 2013–2014, the number of reported cases
was estimated at 7–17% of the total number of infections, with 94% of the total popula-
tion infected [33]. The setting for Rio de Janeiro Municipality is very different, however,
and the demographic changes in Rio de Janeiro Municipality in one year could off-set
a relatively higher ratio of unreported-to-reported cases, given that the reported cases

Fig. 14 Example 5. Left: The spatially dependent net reproduction number R0(x, y). The average value of
R0(x, y) over the whole spatial region is ≈ 0.984. Right: The cumulative total number of infected cases in the
whole region as a function of time, which for both initial data in the eastern region (blue) and initial data in
the western region (red) converge to ≈ 1, 630
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represented approximately 0.4% of the population [31, 32]. Additionally, the probability
of Zika re-infection is not yet fully known. Whether Zika could become established as
an endemic disease in a larger urban population thus remains unclear [33]. Our model
simulations are based on the number of reported cases, but we note that if the ratio of
unreported to reported cases is significantly higher, then the parametersmust be adjusted.
A limitation of our model is that it does not take into account the possibility of

sexual transmission of Zika. It is noted in [2], however, that sexual transmission is a
small percentage of total transmission, and may not initiate or sustain an outbreak.
Another limitation of our model is that we assume the uninfected mosquito population
is uniformly geographically distributed at the beginning of the season, since there is no
detailed temporal geographic mosquito data available for Rio de Janeiro Municipality.
We note that current investigations are developing such data for geographical regions,
which could be implemented eventually for spatial models of vector borne epidemics as
described by our model. One such investigation is Project Premonition [39], developed
by Microsoft to autonomously locate, robotically collect, and computationally analyze
mosquito populations for pathogenicity in geographical environmental regions.
The model simulation suggests that the Zika epidemic in Rio de Janeiro Municipality

may rise each season from initial outbreak locations, with very small numbers of infected
people, and spread through a larger region of the Municipality. Although the epidemic
subsides at the end of the season, the final size of the epidemic at the end of the season
depends on the initial outbreak locations of infected cases in the region, when geo-
graphic heterogeneity and time-limited seasonality are taken into account. The local
reproduction number R0(x, y) indicates that the most effective interventions decrease the
infection rates σ1(x, y), σ2(x, y), increase the isolation of infected people λ(x, y), increase
the mosquito removal rate μ(x, y), and control the importation of infected people, all
concentrated in regions of high density population Hu(x, y) and in the beginning of the
season.
For the Zika epidemic in Rio de Janeiro Municipality the model suggests that the out-

break in the 2015–2016 season will occur again in the 2016–2017 season, and in future
seasons. The importation of infected cases into the Municipality at the beginning of the
season is inevitable, because of the general influx of people into this major metropoli-
tan center of Brazil. Some of these cases will not generate a further spread of cases, but
some will, with consideration of spatially variable factors. The reduction of future, and
more extensive, seasonal outbreaks of Zika in theMunicipality requires higher level mon-
itoring of the people arriving in the region and higher level mosquito control measures
throughout the region, again with consideration of spatially variable factors.

Appendix
Well-posedness of the model

Theorem. Let � be a bounded domain in R2 with smooth boundary ∂� such that � lies
locally on one side of ∂�. Let β , μ, λ, σ1, σ2, δ1, δ2 ∈ C0+(�), and let Hu, I0,Vu0,Vi0 ∈
C1+(�). There exists a unique global classical solution {Hi(t),Vu(t),Vi(t)} ∈ C1+(�), t ≥
0, to (1), (2), (3), satisfying boundary conditions

∂

∂η
Hi(t, x, y) = 0,

∂

∂η
Vu(t, x, y) = 0,

∂

∂η
Vi(t, x, y) = 0, (x, y) ∈ ∂�, t > 0
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and initial conditions

Hi(0, x, y) = Hi0(x, y), Vu(0, x, y) = Vu0(x, y), Vi(0, x, y) = Vi0(x, y), (x, y) ∈ �.

Proof. We first observe that a unique classical solution {Hi(t),Vu(t),Vi(t)} exists in
C1(�) on a maximal interval of existence [ 0,Tmax) [40–42]. Standard arguments [42]
guarantee that {Hi(t),Vu(t),Vi(t)} remain nonnegative for t ∈[ 0,Tmax). Moreover, the
classical solution can be globally defined if we can establish uniform a priori bounds. Set
M(t, x, y) = Vu(t, x, y) + Vi(t, x, y) and add Eqs. (2) and (3) to obtain

∂

∂t
M(t, x, y) = ∇ · δ2(x, y)∇M(t, x, y) (6)

+ β(x, y)M(t, x, y) − μ(x, y)M(t, x, y)2.

Theorem 1 in [24] guarantees the existence of a unique global classical solution M(t) ∈
C1+(�) to Eq. (6) satisfying

∂

∂η
M(t, x, y) = 0, (x, y) ∈ ∂�, t ≥ 0, M(0, x, y) = Vu0(x, y) + Vi0(x, y), (x, y) ∈ �.

Further, in [24] it is proved that there existsM ∈ C0+(�),M �= 0, such that limt→∞ M(t) =
M ∈ C0+(�). We note that the disease free equilibrium of (1), (2), (3) is (0,M, 0).
From [24] there exists N1 > 0 such that maxt≥0‖M(t)‖C0+(�) < N1, which implies
‖Vi(t)‖C0+(�), ‖Vu(t)‖C0+(�) < N1. Then, since λ > 0 in (1), there exists N2 > 0 such that
‖Hi(t)‖C0+(�) < N2. Consequently, the solution exists globally on [ 0,∞).

The model equations without spatial dependence

The Eqs. (1), (2), (3) without spatial dependence are

d
dt

Hi(t) = −λHi(t) + σ1 Vi(t)Hu (7)

d
dt

Vu(t) = β(Vu(t) + Vi(t)) − σ2Vu(t)Hi(t) − μ(Vu(t) + Vi(t))Vu(t) (8)

d
dt

Vi(t) = σ2Vu(t)Hi(t) − μ(Vu(t) + Vi(t))Vi(t) (9)

with initial conditions Hi(0) = Hi0, Vu(0) = Vu0, Vi(0) = Vi0. Set the basic reproduction
number R0 = Huσ1σ2/λμ. We note that R0 is independent of the vector reproduction
rate β . The epidemic size of the epidemic, however, is proportional to β , as seen in their
formulas below. The behavior of solutions of Eqs. (7), (8), (9) can be classified as follows:
Proposition If R0 < 1, then the only steady states of (7), (8), (9) in R3+ are ss0 = (0, 0, 0),

which is unstable in R3+, and ss1 = (0,β/μ, 0), which is proportional to β and locally
exponentially asymptotically stable in R3+. If R0 < 1, Hi(0) > 0, and Vi(0) = 0, then
(Hi(t),Vu(t),Vi(t)) converges to (0,M, 0). If R0 > 1, then ss0 and ss1 are unstable in R3+
and there is another steady state in R3+,

ss2 =
(

β(Huσ1σ2 − λμ)

λμσ2
,

βλ

Huσ1σ2
,
β(Huσ1σ2 − λμ)

Huμσ1σ2

)

=
(

β(R0 − 1)
σ2

,
β

R0μ
,
λβ(R0 − 1)
Huσ1σ2

)
.

which is proportional to β and locally exponentially asymptotically stable in R3+.
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Proof. Set M(t) = Vu(t) + Vi(t) and M = β/μ. Then M′(t) = βM(t) − μM(t)2 and
limt→∞ M(t) = M. It can be verified that the steady states of (7), (8), (9) in R3+ are ss0, ss1,
and ss2. The Jacobian of (7), (8), (9) at ss0 is

J(0, 0, 0) =
⎡
⎢⎣

−λ 0 Huσ1
0 β β

0 0 0

⎤
⎥⎦

with eigenvalues {−λ,β , 0}, which means that (0, 0, 0) is unstable. If Hi(0) > 0 and
Vi(0) = 0, then (7) implies H ′

i(0) < 0. Assume there is a smallest positive time t∗ such
that H ′

i(t∗) = 0. Then (7) implies Hi(t∗) = (σ1Hu/λ)Vi(t∗). If R0 < 1, then (9) implies

V ′
i (t∗) = σ1σ2Hu

λ
Vi(t∗)(M(t∗) − Vi(t∗)) − μVi(t∗)M(t∗) < −σ1 σ2Hu

λ
Vi(t∗)2 < 0.

Then (7) implies

H ′′
i (t∗) = −λH ′

i(t
∗) + σ1HuV ′

i (t
∗) < 0,

which implies Hi(t) is strictly decreasing at t∗, yielding a contradiction. Thus, Hi(t) is
strictly decreasing for all t ≥ 0. Let Hi,∞ = limt→∞ Hi(t) ≥ 0. Assume Hi,∞ > 0. Then
(9) implies limt→∞Vi(t) = λHi.∞/σ1Hu > 0. Equation (8) then implies limt→∞ Vu(t) =
βM/(σ2Hi,∞ +μM). Then (Hi,∞,βM/(σ2Hi,∞ +μM), λHi,∞/(σ1Hu)) is a steady state of
(7), (8), (9). If R0 < 1, then Hi,∞ = 0, yielding a contradiction. Thus, Hi,∞ = 0.
The eigenvalues of the Jacobian of (7), (8), (9) at ss1

J(0,β/μ, 0) =
⎡
⎢⎣

−λ 0 Huσ2
−βσ1/μ −β 0
βσ1/μ 0 −β

⎤
⎥⎦

are

{−β ,
−β − λ − √

(β − λ)2 + 4R0βλ

2
,
−β − λ + √

(β − λ)2 + 4R0βλ

2
}.

Thus, J(0,β/μ, 0) is unstable if R0 > 1 and locally exponentially asymptotically stable if
R0 < 1.
The Jacobian of (7),(8),(9) at ss2 is⎡

⎢⎣
−λ 0 Huσ1

− βλ
Huσ1

β(1 − λμ
Huσ1σ1

− Huσ1σ2
λμ

) β(1 − λμ
Huσ1σ2

)
βλ

Huσ1
β(−2 + λμ

Huσ1σ2
+ Huσ1σ2

λμ
) β(−2 + λμ

Huσ1σ2
)

⎤
⎥⎦

=
⎡
⎢⎣

−λ 0 R0λμ
σ2

− βσ2
R0μ β(1 − 1

R0 − R0) β(1 − 1
R0 )

βσ2
R0μ β(−2 + 1

R0 + R0) β(−2 + 1
R0 )

⎤
⎥⎦ .

with eigenvalues

{−β ,
−R0β − λ − √

(R0β − λ)2 + 4βλ

2
,
−R0β − λ + √

(R0β − λ)2 + 4R0βλ

2
}.

Since−(R0β+λ)2+(R0β−λ)2+4βλ = −4(R0−1)βλ < 0 if R0 > 1, the eigenvalues of the
Jacobian at ss2 are strictly negative if R0 > 1, which means that ss2 is locally exponentially
asymptotically stable if R0 > 1.
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