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Abstract

Background: When administering vancomycin hydrochloride (VCM), the initial dose
is adjusted to ensure that the steady-state trough value (Css-trough) remains within
the effective concentration range. However, the Css-trough (population mean method
predicted value [PMMPV]) calculated using the population mean method (PMM) often
deviate from the effective concentration range. In this study, we used the generalized
linear mixed model (GLMM) for initial dose planning to create a model that accurately
predicts Css-trough, and subsequently assessed its prediction accuracy.

Methods: The study included 46 subjects whose trough values were measured after
receiving VCM. We calculated the Css-trough (Bayesian estimate predicted value [BEPV])
from the Bayesian estimates of trough values. Using the patients’ medical data, we created
models that predict the BEPV and selected the model with minimum information criterion
(GLMM best model). We then calculated the Css-trough (GLMMPV) from the GLMM best
model and compared the BEPV correlation with GLMMPV and with PMMPV.

Results: The GLMM best model was {[0.977 + (males: 0.029 or females: -0.081)] ×
PMMPV + 0.101 × BUN/adjusted SCr – 12.899 × SCr adjusted amount}. The coefficients of
determination for BEPV/GLMMPV and BEPV/PMMPV were 0.623 and 0.513, respectively.

Conclusion: We demonstrated that the GLMM best model was more accurate in
predicting the Css-trough than the PMM.

Keywords: Vancomycin, Therapeutic drug monitoring, Initial dose planning, Generalized
linear mixed model

Background
Vancomycin hydrochloride (VCM) is commonly used to treat methicillin-resistant

Staphylococcus aureus (MRSA) infections but is known to have a narrow safe blood

concentration range. To ensure safe and effective pharmacotherapy, the steady-state

trough value (Css-trough) must be maintained at the effective blood concentration

range of 10–20 μg/mL [1, 2]. The incidence of renal toxicity is known to increase when

the Css-trough exceed 20 μg/mL [3, 4]. Therefore, the VCM dose must be adjusted

using therapeutic drug monitoring (TDM) to keep the Css-trough within the effective

blood concentration range (Fig. 1). This improves the cure rate of infections and the

incidence of renal toxicity [5]. Because VCM has a high rate of renal excretion, the
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dose setting must be determined by the renal function of the patient. Therefore, the

initial dose plan for VCM is set using the population mean method (PMM), which uses

mean values for population pharmacokinetics parameters, creatinine clearance (CLcr)

and weight to estimate the Css-trough (population mean method predicted value,

PMMPV). Then, the estimated Css-trough is used to determine the VCM dose and

infusion time and interval that would maintain an effective blood concentration range.

VCM administration is commenced based on this initial dose plan and after several

days the trough value is measured. We calculate the Css-trough (Bayesian estimate

predicted value, BEPV) from the Bayesian estimate using the measured value and the

population pharmacokinetics parameters. There is a large discrepancy between the

PMMPV and BEPV in cases where the accuracy of the Css-trough determined from the

initial dose plan as predicted by PMM is low. In that case, BEPV often deviates from

the effective blood concentration range. Because the dose plan has to be changed in

such cases, it requires sufficient time that Css-trough achieves the effective blood

concentration range. As a result, the duration of infection is prolonged, the risk of

adverse effects is higher. Therefore, in initial dose plan, it is necessary to devise to

predict highly accurate Css-trough. However, because the predictive accuracy by the

PMM is insufficient, a large discrepancy often exists between the PMMPV and BEPV [6].

PMM is a method of predicting the unknown Css-trough before commencing drug

administration. Statistical modeling has attracted attention as a method of predicting

unknown results using a formula (model) created by extracting only the necessary

information from enormous amounts of data and is used in a variety of fields [7, 8].

One statistical modeling method is the generalized linear mixed model (GLMM), which

is characterized by its ability to use multiple data (explanatory variables) to predict

unknown outcomes (response variables). Medical facilities accumulate a variety of

medical data, but when PMM is used to determine the initial VCM dose, only medical

data such as the CLcr can be used. Therefore, we extracted that type of information

Several days later

Several days later

Immediately afterwards 
or several days later

Yes

No

Initial dose planning using the PMM

Taking a blood sample at trough

Obtain result of measured trough value

Bayesian estimation of the Css-trough

Is the BEPV within the 
effective blood concentration 

range?

Continue monitoring

Revised dose planning

Fig. 1 TDM protocol for VCM
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that had a major impact on changes of Css-trough of VCM from patient’s medical data

and created a model that predicts highly accurate Css-trough by applying that informa-

tion to GLMM explanatory variable (Fig. 2). In this study, we created this model and

assessed whether it could predict VCM Css-trough values that were closer to the BEPV

than PMMPV, calculated using the model.

Methods
Subject extraction

This study included 46 patients whose trough values were measured in 3–5 days from

the start of drug administration and were selected from patients who received VCM

(VANCOMYCIN HYDROCHLORIDE for I.V. Infusion “MEEK”, Meiji Seika Pharma,

Tokyo, Japan) drip infusions between August 2008 and March 2015 at Chiyoda

Hospital (Table 1). Exclusion criteria were receiving hemodialysis, outpatients, and

under the age of 18 years.

Calculation of CLcr

The PMM requires the CLcr for calculating the VCM Css-trough values and, therefore,

we first calculated the CLcr for each patient from their sex, age, weight, and serum

creatinine (SCr) at initial dose planning using the Cockcroft-Gault formula (CG

formula, Eq. 1) [9]. SCr was affected by the patient’s muscle mass. Therefore, because

patients with low muscle mass have low SCr levels, we estimate that the CLcr calcu-

lated using the CG formula would high, which overestimates the renal function. In

Japan, to estimate CLcr calculated using the CG formula accurately, if the patient’s SCr

is < 0.6 mg/dL, it is commonly adjusted to 0.6 mg/dL (adjusted SCr) [10]. Therefore, we

used the same method here.

Women

CLcr mL=minð Þ ¼ 140−Age yearsð Þ½ � � Weight kgð Þ
72 � SCr mg=dLð Þ � 0:85 ð1AÞ

Men

A B

Fig. 2 Changes in blood concentration after start of VCM administration. Changes in VCM blood concentration
when initial dose planning is performed using (a) PMM and (b) GLMM. ●, Css-trough. The purpose of this study
was to create the model that accurately predicts Css-trough at the initial VCM dose plan
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CLcr mL=minð Þ ¼ 140−Age yearsð Þ½ � � Weight kgð Þ
72 � SCr mg=dLð Þ ð1BÞ

To calculate BEPV, the CLcr is calculated using Eq. 1 even when trough values

are measured. If the SCr level has not reached 0.6 mg/dL then, it is adjusted

accordingly.

Calculation of PMMPV and BEPV

The PMMPV was calculated using CLcr at initial dose planning, weight, VCM dose

conditions (dose, infusion time, and administration interval), and mean values for

population pharmacokinetic parameters [11]. Furthermore, the calculations were

based on the two-compartment model because the distribution of VCM is divided

into the central compartment (blood and tissues which equilibrate rapidly with

blood) and the peripheral compartment (tissues which equilibrate slowly with

blood) [11].

The BEPV was calculated by CLcr at measuring trough value, weight, VCM adminis-

tration conditions (dose, infusion time, and administration interval), and the estimating

the patients’ pharmacokinetic parameters based on the two-compartment model using

the Bayesian estimate.

The PMMPV and BEPV were calculated using the TDM analytical software,

Vancomycin MEEK Ver. 3.0 (Meiji Seika Pharma).

Definition of difference (PMM prediction deviation quantity, PMMPDQ) between BEPV

and PMMPV

This study aimed to create a model that very accurately predicts the VCM Css-trough

using patient medical data. We focused on the medical data having high correlation

with the difference between BEPV and PMMPV. We could reduce the difference

between BEPV and PMMPV by applying the medical data to the GLMM model as

Table 1 Summary of patient characteristics

Characteristic

No. of patients (female/male) 46 (14/32)

Age (years) 77.37 ± 8.79

Height (cm) 157.66 ± 8.59

Weight (kg) 46.66 ± 9.91

BMI (kg/m2) 18.70 ± 3.34

SCr (mg/dL) 0.82 ± 0.35

CLcr (mL/min) 45.37 ± 18.31

BUN (mg/dL) 19.15 ± 11.76

AST (IU/L) 34.70 ± 24.64

ALT (IU/L) 30.46 ± 36.94

CRP (mg/dL) 8.98 ± 7.32

The values are shown as the mean ± standard deviation
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explanation variables. Thus, the difference between BEPV and PMMPV is defined as

the PMM prediction deviation quantity (PMMPDQ, Eq. 2).

PMMPDQ ¼ BEPV − PMMPV ð2Þ

Establishing the basic model that the aimed model is based on

Before creating the model, we first established the minimum configuration model (basic

model) that formed its basis. Here, we attempted to use a model to very accurately

predict the BEPV. Therefore, the response variable used in the model was the BEPV.

Our investigation of the correlation between PMMPV and BEPV indicated that it was

0.702 (Spearman’s rank correlation coefficient). Guilford’s rule of thumb, which is

commonly used as a standard for correlation coefficients, stipulates that correlation

coefficients of 0–0.2, 0.2–0.4, 0.4–0.7, 0.7–0.9, and 0.9–1.0 are “almost none,” “weak,”

“moderate,” “high,” and “extremely high” correlations, respectively [12]. Therefore,

since PMMPV and BEPV are highly correlated, we believe that PMMPV is an appropri-

ate explanatory variable for the model. Based on this, the basic model is expressed as

Eq. 3 and is equivalent to the formula that predicts the Css-trough based on PMM.

BEPV ¼ β1 � PMMPV ð3Þ

β1: PMMPV coefficient

Creating the predictor model (GLMM best model) for VCM Css-trough based on GLMM

Figure 3 shows the procedure we used to create the model (GLMM best model). To

create a model with a high predictive accuracy, it is necessary to add effective explana-

tory variables to the basic model. The use of medical data that is highly correlated to

PMMPDQ in the model improves the predictive accuracy. Therefore, the explanatory

Fig. 3 Procedure for creating GLMM best model for estimating Css-trough of VCM based on WAIC. Models
with small WAIC have small predictive errors. We used WAIC to extract effective medical data (fixed and random
effects) and determined the model that accurately predicts BEPV (GLMM best model)
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variables added to the basic model must be medical data that is highly correlated to

PMMPDQ. Thus, to identify medical data as potential explanatory variables that can be

added to the basic model, we first obtained the subjects’ medical data.

Collection of subject medical data (Fig. 3, procedure 1)

To obtain medical data that can potentially be added to the basic model as explanatory

variables, we collected the following subject data: Clinical findings (age, age range

[10-year intervals], aged ≥ 75 or not, sex, height, weight, hospital days since drug

administration commenced), blood test findings (total protein, serum albumin [Alb],

aspartate transaminase [AST], alanine transaminase [ALT], lactate dehydrogenase

[LDH], total bilirubin, blood urea nitrogen [BUN], SCr, adjusted SCr, BUN/SCr, BUN/

adjusted SCr, SCr adjustment amount, SCr adjusted or not, serum Na, serum K, serum

Cl, blood glucose level, c-reactive protein [CRP], white blood cell [WBC], red blood cell

[RBC], hemoglobin [Hb], hematocrit [Ht], platelet [PLT], mean corpuscular volume

[MCV], mean corpuscular hemoglobin [MCH], mean corpuscular hemoglobin concen-

tration [MCHC]), and VCM administration schedule (initial dose, initial daily dose,

single dose, daily dose, infusion time, and number of doses; whether doses were irregu-

larly spaced; and number of days until blood concentration trough values were

measured since drug administration commenced). Then, to extract effective explanatory

variables from the medical data, we conducted the following investigation.

Extraction of medical data (fixed effect candidate 1) correlated to the difference between

BEPV and PMMPV (PMMPDQ, Fig. 3, procedure 2)

When using GLMM, multiple explanatory variables can be included in the model.

However, the creation of a model including all the medical data we obtained would have

produced an inordinate number of model types. Therefore, we first extracted the patient

medical data (explanatory variables) that would be effective when added to the basic

model. Thus, the two GLMM explanatory variables types were the fixed effect (equivalent

to single and multiple regression analyses explanatory variables), which were elements

that predict BEPV (response variable), and random effect, which were elements that chan-

ged the fixed effect coefficient and the intercept values of the model. In accordance with

the software specifications (Stan) used for the GLMM analysis, we used continuous

variables (continuous, such as height and weight) for the fixed effect and discrete variables

(qualitatively non-continuous, such as sex and all conditions) for random variables.

Since the medical data that correlated highly with the PMMPDQ had an appropriate

fixed effect for use in the model, we calculated the Spearman’s rank correlation coeffi-

cient for all medical data and the PMMPDQ.

Medical data (continuous variable) that correlated highly to the PMMPDQ (absolute

value of the correlation coefficient of ≥ 0.2) were identified as fixed effect candidate 1.

Extraction of appropriate medical data (fixed effect candidate 2) for use as fixed effect in

model (Fig. 3, procedure 3)

We wanted to extract medical data from items identified as fixed effect candidate 1 that

would be effective when added to the basic model (Eq. 3). Therefore, we created a

model (Eq. 4) that included each fixed effect candidate 1 item as a fixed effect in the
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basic model and calculated the information criterion (Widely Applicable Information

Criterion, WAIC) for each model.

BEPV ¼ β1 � PMMPV þ βFE1 � FE1 ð4Þ

β1: PMMPV (fixed effect) coefficient, βFE1: each fixed effect candidate 1 (fixed effect)

coefficients, and FE1: each fixed effect candidate 1 (fixed effect).

WAIC is used to select the model with a high degree of predictive accuracy from

multiple models and is an index for generalization errors (predictive error when

making predictions using the model on unknown patients other than the subjects of

this study). The smaller WAIC is, the higher predictive accuracy of a model is and it is

determined to apply to unknown patients [13]. Therefore, fixed candidate 1 items used

in a model made smaller WAIC than the basic model were considered an appropriate

fixed effect in the GLMM best model and were designated as fixed effect candidate 2.

Determination of fixed effect model (Fig. 3, procedure 4)

To determine the model (fixed effect model) composed of multiple fixed effects

with the smallest predictive error, we created a model (Eq. 5) that included

multiple fixed effect candidate 2 items in the basic model. Additionally, we calcu-

lated the WAIC for all models.

BEPV ¼ β1 � PMMPV þ
Xn

i¼1

βFE2i � FE2i ð5Þ

β1: PMMPV (fixed effect) coefficient, βFE2i: ith fixed effect candidate 2 coefficient,

and FE2i: ith fixed effect candidate 2 (fixed effect).

However, n is the upper limit of the number of medical data items corresponding to

fixed effect candidate 2.

Of all the models created, that with the smallest WAIC was selected as the fixed

effect model.

Extracting applicable medical data (random effect candidate) as random effect in the

model (Fig. 3, procedure 5)

Since medical data that is highly correlated to the PMMPDQ has a major effect on

predictive accuracy, we calculated the intra-class correlation coefficient (ICC). Since

medical data with a large ICC related to the PMMPDQ is a likely discrete variable that

can be applied to the model [14], we identified the medical data (discrete variables)

with the largest ICC as random effect candidates.

Determination of GLMM best model (Fig. 3, procedure 6)

To determine the most appropriate predictive model (GLMM best model) with the

smallest predictive error, we created multiple models including random effect candidate

items in the fixed effect model (the model created using Procedure 4 in Fig. 3) and cal-

culated WAIC for each model. Of the created models, that with the smallest WAIC

was selected as the GLMM best model.
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Assessing predictive accuracy of GLMM best model

First, we substituted the subjects’ medical data for all the explanatory variables

(fixed and random effects) in the GLMM best model, which we used to calculate

the Css-trough (GLMMPV). Next, to assess the predictive accuracy of the PMMPV

and GLMMPV for BEPV, we set BEPV as the response variable and investigated

the regression equation and coefficient of determination (R2) when the explanatory

variable was either PMMPV or GLMMPV. The GLMM prediction deviation

quantity (GLMMPDQ) was defined as the difference between BEPV and

GLMMPV (Eq. 6).

GLMMPDQ ¼ BEPV − GLMMPV ð6Þ

Data processing method

We used the statistical analysis software R (ver. 3.2.3) and Microsoft Excel for Mac

(ver. 15.22) to statistically analyze the data. We used functions included in R for our

Spearman’s rank correlation coefficient calculations and Shapiro-Wilk test and the R

package ICC (ver. 2.3.0) for ICC calculations. We used Excel for Mac for simple linear

regression and R2 calculations. A P <0.05 was considered significant for all tests.

We used R, Stan, the R packages rstan, and brms (ver. 2.9, 2.9.0-3, and 0.8.0, respect-

ively) for GLMM analysis and WAIC calculations. We used the Bayesian estimation

with Hamilton Monte Carlo to estimate the model coefficient. We used Rhat for the

convergence test of the Bayesian estimation and determined that its convergence with

Rhat was ≤ 1.1 [15]. The settings of brm function in brms package were as follows:

Chains = 3, Iter = 30000 (100000 when random variables were included in the model),

Warmup = 15000 (50000 when random variables were included in the model), Thin = 2,

and Family = “normal.” When using the Shapiro-Wilk test on the BEPV, the null

hypothesis that followed the normal distribution was not rejected (P = 0.19). Thus, the

probability distribution for the response variable was a normal distribution.

Results
This study aimed to create a model (GLMM best model) that highly accurately

predicts the Css-trough of the initial dose plan for VCM using patient medical data

in the GLMM. Additionally, we assessed whether the VCM Css-trough values

(GLMMPV) calculated using the GLMM best model were closer to the BEPV than

the PMMPV. First, because we thought the medical data correlating to the differ-

ence (PMMPDQ) between BEPV and PMMPV would decrease the predictive error,

we extracted the medical data (fixed effect candidate 1) that was highly correlated

with the PMMPDQ. Next, to extract the medical data that could be applied to the

GLMM best model, we created a model (Eq. 4) including each the fixed effect can-

didate 1 item in the basic model (Eq. 3). Then, we selected the medical data (fixed

effect candidate 2) that made the WAIC of the model smaller (the smaller the

WAIC, the higher the predictive accuracy of the model and the smaller the

generalization error). Then, we created a model (Eq. 5) that included multiple fixed

effect candidate 2 items in the basic model and selected the model with the smal-

lest WAIC as the fixed effect model. We designated the medical data with the

largest PMMPDQ-related ICC as the random effect candidate items. We created
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multiple models that included the random effect candidate items in the fixed effect

model and selected the model with the smallest WAIC as the GLMM best model.

Finally, in to assess the GLMMPV accuracy, we investigated the simple linear

regression and R2 when the response variable was BEPV and the explanatory vari-

able was either the PMMPV or the GLMMPV. Details of the results are below.

GLMM best model construction

Extraction of medical data (fixed effect candidate 1) that correlated with the difference

(PMMPDQ) between BEPV and PMMPV (Fig. 3, procedure 2)

To increase the predictive accuracy of Css-trough when setting the VCM initial dose

plan, the difference between BEPV and PMMPV, which is the absolute value of the

PMMPDQ (Eq. 2), had to be reduced. Because the medical data items that correlated

highly with the PMMPDQ had a large effect on predictive accuracy, their inclusion in

the model would allow the predictive deviation to be reduced (that is, increase predict-

ive accuracy). First, we investigated the correlation between the PMMPDQ and all the

medical data items (continuous variables). The results indicated that 10 types of

medical data with absolute correlation coefficient values with the PMMPDQ of ≥ 0.2

(BUN/adjusted SCr, BUN, BUN/SCr, AST, Age, SCr, CLcr, SCr amount adjusted, single

dose, and daily dose, Table 2) were factors with a major effect on predictive accuracy.

To determine whether they could be used as fixed effect items in the model we created,

we conducted the following investigations on the 10 types of medical data as fixed

effect candidate 1 items.

Extracting medical data (fixed effect candidate 2) that was applicable as fixed effect (Fig. 3,

procedure 3)

To further extract the medical data that was applicable to the model from the

fixed effect candidate 1 items, we created a model (Eq. 4) that included each of

the fixed effect candidate 1 items in the basic model (Eq. 3) and calculated WAIC.

Declines in WAIC indicate a reduced prediction error. Of the models with the

fixed effect candidate 1, the one with a smaller WAIC than the basic model used

the following medical data: BUN/adjusted SCr, BUN, BUN/SCr, age, and SCr ad-

justed amount (Table 3). There is a high probability that these medical data items

Table 2 Correlation coefficient for fixed effect candidate 1 and PMMPDQ

Fixed effect candidate 1 (medical data) Correlation coefficient p-value

BUN/adjusted SCr 0.398 0.006*

BUN 0.372 0.011*

BUN/SCr 0.332 0.024*

AST 0.253 0.090

Age 0.248 0.096

SCr 0.215 0.152

CLcr -0.233 0.119

SCr adjusted amount -0.239 0.110

Single dose -0.263 0.078

Daily dose -0.279 0.060

Asterisks indicate p < 0.05
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can be used as an applicable fixed effect for the GLMM best model. Because the

BUN/adjusted SCr and BUN/SCr are similar parameters, we used only the BUN/

adjusted SCr with a low WAIC value. Therefore, we used the BUN/adjusted SCr,

BUN, age, and SCr adjusted amount as the fixed effect candidate 2 items in the

following investigation.

Fixed effect model determination (Fig. 3, procedure 4)

The GLMM model can use multiple fixed effect items. Therefore, we created a

model (Eq. 5) that included multiple fixed effect candidate 2 items in the basic

model (Eq. 3) and calculated the WAIC. The results indicate that the WAIC of the

model that simultaneously included BUN/adjusted SCr and SCr adjusted amount

was the lowest (253.45, Table 4). Based on this, we designated this model as the

fixed effect model.

Table 3 WAIC and the Coefficients of the variables when all fixed effect candidate 1 items are
included in basic model

Fixed effect candidate 1
(medical data)

Coefficient (l-95% CI, u-95% CI) WAIC

None (Basic model) - 258.42

BUN/adjusted SCr 0.1 (0.02, 0.17) 254.52a

BUN 0.09 (0.01, 0.17) 256.12a

BUN/SCr 0.08 (0.00, 0.16) 256.15a

AST 0.01 (-0.03, 0.05) 260.46

Age 0.04 (-0.01, 0.10) 257.51a

SCr 1.13 (-1.48, 3.78) 259.73

CLcr -0.01 (-0.07, 0.04) 260.6

SCr adjusted amount -16.09 (-32.54, 0.26) 256.18a

Single dose 0.00 (-0.01, 0.00) 260.6

Daily dose 0.00 (0.00, 0.00) 259.63
aWAIC of the model (Ep. 4) that included fixed effect candidate 1 item was smaller than the WAIC of the basic model (Ep. 3).
Smaller WAIC indicates decreased predictive error in the model

Table 4 WAIC when multiple fixed effect candidate 2 are included in the basic model

Fixed effect candidate 2 (medical data) WAIC

None (Basic model) 258.42

BUN/adjusted SCr and BUN 254.94

BUN/adjusted SCr and SCr adjusted amount 253.45a

BUN/adjusted SCr and Age 256.26

BUN and SCr adjusted amount 254.33

BUN and Age 256.05

SCr adjusted amount and Age 256.03

BUN/adjusted SCr and BUN and SCr adjusted amount 254.58

BUN/adjusted SCr and BUN and Age 256.83

BUN/adjusted SCr and SCr adjusted amount and Age 255.25

BUN and SCr adjusted amount and Age 256.14

BUN/adjusted SCr and BUN and SCr adjusted amount and Age 256.56
aLowest WAIC above. Lower WAIC indicates decreased predictive error in the model
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Extracting medical data (random effect) that was applicable as random effect (Fig. 3,

procedure 5)

Because medical data items (discrete variables) with a large PMMPDQ-related ICC

affect the predictive accuracy considerably, it is highly likely that they can be used as

applicable random effect items in the GLMM best model. Thus, we calculated the ICC

for all PMMPDQ-related medical data items (Table 5). The item with the largest

PMMPDQ-related ICC was sex (0.057) and, therefore, it was used as the random effect

candidate item in the following investigation.

GLMM best model determination (Fig. 3, procedure 6)

To determine the optimum predictive model (GLMM best model) that reduces

prediction error the most and includes fixed and random effects, we created mul-

tiple models that included sex (random effect) in the fixed effect model (the model

determined using Procedure 4 in Fig. 3) and calculated WAIC (Table 6). The

results indicated that the model including sex (random effect) in the PMMPV

(fixed effect) coefficient had the smallest WAIC (252.01). Therefore, we designated

this model as the GLMM best model.

Based on the above results, we determined the GLMM best model (Eq. 7)

would predict the Css-trough with high accuracy when establishing the VCM

initial dose plan.

Women

GLMMPV ¼ 0:977−0:081ð Þ � PMMPV þ 0:101 � BUN=adjusted SCr − 12:899

� SCr adjusted amount

ð7AÞ

Men

GLMMPV ¼ 0:977þ 0:029ð Þ � PMMPV þ 0:101 � BUN=adjusted SCr − 12:899

� SCr adjusted amount

ð7BÞ

The coefficients and their credible intervals (CIs) for all explanatory variables (fixed

and random effects) in the GLMM best model are shown in Table 7.

Table 5 ICC for medical data (discrete variables) related to PMMPDQ

Medical data (discrete variables) ICC l-95% CI u-95% CI

Sex 0.057 -0.032 0.991

Adjusted SCr 0.036 -0.041 0.989

Aged 75 or above 0.023 -0.039 0.987

No. of days from start of administration to blood test for
blood concentration trough

-0.043 -0.065 0.484

Age group (10-year intervals) -0.044 -0.117 0.392

Irregular interval administration -0.047 -0.047 -0.037

No. of doses -0.071 -0.140 0.358

Medical data (discrete variables) with a large ICC in relation to PMMPDQ have a high likelihood of being random effect
items suitable for use in the GLMM best model
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Assessing predictive accuracy of GLMM best model

First, we investigated the simple linear regression and R2 when the response variable

was BEPV, and the explanatory variable was either PMMPV or GLMMPV to assess the

BEPV-related accuracy of PMMPV and GLMMPV. The single linear regression slope

for PMMPV and GLMMPV was 0.902 and 1.060 respectively, and the intercept was

2.522 and -1.511 respectively. Furthermore, R2 was 0.513 and 0.623 respectively (Fig. 4).

These results indicate that GLMMPV was closer to BEPV than PMMPV. Therefore,

the GLMM best model may allow more accurate VCM Css-trough predictions.

Discussion
Figure 4b shows that the simple linear regression slope of BEPV and GLMMPV was

closer to 1 than that of BEPV and PMMPV was (Fig. 4a, GLMMPV, 1.060 and PMMPV,

0.902). Additionally, the simple linear regression intercept of BEPV and GLMMPV was

closer to 0 than that of the BEPV and PMMPV was (GLMMPV, -1.511 and PMMPV,

2.522). Additionally, because the R2 of BEPV and GLMMPV was higher than that of

BEPV and PMMPV (GLMMPV, 0.623 and PMMPV, 0.513), we were able to determine

that the GLMM best model created in this study predicted the VCM Css-trough with

better accuracy than the PMM did for the study subjects. Table 6 shows that the WAIC

of the GLMM best model (252.01) was smaller than that of the basic model (258.42,

equivalent to the model that predicted Css-trough from the PMM). This indicates that

generalization error is decreased in the GLMM best model. Therefore, we believe that

the GLMM best model can predict the VCM Css-trough of unknown patients with

greater accuracy than the PMM can.

Figure 4 shows that 4.35% (2/46) of patients had PMMPDQ of ≥10 μg/mL, but none

had GLMMPDQ of ≥10 μg/mL. Considering the effective blood concentration range of

the VCM Css-trough, a difference of ≥ 10 μg/mL in Css-trough predictions would raise

Table 6 WAIC when random effects are included in the fixed effect model

Fixed effect including random effect (Sex) WAIC

None (fixed effect model) 253.45

PMMPV 252.01a

BUN/adjusted SCr 252.29

SCr adjusted amount 252.34

PMMPV and BUN/adjusted SCr 253.65

PMMPV and SCr adjusted amount 253.39

BUN/adjusted SCr and SCr adjusted amount 252.69

PMMPV and BUN/adjusted SCr and SCr adjusted amount 253.11
aLowest WAIC above. Lower WAIC indicates decreased predictive error in the model

Table 7 All explanatory variables for the GLMM best model and their coefficient

Explanatory variables Coefficient l-95% CI u-95% CI

PMMPV (fixed effect) 0.977 0.314 1.960

BUN/adjusted SCr (fixed effect) 0.101 0.020 0.180

SCr adjusted amount (fixed effect) -12.899 -28.700 2.652

Sex: Female (random effect) -0.081 -1.201 0.592

Sex: Male (random effect) 0.029 -1.123 0.711

Kourogi et al. Theoretical Biology and Medical Modelling  (2017) 14:8 Page 12 of 16



concerns that the drug may be less effective and cause adverse effects. However, we

believe that the GLMM best model controls large prediction deviations like this.

Next, we investigated patients with major improvements in predictive accuracy

achieved by changing from the PMM to the GLMM best model in predicting VCM

Css-trough. Patient a shown in Fig. 4 had a PMMPDQ and GLMMPDQ of 7.90 and

0.64 μg/mL (the length of the dashed lines in Fig. 4a and b, respectively). Based on this,

the change from PMM to the GLMM best model allowed that predictive accuracy was

improved 7.26 μg/mL (7.90–0.64 μg/mL). Similarly, patients b and c showed a 3.53 and

3.23 μg/mL (4.80–1.27 and 6.00–2.77 μg/mL) improvement, respectively. The graph of

the changes in VCM blood concentration experienced by patient b (Fig. 5a) illustrates

that the PMMPV deviated greatly from the BEPV (the absolute PMMPDQ value was

large), which caused the blood concentration to fall outside the effective range.

However, since the GLMM best model predicted the Css-trough with high accuracy,

the GLMMPV was close to the BEPV (the absolute GLMMPDQ value was small) and

achieved the effective blood concentration range (Fig. 5b). Similarly, if the Css-trough

prediction accuracy can be increased and the achievement of an effective blood concen-

tration range can be accurately predicted when establishing the initial dose plan, then a

revised dose plan would be unnecessary. Furthermore, we found that the improvement

in the Css-trough prediction accuracy for the patients achieved using the GLMM best

model was related to high BUN/adjusted SCr values of these patients (patients a, b,

and c: 71.35, 34.52, and 32.17, respectively). It has been reported that when the BUN/

SCr is > 20, the estimation of renal function (CLcr) using the CG formula results in

overestimations [16]. Therefore, when establishing the initial dose plan using PMM for

patients a, b, and c, we assessed the CLcr at a higher than actual level, which led to

excessive VCM doses. We speculate that this further caused the deviation between the

A B

Fig. 4 Comparison of correlation of PMMPV with BEPV and GLMMPV with BEPV. Fig. 4a indicates correlation
of PMMPV and BEPV. Fig. 4b indicates correlation of GLMMPV and BEPV. Solid line is regression line with response
variable as BEPV and explanatory variable as either PMMPV or GLMMPV. If Css-trough can be accurately predicted
when establishing the initial dose plan, then all data plots will be located on the dotted line, and the solid and
dotted lines will be identical. The letters a, b, and c indicate patients who showed improved accuracy in their VCM
Css-trough predictions with the GLMM best model. The length of the dashed lines drawn vertically from a, b, and
c indicates (a) PMMPDQ (the difference between PMMPV and BEPV) and (b) GLMMPDQ (the difference between
GLMMPV and BEPV). The letters d, e, f, g and h indicate patients who showed the largest positive or negative
deviation in their predictions
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PMMPV and BEPV. However, when using the GLMM best model we included the

BUN/adjusted SCr (fixed effect), which corrected the overestimated renal function in

the CG formula and ultimately increased the VCM Css-trough prediction accuracy.

Nevertheless, there were also cases where the GLMM best model created in this

study did not improve the predictive accuracy of the Css-trough values. These patients

had large deviations (PMMPDQ) between PMMPV and BEPV, and the GLMM best

model did not improve the Css-trough prediction accuracy. For example, PMMPDQ

and GLMMPDQ of patient d showed large positive deviations (Fig. 4a and b, 11.2 and

9.4 μg/mL, respectively), and those of patient e also showed positive deviations (Fig. 4a

and b, 6.9 and 5.5 μg/mL, respectively). PMMPDQ and GLMMPDQ of patient f

showed negative deviations (Fig. 4a and b, -7.0 and -8.8 μg/mL, respectively). We

believe that these were likely attributable to the effect of changes in SCr after VCM

administration commenced. Our results showed that SCr of patient d was 0.60 mg/dL

before VCM administration, but rose to 0.85 mg/dL after VCM administration, and

SCr of patient e was risen from 1.05 mg/dL to 1.52 mg/dL. We considered that whose

renal functions were declined. Our results also showed that SCr of patient f was

1.20 mg/dL before VCM administration, but decreased to 0.82 mg/dL after VCM

administration, which we considered that whose renal function was improved. There-

fore, since the renal function of these patients changed after VCM administration

started (change in CLcr), the Css-trough prediction accuracy worsened, and the abso-

lute PMMPDQ and GLMMPDQ values increased. Furthermore, PMMPDQ and

GLMMPDQ of patient g showed large positive deviations (Fig. 4a and b, 8.8 and

6.4 μg/mL, respectively), and those of patient h also showed large positive deviations

(Fig. 4a and b, 10.3 and 8.5 μg/mL, respectively). We thought these were due mainly to

involvement of hypoalbuminemia. It has been reported that kidney function is overesti-

mated because of proximal tubule secretion of creatinine increases in patients with

hypoalbuminemia [17]. The serum albumin levels of patients g and h were 2.4 and

2.0 g/dL, respectively. We considered that overestimation of kidney function in patients

A B

Fig. 5 Blood concentration of VCM-time profiles in patient who was benefited more from GLMM best model than
from PMM. Patient b in Fig. 4 showed BEPV of 13.20 μg/mL, PMMPV of 8.40 μg/mL, and GLMMPV of 11.93 μg/mL.
a Patient’s PMMPV showed major differences with the BEPV, putting the level outside the effective
blood concentration range. Therefore, PMM led to major disadvantages in prediction. However, the GLMMPV
and BEPV in (b) were close and effective blood concentration range was reached, indicating the GLMM best
model was appropriate for making these predictions
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g and h led to excessive VCM doses, and rose Css-trough unexpectedly, resulting the

absolute PMMPDQ and GLMMPDQ values increased. To solve these problems, new

medical data must be extracted and included in the GLMM best model.

Conclusions
This study demonstrated that the GLMM best model we created for use with the

GLMM method in initial VCM dose planning allowed a more accurate Css-trough

prediction than PMM did. The GLMM best model increased the rate of achieving the

effective VCM blood concentration range. This may lead to reduce the revised dose

planning requirement and increase the therapeutic effect of VCM safely.
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