Skip to main content
Figure 1 | Theoretical Biology and Medical Modelling

Figure 1

From: Location of DNA damage by charge exchanging repair enzymes: effects of cooperativity on location time

Figure 1

The model. a) The left MutY repair enzyme is bound to DNA and slowly progress to the right while it scans the integrity of base pairing. The [4Fe-4S] cluster in MutY is in a 3+ charge configuration when bound to DNA, but a 2+ configuration when not bound (right MutY). b) Upon binding to DNA the right MutY enzyme emits an electron into the DNA and changes the charge of its [4Fe-4S] cluster from 2+ to 3+. c) If the DNA is free of errors, the emitted electron travels along the DNA until it reaches the left MutY enzyme. Here the electron changes the charge of the [4Fe-4S] cluster to 2+ and thus destabilizes the DNA binding of this MutY enzyme. The left MutY enzyme then attaches to and scans a different section of DNA that is more likely to contain an error, d) If on the other hand the DNA segment between the two MutY enzymes contains an error, the electron never reaches the left MutY enzyme, which then keeps scanning the DNA until it reaches and fixes the error. The charge exchange thus selectively frees up resources from error free patches of DNA. The model is also described in [18,24].

Back to article page