Skip to main content

Table 7 Circuits of the Th network a

From: A method for the generation of standardized qualitative dynamical systems of regulatory networks

1 IFNγ→IFNγR→JAK1→STAT1¬IL4→IL4R→STAT6¬IL18R→IRAK→
2 IFNγ→IFNγR→JAK1→STAT1¬IL4→IL4R→STAT6¬IL12R→STAT4→
3 IFNγ→IFNγR→JAK1→STAT1¬IL4→IL4R→STAT6→GATA3→IL10→IL10R→STAT3¬
4 IFNγ→IFNγR→JAK1→STAT1¬IL4→IL4R→STAT6→GATA3¬STAT4→
5 IFNγ→IFNγR→JAK1→STAT1¬IL4→IL4R→STAT6→GATA3¬Tbet→
6 IFNγ→IFNγR→JAK1→STAT1→SOCS1¬IL4R→STAT6¬IL18R→IRAK→
7 IFNγ→IFNγR→JAK1→STAT1→SOCS1¬IL4R→STAT6¬IL12R→STAT4→
8 IFNγ→IFNγR→JAK1→STAT1→SOCS1¬IL4R→STAT6→GATA3→IL10→IL10R→STAT3¬
9 IFNγ→IFNγR→JAK1→STAT1→SOCS1¬IL4R→STAT6→GATA3¬STAT4→
10 IFNγ→IFNγR→JAK1→STAT1→SOCS1¬IL4R→STAT6→GATA3¬Tbet→
11 IFNγ→IFNγR→JAK1→STAT1→Tbet→
12 IFNγ→IFNγR→JAK1→STAT1→Tbet→SOCS1¬IL4R→STAT6¬IL18R→IRAK→
13 IFNγ→IFNγR→JAK1→STAT1→Tbet→SOCS1¬IL4R→STAT6¬IL12R→STAT4→
14 IFNγ→IFNγR→JAK1→STAT1→Tbet→SOCS1¬IL4R→STAT6→GATA3→IL10→IL10R→STAT3¬
15 IFNγ→IFNγR→JAK1→STAT1→Tbet→SOCS1¬IL4R→STAT6→GATA3¬STAT4→
16 IFNγ→IFNγR→JAK1→STAT1→Tbet¬GATA3→IL4→IL4R→STAT6¬IL18R→IRAK→
17 IFNγ→IFNγR→JAK1→STAT1→Tbet¬GATA3→IL4→IL4R→STAT6¬IL12R→STAT4→
18 IFNγ→IFNγR→JAK1→STAT1→Tbet¬GATA3→IL10→IL10R→STAT3¬
19 IFNγ→IFNγR→JAK1→STAT1→Tbet¬GATA3¬STAT4→
20 IL4→IL4R→STAT6→GATA3→
21 IL4R→STAT6→GATA3¬ Tbet→SOCS1¬
22 Tbet→
23 Tbet¬GATA3¬
24 GATA3→
25 IL4→IL4R→STAT6→GATA3¬Tbet→SOCS1¬JAK1→STAT1¬
26 JAK1→STAT1→SOCS1¬
27 JAK1→STAT1→Tbet→ SOCS1¬
  1. a. If the circuit has zero or an even number of negative interactions, it is considered positive; otherwise the circuit is negative. Circuits 1–24 are positive, and circuits 25–27 are negative.