Skip to main content

Advertisement

Table 2 Dependent kinetic parameters

From: Bringing metabolic networks to life: convenience rate law and thermodynamic constraints

Quantity Symbol unit Formula
Gibbs free energy of formation G i ( 0 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGhbWrdaqhaaWcbaGaemyAaKgabaGaeiikaGIaeGimaaJaeiykaKcaaaaa@31EB@ kJ/mol G i ( 0 ) = R T ln k i G MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGhbWrdaqhaaWcbaGaemyAaKgabaGaeiikaGIaeGimaaJaeiykaKcaaOGaeyypa0JaemOuaiLaemivaqLagiiBaWMaeiOBa4Maem4AaS2aa0baaSqaaiabdMgaPbqaaGqaaiab=Deahbaaaaa@3C22@
Gibbs fr. en. for substrate binding Δ G l i ( 0 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqqHuoarcqWGhbWrdaqhaaWcbaGaemiBaWMaemyAaKgabaGaeiikaGIaeGimaaJaeiykaKcaaaaa@34B2@ kJ/mol Δ G l i ( 0 ) = R T ln k l i M MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqqHuoarcqWGhbWrdaqhaaWcbaGaemiBaWMaemyAaKgabaGaeiikaGIaeGimaaJaeiykaKcaaOGaeyypa0JaemOuaiLaemivaqLagiiBaWMaeiOBa4Maem4AaS2aa0baaSqaaiabdYgaSjabdMgaPbqaaGqaaiab=1eanbaaaaa@4056@
Equilibrium constant k l e q MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGRbWAdaqhaaWcbaGaemiBaWgabaacbaGae8xzauMae8xCaehaaaaa@3258@ - ln k l e q = i n i l ln k i G MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacyGGSbaBcqGGUbGBcqWGRbWAdaqhaaWcbaGaemiBaWgabaacbaGae8xzauMae8xCaehaaOGaeyypa0JaeyOeI0YaaabuaeaacqWGUbGBdaWgaaWcbaGaemyAaKMaemiBaWgabeaaaeaacqWGPbqAaeqaniabggHiLdGccyGGSbaBcqGGUbGBcqWGRbWAdaqhaaWcbaGaemyAaKgabaGae83raCeaaaaa@45A5@
Turnover rate k ± l c a t MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGRbWAdaqhaaWcbaGaeyySaeRaemiBaWgabaacbaGae83yamMae8xyaeMae8hDaqhaaaaa@358F@ 1/s ln k ± l c a t = ln k l V 1 2 i n i l ( ln k i G + ln k l i M ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacyGGSbaBcqGGUbGBcqWGRbWAdaqhaaWcbaGaeyySaeRaemiBaWgabaacbaGae83yamMae8xyaeMae8hDaqhaaOGaeyypa0JagiiBaWMaeiOBa4Maem4AaS2aa0baaSqaaiabdYgaSbqaaiab=zfawbaakiabloHiTnaalaaabaGaeGymaedabaGaeGOmaidaamaaqafabaGaemOBa42aaSbaaSqaaiabdMgaPjabdYgaSbqabaaabaGaemyAaKgabeqdcqGHris5aOGaeiikaGIagiiBaWMaeiOBa4Maem4AaS2aa0baaSqaaiabdMgaPbqaaiab=DeahbaakiabgUcaRiGbcYgaSjabc6gaUjabdUgaRnaaDaaaleaacqWGSbaBcqWGPbqAaeaacqWFnbqtaaGccqGGPaqkaaa@5CD7@
Maximal velocity v ± l max MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG2bGDdaqhaaWcbaGaeyySaeRaemiBaWgabaGagiyBa0MaeiyyaeMaeiiEaGhaaaaa@35C3@ mM/s ln v ± l m a x = ln E l + ln k l V 1 2 i n i l ( ln k i G + ln k l i M ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacyGGSbaBcqGGUbGBcqWG2bGDdaqhaaWcbaGaeyySaeRaemiBaWgabaacbaGae8xBa0Mae8xyaeMae8hEaGhaaOGaeyypa0JagiiBaWMaeiOBa4Maemyrau0aaSbaaSqaaiabdYgaSbqabaGccqGHRaWkcyGGSbaBcqGGUbGBcqWGRbWAdaqhaaWcbaGaemiBaWgabaGae8NvayfaaOGaeS4eI02aaSaaaeaacqaIXaqmaeaacqaIYaGmaaWaaabuaeaacqWGUbGBdaWgaaWcbaGaemyAaKMaemiBaWgabeaaaeaacqWGPbqAaeqaniabggHiLdGccqGGOaakcyGGSbaBcqGGUbGBcqWGRbWAdaqhaaWcbaGaemyAaKgabaGae83raCeaaOGaey4kaSIagiiBaWMaeiOBa4Maem4AaS2aa0baaSqaaiabdYgaSjabdMgaPbqaaiab=1eanbaakiabcMcaPaaa@635B@
  1. The logarithms of dependent parameters (and also the Gibbs free energies of formation) can be written as linear functions of the logarithmic system parameters. Equilibrium constants can have different physical units depending on the reaction stoichiometry.