Skip to main content
Figure 2 | Theoretical Biology and Medical Modelling

Figure 2

From: Could increased axial wall stress be responsible for the development of atheroma in the proximal segment of myocardial bridges?

Figure 2

Definition of circumferential, axial, and radial wall stress (perspective view). Division of the circumferential force Fc by the area S of the cube face it pulls at yields the circumferential wall stress σc = Fc/S. Division of the axial force Fa by the area S of the cube face it pulls at yields the axial wall stress σa = Fa/S. Division of the radial force Fr by the area S of the cube face it pushes on yields the radial wall stress σr = Fr/S. These three orthogonal stresses are used to describe the mechanical state of the vessel wall at the considered location. The average axial wall stress over a wall cross-section is equal to the quotient "force pulling axially at that cross-section, divided by the area A of that cross-section" (A = π (Ro2 - Ri2)).

Back to article page