Skip to main content

Table 1 Maximum likelihood estimates of the parameters describing the clonal expansion, each corresponding to a QTL, and marker allele frequency, QTL allele frequency and marker-QTL linkage disequilibrium with 8 time points. Numbers in parentheses are the sampling errors of the estimates

From: A statistical model for the identification of genes governing the incidence of cancer with age

   n = 200 n = 400
Para-meters True value H2 = 0.1 H2 = 0.4 H2 = 0.1 H2 = 0.4
P 0.5 0.48(0.023) 0.49(0.021) 0.49(0.014) 0.50(0.012)
Q 0.6 0.62(0.014) 0.61(0.011) 0.61(0.011) 0.60(0.010)
D 0.08 0.074(0.0067) 0.075(0.003) 0.079(0.004) 0.079(0.004)
K 2 ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGaem4saS0aa0baaSqaaiabikdaYaqaaiabcIcaOiabigdaXiabcMcaPaaaaaa@30B5@ 100 102.50(0.452) 102.31(0.449) 101.65(0.450) 100.59(0.441)
r 2 ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGaemOCai3aa0baaSqaaiabikdaYaqaaiabcIcaOiabigdaXiabcMcaPaaaaaa@3103@ 0.1 0.097(0.00069) 0.097(0.00062) 0.098(0.00061) 0.099(0.00012)
K 2 ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGaem4saS0aa0baaSqaaiabikdaYaqaaiabcIcaOiabikdaYiabcMcaPaaaaaa@30B7@ 110 108.56(0.492) 109.20(0.481) 109.98(0.486) 110.25(0.479)
r 2 ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGaemOCai3aa0baaSqaaiabikdaYaqaaiabcIcaOiabikdaYiabcMcaPaaaaaa@3105@ 0.15 0.147(0.0011) 0.147(0.0011) 0.149(0.0010) 0.150(0.0007)
K 1 ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGaem4saS0aa0baaSqaaiabigdaXaqaaiabcIcaOiabigdaXiabcMcaPaaaaaa@30B3@ 150 152.89(0.865) 152.35(0.862) 151.72(0.862) 150.06(0.858)
r 1 ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGaemOCai3aa0baaSqaaiabigdaXaqaaiabcIcaOiabigdaXiabcMcaPaaaaaa@3101@ 0.2 0.209(0.0015) 0.21(0.0014) 0.21(0.0014) 0.20(0.0011)
K 1 ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGaem4saS0aa0baaSqaaiabigdaXaqaaiabcIcaOiabikdaYiabcMcaPaaaaaa@30B5@ 160 163.09(0.106) 162.52(0.105) 161.08(0.102) 160.32(0.098)
r 1 ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGaemOCai3aa0baaSqaaiabigdaXaqaaiabcIcaOiabikdaYiabcMcaPaaaaaa@3103@ 0.25 0.244(0.0016) 0.244(0.0016) 0.248(0.0012) 0.250(0.0011)
K 0 ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGaem4saS0aa0baaSqaaiabicdaWaqaaiabcIcaOiabigdaXiabcMcaPaaaaaa@30B1@ 200 198.26(0.756) 199.63(0.752) 199.90(0.743) 200.03(0.735)
r 0 ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGaemOCai3aa0baaSqaaiabicdaWaqaaiabcIcaOiabigdaXiabcMcaPaaaaaa@30FF@ 0.25 0.247(0.0053) 0.248(0.0050) 0.248(0.0051) 0.249(0.0046)
K 0 ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGaem4saS0aa0baaSqaaiabicdaWaqaaiabcIcaOiabikdaYiabcMcaPaaaaaa@30B3@ 210 209.56(0.685) 209.79(0.682) 209.98(0.681) 210.22(0.668)
r 0 ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGaemOCai3aa0baaSqaaiabicdaWaqaaiabcIcaOiabikdaYiabcMcaPaaaaaa@3101@ 0.30 0.311(0.002) 0.311(0.001) 0.308(0.001) 0.302(0.0008)
ρ 1 0.60 0.61(0.0078) 0.61(0.0076) 0.61(0.0071) 0.61(0.0070)
ρ 2 0.60 0.593(0.0022) 0.595(0.0021) 0.595(0.0021) 0.598(0.0020)
σ 1 1.31 1.322(0.0052)   1.319(0.0045)  
  0.538   0.539(0.0026)   0.538(0.0019)
σ 2 1.31 1.322(0.0072)   1.320(0.0056)  
  0.53   0.53(0.0018)   0.53(0.0011)