Skip to main content
Fig. 1 | Theoretical Biology and Medical Modelling

Fig. 1

From: Cell cycle progression is regulated by intertwined redox oscillators

Fig. 1

The central carbon metabolism (CCM). a The different phases of the eukaryotic cell cycle could be explain by reductive-oxidative (redox) transitions in the CCM. b In G1, high ATP demand for protein synthesis is managed by anaerobic glycolysis leading to lactate synthesis. This permits NAD+ regeneration by lactate dehydrogenase and then sustains high NAD+/NADH ratio. c In S phase, the CCM is shifted to pentose phosphate pathway (PPP) for nucleotide synthesis. d In G2 the tricarboxylic acid (TCA) pathway and the electron transport chain are fully active and allow mitochondrial ATP synthesis and lipid synthesis from citrate

Back to article page