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Abstract

Background: Cancer is a complex disease commonly characterized by the disrupted
activity of several cancer-related genes such as oncogenes and tumor-suppressor
genes. Previous studies suggest that the process of tumor progression to malignancy
is dynamic and can be traced by changes in gene expression. Despite the enormous
efforts made for differential expression detection and biomarker discovery, few
methods have been designed to model the gene expression level to tumor stage
during malignancy progression. Such models could help us understand the
dynamics and simplify or reveal the complexity of tumor progression.

Methods: We have modeled an on-off state of gene activation per sample then per
stage to select gene expression profiles associated to tumor progression. The
selection is guided by statistical significance of profiles based on random
permutated datasets.

Results: We show that our method identifies expected profiles corresponding to
oncogenes and tumor suppressor genes in a prostate tumor progression dataset.
Comparisons with other methods support our findings and indicate that a
considerable proportion of significant profiles is not found by other statistical tests
commonly used to detect differential expression between tumor stages nor found
by other tailored methods. Ontology and pathway analysis concurred with these
findings.

Conclusions: Results suggest that our methodology may be a valuable tool to study
tumor malignancy progression, which might reveal novel cancer therapies.
Background
Cancer is a complex and multi-factorial disease. Hanahan and Weinberg define the

hallmarks of cancer as the manifestation of alterations in cell physiology, including

limitless of replicative potential, sustained angiogenesis, evasion of apoptosis, self-

sufficiency of growth signals, insensitivity to antigrowth signals, tissue invasion and

metastasis [1]. The order and mechanisms in which these alterations emerge during

malignancy progression is thought to vary between individuals and tumor types [1].

Moreover, studies have proven that cancer is a genetic disease [2] which is character-

ized by mutations in several cancer-related genes such as oncogenes, tumor-suppressor

genes and stability genes [3]. The diversity and interconnection of these factors and

mutations makes tumor progression difficult to model, study, and predict.
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Studies have shown that tumors are heterogeneous in mutations and gene expression

during progression to malignancy [4,5]. The consequence of alterations in oncogenes or

their regulators is the constitutive activation compared to wild-type gene. The activity of

tumor-suppressor genes (TSG) is affected in the opposite way; disruptions lead in function

degradation. In addition to oncogenes and TSG, stability genes or caretakers when mu-

tated promote tumorigenesis by decreasing the restoration of DNA replication mistakes

or by the inability to correct all mutations when cells have been exposed to mutagens [2].

Microarray technology for gene expression profiling has proven to be successful in a

variety of experimental settings [6,7] having the potential to discover the diversified

and dynamic molecular states during tumor progression. In malignancy progression, it

has shown that increases or decreases in activity can be traced by changes in gene ex-

pression [5]. The analysis of microarray data is, nevertheless, complex; the results are

dependent on the analysis method and noise handling generating ambiguous or com-

plementary results [8]. Besides the microarray data inherent problems, the examination

of tumor progression is complicated by the limitation of the sampling time typically

performed at diagnosis and by a staging system mainly based on phenotypical features

[9]. This raises the issue that cancer samples may be labeled under the same stage re-

gardless of their molecular state. In addition, there are few datasets designed to study

tumor progression. Therefore, tools that analyze gene expression by novel approaches

are needed and appreciated by medical, biological and scientific community.

Despite the massive efforts made to detect differential expression and biomarkers,

few methods have been designed to model the gene expression level to tumor stage

during malignancy progression. Such models could help us understand the dynamics

and simplify or reveal the complexity of tumor progression. For example, in breast can-

cer, low and high grades have been in addition divided into six molecular subtypes

using principal component analysis followed by a tailored clustering method [10], and

gene co-expression networks have been used to form subgroups of different relapse-

free survival times [11]. In other cancers, simple differential gene expression combined

with enrichment analysis [12] has been used to obtain common transcriptional profiles

shared between cancers of several tissues [13], which was further expanded to allow

combinations and extensions of experimentally-designed sets of genes to uncover mo-

lecular concepts during prostate cancer progression [5]. Recently, other methods have

been applied to tumor progression, such as significant minimum spanning trees among

clusters of co-expressed genes [14], genes over-expressed between the first and the last

tumor stages [15], over-represented pathways of differentially expressed genes between

progression stages [16], and temporal re-ordering of samples to by genes of minimum

expression changes along progression [17].

In this paper, we contribute a novel yet simple approach to study tumor progression

assuming tumor heterogeneity. We propose a method to identify relevant genes related

to tumor progression transforming the distribution of gene expression to binary states

per sample then modeling the distribution of sample states within a progression stage

to assign also a binary state. We believe that this approach is, to some extent, robust to

tumor heterogeneity and noise. Our results in two prostate cancer datasets show that

significant genes resemble the ideal profiles of oncogenes and TSG during tumor ma-

lignancy progression and that a large number of genes were not found in the original

publication neither using well-known differential expression methods.
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Methods
Binary states model (BSM)

The overall methodology (Figure 1A) is based on binary states first to individual sam-

ples then to tumor stages (Figure 1B). For individual samples, we generate ideal binary

states representing whether a gene is active (value=1) or inactive (value=−1). In

addition, we assign a value of 0 when the state for a sample cannot be determined. We

hypothesized that the normalized intensity of a gene in a sample can be either above,

below or within an uncertainty zone defining the gene as active=1, inactive=−1, or un-
certain=0 respectively. The uncertainty region is centered in t and limited by t-u and

t+u, where the parameters t and u represents the cut-off and uncertainty respectively.

Some authors have used similar approaches [18-21]. Then; we defined the state per

stage as active=1 or inactive=−1 when the proportion of samples within that stage and
Figure 1 Binary state model algorithm. (A) Overall methodology from gene expression to gene
selection. First, an exhaustive search is used for parameter estimation of the binary state model. Then, mp, t and
u parameters found are used to estimate sample and stage states in the dataset and in its permutated versions
needed to estimate a stage-state profile null distribution. Gene selection is based on FDR of state-stage profiles.
(B) Binary state model for samples and stages. gev stands for gene expression value. (C) Graphical example of
the algorithm. Squares and rectangles represent samples and stages respectively.



Martinez and Trevino Theoretical Biology and Medical Modelling 2013, 10:37 Page 4 of 14
http://www.tbiomed.com/content/10/1/37
state is higher or equal than a proportion parameter, mp. The stage-state can also be

designed as uncertain=0 when it could not be assigned as active nor inactive. Next, we

simply concatenate the gene state per stage to generate a profile of 1’s, 0’s, and -1’s sep-

arated by period for representation. For example, the profile 1.0.-1 would represent that

the gene is active in the first stage, undefined in the second stage and inactive in the

last stage (Figure 1C). For a textual description of the algorithm and pseudo-code, see

supplementary data.

Parameters estimation

To find the best t, u, and mp parameters (shown in Figure 1B), we used an exhaustive

search of discrete values comparing observed and bootstrap estimations. For the pro-

portion parameter mp we used 0.5, 0.6, 0.7, and 0.8 representing 50% to 80% of the

samples in the same state. Lower values would generate ambiguity, and higher values

would be highly stringent. Similarly, for the cut-off value t, we used 0.3, 0.4, 0.5, 0.6,

and 0.7. For the uncertainty value u, we used 0, 0.25, 0.5, 0.75, and 1 multiplied by the

standard deviation of the dataset to adapt the observed variation per gene and fairly

compare genes in the same stage. To determine the best of the 100 value combinations

of these parameters, we generated artificial datasets composed by uniform distributed

random values between 0 and 1 . We used at least P=100 random datasets (results for

P=1,000 and P=10,000 yields the same results, so we used 100 for speeding up the pipe-

line for final users) and ran each set of parameters on each random dataset. Then, for

each gene i in each random dataset p, we set dip equal to the number of stages that it

was defined as active or inactive (thus not considering uncertainties). Next, for each

possible number of stages s, from 1 to the total number of tumor progression stages Z,

we counted the number of genes that were active or inactive in exactly s stages, Dsp =

count(dip=s) and average among all datasets as DRs = sum(Dsp) / P. DRs gives an esti-

mation of the number of genes false assigned as active or inactive to s stages. Next, we

defined the ratio of the cumulative number of false defined genes in at least s stages as

Fs=(Ds+Ds+1+…+DZ)/ (DRs+DRs+1+…+DRZ), from s=1…Z where Dk is the observed

number of genes defined as active or inactive for k stages in the original dataset. Finally,

we estimated the total number of non-false assigned genes by NF=(1-F1)*D1+(1-F2)*

D2+…+(1-Fz)*Dz. The combination of parameters that yield highest NF was then chosen.

Estimation of stage-state profile significance

Using the best parameter combination, we calculated an empirical p-value to rank the

gene profiles using permutated stage labels such as in SAM [22]. We ran BSM at least

1,000 times to draw the expected probability of each profile by chance. p-values are cal-

culated dividing 1+the number of times of each profile is found in the permutated

dataset by the number of genes of all permutations. We assume that the profiles not

frequently found in the permuted datasets are the most significant. p-values were ad-

justed using a false discovery rate method to generate q-values [23,24], which help to

finally select genes with statistical significant state-stage profile.

Simulations on synthetic data

To explore the potential of BSM to identify genes with specific properties for cancer

progression, we performed a tailored simulation study generating a dataset containing

synthetic gene expression following specific stage-state profiles. To simplify the analysis,
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we included 2, 3, or 4 stages with 10, 20, 30, 40, or 50 samples each. The range of gene ex-

pression was from 0 to 1. To generate active stage-state values (+1), we used Gaussian

random numbers whose mean was randomly chosen from .625, 0.750, and 0.875. The

standard deviation was randomly chosen from 0.125, 0.250, and 0.375. Only combinations

where the mean – sd >= 0.5 were used to ensure an activation level. Similarly, for inactive

stage-states (−1), the mean was chosen from 0.125, 0.250, and 0.375, using the same

standard deviations and constrained to mean + sd <= 0.5. For states=0, two normal distri-

butions were used, half of the samples are generated with mean=0.75 and the remaining

with mean=0.25, both with sd=0.15. Synthetic datasets included 60 positive synthetic

genes for 2 stages, 180 for 3 stages, and 200 for 4 stages, using “ideal” oncogene and TSG

profiles (e.g. in 4 stages: 1.1.1.-1, -1.1.1.-1, -1.-1.-1.1, 1.-1.-1.1, 1.-1.-1.-1, -1.1.1.1). A heat

map representation of synthetic genes is shown in Additional file 1: Figure S1. Synthetic

datasets also include around 4,800 negative synthetic genes (up to 5000) from profiles that

do not represent “interesting” state-states (those that have no transitions between 1 and

−1, e.g. 1.1.1.1, -1.-1.-1.0, 1.0.1.1, 0.-1.0.-1).

Prostate datasets

We used a prostate cancer dataset available in GEO database as GSE6099 [5,25]. This

dataset consists of 20,000 genes in 104 cDNA samples distributed in the following

stages ordered by tumor progression: 39 Normal, 13 Prostatic intraepithelial neoplasia

(PIN), 32 Prostate cancer (PCA), and 20 Metastases (Met). This dataset was pre-

processed from the original raw files using bioconductor [26]. Finally, we uniformized

the gene expression values in each sample to values between 0 and 1 in order to even-

tually compare results from different datasets and technologies. Results with and with-

out uniformization did not change the results of BSM (see Additional file 2: Table S9).

The uniformization is performed by changing gene expression values to its correspond-

ing quantile for each sample. We also used the Memorial Sloan-Kettering Cancer

Center database of prostate cancer that included 179 prostate samples along four stages

(29 normal, 78 Gleason score 5 or 6, 53 Gleason score 7 to 9, and 19 metastasis) [27].

Comparisons with other methods

To determine whether BSM selects similar genes than those selected by other methods,

we estimated the degree of overlap from the genes selected by our method to those se-

lected by commonly used methods such as using t-test [13], wilcoxon-test and f-test

[28], cancer outlier profile analysis (COPA) and outlier sum [29,30], SAM [22], and mo-

lecular concepts [5]. For t-test and Wilcoxon-test, a comparison of one stage versus all

other stages was performed. For COPA, we used the maximum of the quantiles at 75%,

90%, and 95% per stage and took the maximum value. To perform fair comparisons

with our method, we used the 215 most significant genes (as those selected by BSM,

see results) in all test regardless of the p- and q-values. For simulations, we used the

top number of genes equal to the positive synthetic genes.

Ontology enrichment

Results using BSM and SAM were tested for enrichment for Gene Ontology terms and

KEGG pathways using WebGestalt (Duncan, et al. 2010). To highlight differences, we

used a 20% FDR as cut-off to select significant enrichment.
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Results and discussion
Simulation using synthetic datasets

We compared BSM, SAM, f-test, Wilcoxon, COPA/OSUM, and t-test gene selection

methods for the synthetic dataset. We ran 40 simulations containing 2, 3, and 4 stages

compromising between 10 and 50 samples per stage (Additional file 2: Table S1). Over-

all, BSM recovered 82% of the 5,720 positive synthetic genes contained in the 40 simu-

lations, SAM, f-test, Wilcoxon, COPA/OSUM, and t-test recovered 69%, 45%, 36%, 7%,

and 33% respectively. The BSM performance was 71%, 84%, and 85% for 2, 3, and 4

stages respectively. Overall, BSM recovered 4,701 out of 5,720 genes, including 1,054

genes (26%) that SAM did not find. BSM recovered more genes than SAM in 33 of the

40 simulations. SAM surpassed BSM only in 6 simulations. From these, 4 were two-

stages and 3 contained only 10 samples per stage. Although the BSM performance de-

creases for two stages or for a small number of samples per stage, the results suggest

that BSM recover more genes than SAM for idealized profiles related to tumor pro-

gression. Therefore, BSM is a valuable tool that can be used in addition to SAM to

study tumor progression.

Prostate cancer dataset

Parameter estimation

Our proposal is to model binary states profiles similar to those expected in TSG and

oncogene profiles. For this, we first binarized the gene expression to define whether a

gene is active (value=1), inactive (value=−1), or uncertain (value=0) as shown in

Figure 1. Then, we determined the gene state per stage by determining whether the

highest proportion of their samples are active or inactive and higher to a minimum

proportion parameter, mp. The result is a gene stage-state profile of 1’s, 0’s, and -1’s,

which we separate by dots, representing whether the gene in the stage is in summary

active, inactive, or uncertain. We estimated the best discrete parameters combinations

using bootstrap techniques based on the maximum number of genes correctly

assigned to a state. The best combination of parameters found in step 1 were t=0.5,

u=0, and mp=0.7 (Additional file 2: Table S2) where 89% of the genes (17,760) were

assigned as active or inactive in at least one stage independently whether its profile

was significant. Only 2,239 genes (11%) could not be assigned to an activation or

inactivation state in any of the four tumor progression stages corresponding to

the profile 0.0.0.0. We observed 72 out of the 81 possible stage-states profiles in

the Tomlins et al. dataset (Additional file 2: Table S3). The distribution of state-

stages profiles supports that a diverse set of molecular states exists in tumor

progression.
p-value estimation

The distribution of state-stages profiles in the permutated dataset is shown in

Additional file 2: Table S3. The majority of the profiles were favored to complete inacti-

vation (12%), activation (12%), or uncertain (11%) corresponding to profiles −1.-1.-1.-1,
1.1.1.1 and 0.0.0.0 respectively. We observed that only the 0.24% of the profiles in-

cluded a transition from active to inactive or from inactive to active of the 50 possible

profiles with one transition. However, some transitions were more frequent than others.

Two transitions were even more rare in the permutated datasets; only 0.013% of genes
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in the permutated dataset contained any of the 14 possible profiles with two transitions.

These observations indicate that state-stage profiles containing at least one transition

are quite rare in permutated dataset and therefore highly significant if observed in tis-

sues. We used this distribution to assign a p-value for each gene in the Tomlins et al.

dataset counting the number of times a specific profile was obtained in the permutated

dataset divided by the total number of genes times the number of permutations. This

p-value was then corrected using a false discovery rate approach [24]. The results are

shown in Table 1 and Additional file 2: Table S3 and discussed in following sections.

Profile distribution

From the 20,000 genes, there were 4,970 where the four progression stages used were

assigned (none 0 in the profile). Nevertheless, 4,880 were always active (1.1.1.1) or in-

active (−1.-1.-1.-1) in the four stages representing ‘flat’ and uninteresting profiles. The

others 90 genes had transitions from −1 to 1 or from 1 to −1. We observed that 12,790

of the genes have at least one uncertainty value in their stage-state profile. Uncertain-

ties were more present in PIN and MET stages where the number of samples is small

(13 and 20 respectively). These uncertainties may occur in three scenarios, ‘flat’ when

the uncertainty is preceded and followed by the same state-stage value (−1.0.-1 or

1.0.1), ‘transitory’ when it is preceded and followed by different state-stage values

(−1.0.1 or 1.0.-1), and when the uncertainty is present in the first or last stage (0.x.x.x

or x.x.x.0 where x represent any state). All scenarios were highly present, mainly those

‘flat’ and starting or ending with uncertainty (Additional file 2: Table S3). Nevertheless,

within the 215 significant genes (Figure 2) the first ‘flat’ uncertain scenario was poorly

observed (10 genes for −1.0.-1.1, -1.1.0.1, and 1.-1.0.-1) whereas the second ‘transitory’

scenario was quite common (90 genes from 6 profiles). For the third scenario (starting

or ending in 0), we observed 4 profiles for 84 genes only in metastases. These results

from uncertainties may indicate a mixed or transitory state between previous and fol-

lowing stages supporting the fact that tumors are heterogeneous within stages and even

within individuals [31]. This is also consistent with in-situ studies showing that markers

are commonly present only in a fraction of samples of the same tumor grade [32].

Other studies have shown that 12 and 9 genes on average were mutated in individual

breast and colorectal cancers from a total of 122 and 69 genes respectively that were

mutated in 11 tumors [4] and reviews of further studies show that between 33 to 66

genes are mutated in several common cancers [33]. Given the assumption of this muta-

tional heterogeneity found in those studies (33 to 66 genes), changes in gene expression

from these genes, or more importantly those they control directly or indirectly, are

expected to be also altered and rather heterogeneous. This is consistent with the

observed heterogeneity patterns we found.
Table 1 Comparison of genes selected by different methods

t-Test f-Test Wilcox Copa SAM Tomlins Barcode

t-Test -

f-Test 0.33 -

Wilcoxon 0.36 0.47 -

Copa 0.01 0.01 0.06 -

SAM 0.36 0.90 0.47 0.01 -

BSM 0.14 0.26 0.20 0.00 0.28 0.05 0.07-0.37



Figure 2 State-Stage representation of significantly selected genes using BSM. State-Stages are
represented as active=1 in red, inactive=−1 in blue, or uncertain=0 in gray. Stages are indicated. Samples
are shown in columns whereas genes are ordered by stage-state profile in vertical. Expression values ranges
from 0 to 1 corresponding to various levels of colors from green to black then to red. Rank given by SAM is
shown for comparison (black represents ranks from 1 to 215, dark gray to 500, light gray to 1000, and
white >1000).
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Significant stage-state profiles

Using a q-value of 0.2 equivalent to p-values between 1.1e-5 and 5e-8, 215 of the

20,000 genes profiles were significant in Tomlins et al. dataset (Figure 2 and 3 and

Table 2). The list of the selected genes is shown in Additional file 2: Table S4. All pro-

files involved at least one transition. From the theoretical defined stage-states (Figure 3,

left panel), we observed 7 out of the 14 progression-interesting profiles (marked with

arrows in Figure 3) representing 79 genes (37%). So, 11 out of the 18 significant pro-

files, representing 136 genes (63%), have at least one uncertainty state. State-stage pro-

files similar to oncogenes and TSG are clearly observed and well supported by specific
Figure 3 Theoretical and observed profiles and examples. A and I represent active or inactive gene
expression respectively. All possible state paths along progression are shown. Gene expression is shown in
vertical axis in Means and Examples. Line in Means represent a gene average expression. Dots in Examples
represent samples and their average by a horizontal line.



Table 2 Significant profiles selected by BSM

Profile Genes % Folds pValue qValue Type

−1.-1.-1.1 10 4.7 110 4.55E-06 0.09129 Oncogene (Late)

−1.-1.1.1 1 0.5 Inf 0.00E+00 0.00100 Oncogene

−1.0.-1.1 2 0.9 10 1.01E-05 0.19985 Oncogene

−1.0.1.-1 25 11.6 1563 8.00E-07 0.01693 2 t

−1.0.1.0 29 13.5 199 7.30E-06 0.14565 Oncogene

−1.0.1.1 6 2.8 600 5.00E-07 0.01096 Oncogene

−1.1.0.1 2 0.9 42 2.40E-06 0.04871 Oncogene (Early)

−1.1.1.-1 13 6.0 Inf 0.00E+00 0.00100 2 t

−1.1.1.0 20 9.3 3333 3.00E-07 0.00699 Oncogene (Early)

−1.1.1.1 6 2.8 6000 5.00E-08 0.00200 Oncogene (Early)

1.-1.-1.-1 6 2.8 6000 5.00E-08 0.00200 TSG (Early)

1.-1.-1.0 16 7.4 2000 4.00E-07 0.00898 TSG (Early)

1.-1.-1.1 8 3.7 Inf 0.00E+00 0.00100 2 t

1.-1.0.-1 6 2.8 222 1.35E-06 0.02784 TSG (Early)

1.0.-1.-1 5 2.3 625 4.00E-07 0.00898 TSG

1.0.-1.0 19 8.8 184 5.15E-06 0.10314 TSG

1.0.-1.1 6 2.8 231 1.30E-06 0.02686 2 t

1.1.1.-1 35 16.3 412 4.25E-06 0.08548 TSG (Late) / MSG

Folds is the number of times the corresponding stage-state profile was observed in Tomlins dataset relative to the
permuted dataset or “Inf” when not observed in permuted dataset.
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gene examples (Figure 3 and marked in Figure 2). We observed diverse patterns corre-

sponding to TSG profiles starting with an activation followed by deactivations in PIN

(1.-1.-1.-1, 1.-1.-1.0, 1.-1.0.-1, 28 genes) or MET (1.1.1.-1, 35 genes) marked as early

and late TSG in Figure 2 respectively. We also found TSG profiles where the stage-

state is inactive in PCA but only when uncertain in PIN (1.0.-1.-1, and 1.0.-1.0, 24

genes). In total, we observed 87 genes (40%) corresponding to a TSG profile. All these

results are interesting since they suggest that a large number of TSG are deactivated

quite rapidly in prostate malignancy progression even since neoplasia. From the TSG

profiles that were inactivated since PIN, we observed well-known TSGs such as UBE1L

and ANXA1 (Additional file 1: Figure S2 and Figure 3). Supporting our findings,

UBE1L has been implicating in growth suppression in lung cancer [34] and ANXA1

has been related to tumorigenesis and malignancy in prostate tumors [35].

There were 35 TSG profiles that change its state from 1 to −1 until metastases

(1.1.1.-1 in Figure 3 and marked as late TSG in Figure 2 and shown in Additional file 1:

Figure S3), which correspond to metastases suppressor genes (MSG) profiles [36,37].

From these 35 MSG-like profiles, ASAH1 and ITGAV were also included in a MSG-

like profile in the Tomlins paper [5], which were present within the androgen signaling

activity. TNFSF10 is as well a known TSG that induces apoptosis of tumor cells but

not normal cells [38] and has been proposed as a metastases suppressor gene [39]. This

supports our prediction for TNFSF10 as a MSG. We also found MLLT4 as a putative

MSG though it has not been implicated in prostate cancer. MLLT4 has been suggested

as a TSG since loss of expression was related to poor outcome in breast cancer [40].

Likewise, MIA3 has been found as a TSG in malignant melanoma where low expression

was associated to cell migration [41]. This supports the prediction that MIA3 is a MSG
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in prostate cancer since deactivation in metastatic prostate would facilitate tumor

movement.

We also observed 8 oncogene-like profiles corresponding to 76 genes, inactive in nor-

mal cells and active during tumor progression. From these, 3 oncogenes profiles

representing 28 genes were activated since PIN (marked as early oncogene in Figure 2 and

Table 1), 4 profiles containing 38 genes were activated from PCA, and 1 profile of 10

genes activated until metastasis (marked as late oncogene in Figure 2 and Table 1). From

the 38 genes whose profiles were activated from PCA, we noted that the activation was al-

ways preceded by uncertainty in PIN suggesting that activation is transitory beginning in

PIN rather than in PCA supporting heterogeneity of molecular states and changes in the

activation state since PIN. From the oncogene-like profiles that are active since PIN

(marked as early oncogenes in Figure 2 and Additional file 1: Figure S4), we observed

TSPAN13 and E2F5. E2F5 is part of the E2F family that regulates cell cycle interacting

with tumor suppressors [42] and has been implicated in malignancy in ovarian cancers

[43]. TSPAN13 has been recently found overexpressed in prostate cancers and neoplasia

respect to normal [44]. These results support our findings for oncogene-like profiles.

Surprisingly, we found 4 profiles representing a considerable number of genes involving

two transitions (52 genes, marked as 2 t in Figure 2 and Additional file 1: Figure S5) where

normal and metastases samples showed the same state either active or inactive. Tomlins

et al. also found these transient states [5]. Between PIN and PCA, we found uncertainties

but not transitions. The fact that benign and metastases share partially similar molecular

states may have deep implications, that a unique line of clonal expansion is occurring

where constrains imposed to tumor cells are changing during malignancy progression, or

that proposed by Malins where primary tumor and metastatic cancer evolve concurrently

[45]. The two-transitional state may explain and is supported by the increasing evidence

where some genes can act as both oncogene or TSG [46-48].

We observed that not all samples within a stage have the same activation state for a

given gene. For example, for Early TSG in Figure 2 and detailed in Additional file 1:

Figure S2, not all samples within the PCA stage are clearly inactive (−1), there are some

samples having an active state (+1, red dots), which could be considered as “noise” or

“tumor heterogeneity”.

All these results suggest that our findings are likely to be relevant for prostate cancer

progression.

Comparison with other gene selection methods

Tomlins et al. used differential gene expression to analyze tumor progression, thus we

compared whether the genes selected by BSM could also be selected using other

equivalent procedures. Table 1 shows that the major overlap is 28% using the SAM

method. From the top 215 genes selected by SAM (Additional file 2: Figure S6, 60

(28%) were also selected by BSM proposing an overlapped tendency (p < 1e-68). Never-

theless, functional analysis shown in Additional file 2: Table S4 and Additional file 2:

Table S6 clearly show that the biological terms associated to SAM and BSM gene lists

differ. For comparison, using top 2,726 genes from SAM (14% of the dataset at q=0)

there were 21 out of 215 genes (9.8%) selected by BSM that were not included. At the

same time, the BSM genes are obscured in the large list generated by SAM suggesting

that BSM may be used to highlight genes with specific tumor progression profiles.
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Interestingly, 11 of the 82 genes reported by Tomlins et al. were also selected by BSM

suggesting a degree of similarity (p =< 1e-7). Given that the state-stage profiles found with

BSM correspond to profiles shown by Tomlins et al., our method is contributing with 204

genes following similar profiles putatively involved in tumor progression.

An approach termed ‘barcode’ was proposed to classify several tissues selecting genes

that were unexpectedly high expressed or low expressed in a specific tissue [21,49].

Since tumor stages can be seen as different cell types, Barcode may be used for a simi-

lar purpose than BSM. However, the barcode algorithm does not consider uncertainty

in the threshold operation; it assumes and selects genes whose expression distribution

has at least two clear peaks; it is designed and applied for detecting different tissues

where gene expression changes drastically rather than detection of subtle differences

within the same tissue; and it has been tested on Affymetrix technologies only. How-

ever, barcode does not consider tumor progression stages or studies; the gene expres-

sion for most of the genes are similar; and the preferred technology could be not

Affymetrix. Moreover, we focused in selecting significant progression profiles such as

those expected for TSG and oncogenes rather than selecting genes that are unexpect-

edly expressed or not expressed neither for classification purposes. All these arguments

propose that barcode and BSM may select genes with different profiles. To test this, we

used the 160 of the 215 selected genes having Entrez Id associated and fed into the

barcode web tool (http://rafalab.jhsph.edu/barcode). The results in Additional file 2:

Table S7 show that 47 (37%) genes out of the 127 genes included in Barcode database

were associated to tissues (9 to prostate tumors and 38 to ‘many’ tissues). This result

proves that BSM and Barcode select different genes. In addition, BSM can be applied

to other microarrays technologies and for samples derived from the same tissue such

as tumor progression.

In addition, we also tested the same gene selection methods to a prostate cancer

dataset provided by the Memorial Sloan-Kettering Cancer Center [27]. As shown in

(Additional file 1: Figure S9 and Additional file 2: Table S8), only the 11% of the genes

selected by BSM are as well found by other methods.

Overall, these results suggest that information discovered by BSM is complementary

to that obtained by other methods suggesting that BSM is a valuable tool for studying

tumor progression.

BSM progression signature as biomarker

Although BSM was intended for gene-discovery purposes, we wondered whether the

profiles selected might be predictive of progression stage. Therefore, we also tested our

215 genes signature for classification measuring the accuracy of a nearest centroid

classifier in a 10-fold-cross-validation scheme. Results are shown in Additional file 1:

Figure S7. Our signature obtained 84% of accuracy while the first 215 genes ranked by

SAM obtained 90%. The confusion matrix shown in Additional file 1: Figure S7. A sug-

gests that our BSM signature confounds PIN and PCA. This is congruent since PIN

and PCA differ mainly in profiles where PIN is uncertain and only one significant gene

where the activation state was opposite between PIN and PCA. This indicates that

BSM profiles barely distinguish between PIN and PCA. Nevertheless, we wondered

whether a subset of the BSM signature might be more predictive. Using multivariate

searches we have developed [50,51], we found a 13-genes model predicting correctly

http://rafalab.jhsph.edu/barcode
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94% of samples (Additional file 1: Figure S8). These results suggest that the BSM signa-

ture may also carry predictive information that can be used to distinguish tumor pro-

gression and therefore may be related to clinical outcome. To test this, we challenged

the 215 genes signature in two prostate cancer datasets where outcome information is

available and the majority of these genes are also included. We used the Sboner dataset

[9] related to survival time after diagnosis and the Memorial Sloan-Kettering prostate

cancer dataset [27] related to time to recurrence after radical prostatectomy. We used

75 of the 215 genes that are included in both datasets (Additional file 2: Table S10) in a

Cox model and also the genes present in the 13-gene signature. We employed the risk

score (fitted coefficients multiplied by gene expression) to generate two risk groups

splitting the risk score by the median. The results shown in Additional file 1: Figure

S10 indicate that the signature indeed is predictive of clinical outcome in the two

datasets used. Therefore, the BSM signature is predictive of clinical outcome and can

be valuable as a biomarker.
Conclusions
We showed that simple binary states estimated to samples and then samples grouped

into stages can identify genes putative related to tumor progression, which was also

supported by biomedical literature. We showed that the profile of selected genes is

similar to profiles expected for oncogenes, tumor suppressor genes and metastases sup-

pressor genes and that these genes can be used for prediction purposes. In addition, we

found genes with two changes in the activation state that require further investigation.

We also demonstrated that our binary state model discovers genes not found by other

methods. We conclude that the binary state model proposed here is a valuable tool to

analyze tumor progression from gene expression data.
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