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Abstract

Nanoscale electrostatic microtubule disassembly forces between positively charged
molecules in kinetochores and negative charges on plus ends of microtubules have
been implicated in poleward chromosome motions and may also contribute to
antipoleward chromosome movements. We propose that chromosome congression
can be understood in terms of antipoleward nanoscale electrostatic microtubule
assembly forces between negatively charged microtubule plus ends and like-charged
chromosome arms, acting in conjunction with poleward microtubule disassembly
forces. Several other aspects of post-attachment prometaphase chromosome motions,
as well as metaphase oscillations, are consistently explained within this framework.
Introduction
Poleward and antipoleward chromosome movements occur intermittently during

prometaphase and metaphase. Poleward motion dominates during anaphase-A, while

antipoleward motions dominate during the congressional movement of chromosomes to

the cell equator. The apparent complexity of these motions has challenged scientific

explanation for over a hundred years.

Experiments have shown that during prometaphase each pair of sister chromatids

attaches by a kinetochore to the outside wall of a single microtubule, resulting in a

rapid microtubule sliding movement toward a pole [1]. This motion is generally

thought to be driven by molecular motors; specifically, the speed (20–50 μm per minute)

of kinetochores along microtubule walls is consistent with known molecular motor

behavior [1]. Current thought on chromosome motility, however, does not appear to

favor molecular motors for post-attachment force generation.

As discussed elsewhere [2-5], force generation by nanoscale electrostatic microtubule

disassembly forces between positive charges at kinetochores and negative charges on

microtubule plus ends may be responsible for chromosome poleward motility during

mitosis. We propose here that antipoleward nanoscale electrostatic microtubule assembly

forces acting at chromosome arms combined with poleward forces are responsible

for chromosome congression, and that this combination is consistent with other post-

attachment prometaphase motions as well as metaphase chromosome oscillations.

The approach of kinetochores to the poles result in their movement to within critical

distances of the ends of other (astral) microtubules emanating from the closer pole.

Importantly, electrostatic forces increase significantly between charged surfaces separated
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by 3 nm or less (see below). The resulting proximity–in conjunction with (1) an electro-

static attraction between positively charged kinetochores and negatively charged ends

of astral microtubules, (2) an electrostatic repulsion between negatively charged

chromosome arms in the chromatid pair and neighboring negatively charged astral

microtubule ends, and (3) constant thermal agitation—is likely integral to the orientation

and end-on attachment of kinetochores to free microtubule plus ends [2]. Following a

monovalent (or mono-oriented) attachment to one pole, chromosomes subsequently move

at considerably slower speeds (a few μm per minute) throughout prometaphase [6]. In

particular, a period of slow movements toward and away from a pole ensues until close

proximity of the free microtubule end with the other (sister) kinetochore in the chromatid

pair results in a bivalent (bioriented) attachment. Attachments of additional microtubules

from both poles follow. After a sister kinetochore becomes attached to microtubules from

the opposite pole, the chromosomes perform a slow (1–2 μm per minute) congressional

motion to the spindle equator, resulting in the well-known metaphase alignment of

chromatid pairs [6].
Antipoleward nanoscale electrostatic assembly force
The permittivity (kεo) of the first few water layers outside a charged surface is an order

of magnitude smaller than that of the bulk phase [7], and the effective permittivity of

water as a function of distance from a charged surface increases monotonically from

4–6 εo at the interface to 78 εo at a distance of 25 nm from the interface. The values of

the dielectric constants k (x) at distances (x) of 1, 2, 3, and 4 nm from a charged surface

are 9, 21, 40, and 60, respectively [8]. Additionally, layered water adhering to charged

molecules greatly reduces counterion (Debye) screening for small distances from their

surfaces. Such water layering to charged proteins (e.g., microtubules) has long been

theorized [9,10], and confirmed experimentally [11].

The interpolated values of k(x) for separations between charged surfaces of up to

3 nm are 5, 9, 9 and 5 for x = 0, 1, 2 and 3 respectively, where the charged surfaces

are at x = 0 and x = 3 nm (the experimental value of k(x) at both x = 0 and x = 3 is 5,

and symmetry and the experimental numbers dictate the values of 9 in between). The

distance range of 1–3 nm between charged molecular surfaces is appropriate because

1 nm may be taken as the thickness of layered water adsorbed to each charged surface

[10,12], and for charged molecular surface separations up to 3 nm, counterion screening

would be virtually eliminated. Thus electrostatic force is increased over the distances

allowed by reduced Debye screening, and is further increased (by an order of magnitude)

due to an order of magnitude reduction in the dielectric constant between the charged

surfaces. For brevity, separations of up to 3 nm (and – due to the reduced dielectric

constant between charged molecular surfaces – 1 to 2 nm beyond) between charged

surfaces will hereafter be designated as critical distances/gaps.

Due to the strong negative charge carried by chromosome arms, they are repelled from

negatively charged free ends of astral microtubules in the polar region. Microtubule

polymerization occurs in relatively large gaps that result from smaller (near critical)

gap-dependant electrostatic repulsion between negatively charged microtubule plus

ends and negatively charged chromosome arms. This process continues with other

constantly changing subsets of smaller and larger gaps, causing chromosomes to be
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continuously repelled from poles. This mechanism may account for the antipoleward

astral exclusion force, or polar wind, the precise nature of which has been sought

since it was first observed [13]. The interaction between astral microtubules and

chromosome arms is depicted in Figure 1.

As a chromatid pair moves farther from a pole, electrostatic repulsive forces between

the negatively charged free ends of astral microtubules and chromosomes decreases

as the microtubules fan radially outward. At a surface defined by the microtubule

ends, the charge density and therefore the force, will decrease according to an

“inverse square law”. Specifically, the repulsive force on a chromosome arm depends

on the total number N of negatively charged microtubule free ends from which it is

repelled; thus F ~ N q, where q is the charge at the end of a microtubule. For N

microtubules fanning radially outward from a pole, the total charge N q is distributed over

an area that increases as the distance r from the pole squared (r2), and the effective charge

per unit area at a surface defined by the microtubule ends decreases as the inverse of the

distance squared (1/r2). This results in a nanoscale repulsive electrostatic antipoleward

force on chromosome arms that decreases with an inverse square (1/r2) dependence on

the polar distance.

The falloff is even more pronounced than an inverse square dependence predicts due

to the decreased number of microtubule free ends more distant from the poles, thus
Figure 1 Antipoleward electrostatic force between microtubules and chromosome arms. An
antipoleward force results from electrostatic repulsion between negatively charged plus ends of microtubules
and negatively charged chromosome arms.
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further reducing the antipoleward force (Figure 2). We refer to this effect as the robust

inverse square antipoleward force.
Prometaphase and metaphase chromosome motions
Microtubule polymerization and depolymerization, in combination with poleward and

antipoleward forces, are sufficient to account for the observed motion of monovalently

attached chromosomes. Due to fluctuations in both the number of disassembling

kinetochore microtubules (interacting with kinetochores and centrosomes), and in

the number of assembling astral microtubules (responsible for the antipoleward

force acting at chromosome arms), these opposing forces result in a “tug of war”

consistent with experimentally observed movements toward and away from a pole

for a monovalently attached chromatid pair [6].

After a bivalent attachment is established, the attractive force to the distal pole opposes

the attractive force to the proximal pole. The robust inverse square astral exclusion force

results in greater repulsion from the proximal pole, and combined with a growing number
Figure 2 Robust antipoleward inverse square repulsive force. Two chromatid pairs at differing polar
distances are depicted showing the robust inverse square dependence of the nanoscale repulsive
electrostatic antipoleward force.
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of kinetochore attachments to microtubules from the distal pole (tending to equalize

poleward disassembly forces), generates a relatively sustained congressional motion away

from the proximal pole, as observed experimentally [6]. We emphasize that—within the

context of our model–the dominance of the robust inverse square antipoleward force

from the proximal pole is primarily responsible for chromosome congression. While

some studies suggest that chromokinesins are involved in generating antipoleward

force, others indicate that they are not essential for chromosome congression [14].

Note also that microtubule assembly at kinetochores and poles can occur; however,

because the necessary inverse square dependence of the antipoleward microtubule

assembly force cannot be derived from microtubule assembly at kinetochores or spindle

poles, it is likely that assembly at either location is in passive stochastic response to

assembly at chromosome arms, or to tension caused by poleward forces on sister

kinetochores.

As a chromatid pair congresses to the midcell region, the number of attachments to

both poles will tend to be the same as will the number of microtubules interacting with

chromosome arms, and thus equilibrium of poleward directed forces and antipoleward

astral exclusion forces will be approached. Without specifying their exact nature, such

balanced pairs of attractive and repulsive forces have previously been postulated for the

metaphase alignment of chromatid pairs [15].

An explanation of experimentally observed mid-cell metaphase oscillations just prior

to anaphase-A provides an example of the predictability and minimal assumptions

nature of the model. In agreement with experimental observations [16], our model

predicts that the poleward force on a chromosome from kinetochore microtubule

disassembly (at kinetochores and poles) depends on the total number of kinetochore

microtubules. At the metaphase “plate”, the bivalent attachment of chromatid pairs

ensures that the poleward-directed electrostatic disassembly force on one chromatid

at a given moment could be greater than that of the sister chromatid’s kinetochore

attached to the opposite pole. An imbalance of these poleward forces results from

statistical fluctuations in the number of force generating kinetochore microtubules.

This situation, coupled with similar fluctuations in the number of astral microtubules

responsible for the antipoleward astral exclusion force on a chromatid pair, can result

in a momentary motion toward a pole in the direction of the instantaneous net force.

However, due to the robust inverse square dependence of the repulsive astral exclusion

force and the approximate equality of poleward-directed microtubule disassembly forces

for chromatid pairs in the midcell region, the greater force of repulsion from the proximal

pole will eventually reverse the direction of motion resulting in midcell metaphase

oscillations, as observed experimentally [6].

Midcell metaphase oscillations are indirect evidence for a continuing increase in the

disassembly to assembly probability ratio resulting in parity for microtubule assembly

and disassembly probabilities. As discussed elsewhere [17], this continuing increase in

the microtubule disassembly/assembly ratio may be due to a continuously decreasing

intracellular pH (pHi). At late metaphase, before anaphase-A, experiments reveal that

poleward motions of sister kinetochores stretch the intervening centromeric chromatin

producing high kinetochore tensions, most likely caused by a continuing disassembly to

assembly probability ratio increase. At these high tensions, microtubule plus ends often

switch from a depolymerization to a polymerization state of dynamic instability. This may
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be explained by kinetochore microtubule free ends taking up the slack by polymerization

to sustain attachment and resist further centromeric chromatin stretching, collectively

known as the “slip-clutch mechanism” [18,19], as explained below.

Microtubule assembly at a kinetochore or a pole is regarded here as operating in

passive response to (1) the robust inverse square electrostatic antipoleward force acting

between the plus ends of microtubules and chromosome arms and/or (2) an electrostatic

microtubule disassembly force at a sister kinetochore or at poles. At the highest tensions,

electrostatic forces acting over critical distances between protofilament free ends and

kinetochores are effective in maintaining coupling while larger protofilament gaps in

the same or other microtubules are passively filled in. Additionally, the robust inverse

square microtubule assembly force acting at a sister chromatid’s arms provides a feedback

mechanism to resist detachment. This explanation of the slip-clutch mechanism follows

as a direct consequence of the proposed model with no additional assumptions. As

discussed elsewhere [17], anaphase-A results from the eventual complete domination

of microtubule disassembly over assembly, resulting in a poleward disassembly force

that dwarfs the antipoleward microtubule assembly force.
Conclusions
Both the range and strength of electrostatic forces within cells is greater than counterion

screening would dictate. Chromosome congression likely results from a combination

of poleward forces with a robust inverse square antipoleward electrostatic microtubule

assembly force acting at chromosome arms. The dominance of the inverse square

dependence of the antipoleward microtubule assembly force over the poleward

microtubule dissasembly force is primarily responsible for chromosome congression

as well as metaphase chromosome oscillations. Chromosome end-on attachment

orientation and the “slip-clutch” mechanism are consistent with this combination of

opposing forces.
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