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Abstract

Background: Arsenic is a major environmental toxin that is detoxified in the liver by
biochemical mechanisms that are still under study. In the traditional metabolic pathway,
arsenic undergoes twomethylation reactions, each followed by a reduction, after which
it is exported and released in the urine. Recent experiments show that glutathione
plays an important role in arsenic detoxification and an alternative biochemical
pathway has been proposed in which arsenic is first conjugated by glutathione after
which the conjugates are methylated. In addition, in rats arsenic-glutathione
conjugates can be exported into the plasma and removed by the liver in the bile.

Methods: We have developed a mathematical model for arsenic biochemistry that
includes three mechanisms by which glutathione affects arsenic methylation:
glutathione increases the speed of the reduction steps; glutathione affects the activity
of arsenic methyltranferase; glutathione sequesters inorganic arsenic and its methylated
downstream products. The model is based as much as possible on the known
biochemistry of arsenic methylation derived from cellular and experimental studies.

Results: We show that the model predicts and helps explain recent experimental data
on the effects of glutathione on arsenic methylation. We explain why the experimental
data imply that monomethyl arsonic acid inhibits the second methylation step. The
model predicts time course data from recent experimental studies. We explain why
increasing glutathione when it is low increases arsenic methylation and that at very
high concentrations increasing glutathione decreases methylation. We explain why the
possible temporal variation of the glutathione concentration affects the interpretation
of experimental studies that last hours.

Conclusions: The mathematical model aids in the interpretation of data from recent
experimental studies and shows that the Challenger pathway of arsenic methylation,
supplemented by the glutathione effects described above, is sufficient to understand
and predict recent experimental data. More experimental studies are needed to
explicate the detailed mechanisms of action of glutathione on arsenic methylation.
Recent experimental work on the effects of glutathione on arsenic methylation and our
modeling study suggest that supplements that increase hepatic glutathione
production should be considered as strategies to reduce adverse health effects in
affected populations.
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Introduction
Arsenic is a naturally occuring metalloid that finds its way into the food chain through
water, plants, and animals. In many parts of the world, arsenic is a major health hazard
[1-3]. Chronic arsenic exposure has been associated with cancer, heart disease, neu-
ropathies, and with deficits in intelligence in children [4,5]. Arsenic is mainly ingested
as inorganic arsenic, iAs. The metabolism of arsenic in the liver has traditionally been
thought to proceed via successive enzymaticmethylations tomethylarsonic acid,MMAsV,
and dimethylarsinic acid DMAsV, with two intervening reduction steps [6-8]. This is
known as the Challenger pathway and the methylations are catalyzed by arsenic methyl-
transferase, AS3MT. The Challenger pathway has been considered a detoxification
pathway because reactive oxygens are replaced by methyl groups and DMAsV is readily
exported from the liver and excreted in urine. However, there is considerable evidence
that the intermediate trivalent MMAs is equally or more toxic than inorganic arsenic or
DMAsV [9-11].
In recent years, evidence has been accumulating that the tripeptide glutathione, GSH,

plays an important role in the Challenger pathway. Since GSH is a reductant, it increases
the rates of the reduction steps [12-14] and glutathione S-transferase has been shown
to help convert MMAsV to MMAsIII in different tissues [15,16]. Thomas, Styblo and col-
leagues [17-19] have studied methylation in the presence of other reductants as well as
GSH. Even in the presence of other reductants, GSH increases methylation yield, and
Song et al. [20] suggested that GSH increases the activity of AS3MT. In addition, in the
experiments of both [20] and [19], it is shown that increasing GSH concentration when
the concentration is low increases methylation rate, but increasing GSH concentration
when GSH concentration is high decreases methylation rate. Finally, Hayakawa et al. [21]
have proposed an alternate pathway for methylation in which only the arsenicals bound
to GSH can be methylated.
In a complicated physiological and biochemical situation such as this, mathematical

modeling can be a useful tool for sorting out the consequences of different hypotheses and
for helping to interpret experimental data. We have made a mathematical model of the
arsenicmethylation pathway which incorporates three different roles for GSH. First, GSH,
as well as other reductants, drives the reduction from valence 5 to valence 3 arsenicals.
Second, GSH activates AS3MT. Third, GSH binds reversibly to and sequesters all three
arsenic species, iAs, MMAsIII, and DMAsIII. In our model, the GSH-conjugated arseni-
cals are not further methylated. We include in the model the many known inhibitions of
the methylation reactions and include a new inhibition suggested by the data in [19]. The
model is depicted in Figure 1; details are given in Methods. We use the model to explain
and interpret the experimental data in [20] and [19]. In particular, we show that the exper-
imental data can be explained by the traditional Challenger pathway with the GSH effects
outlined above, so it is not necessary to assume that only GSH-conjugated arsenicals can
by methylated as proposed by Hayakawa [21].
Cullen [22] discusses the current state of knowledge of methylation of arsenic and out-

lines four different detailed mechanisms. Considerable knowledge is now available on
which cysteine residues in AS3MT are necessary for methylation and on the order of
the reaction steps [23,24]. And, it is known [19] that other thiols besides GSH affect
methylation and that there may be an interaction between these thiols and GSH. On
the physiological level, GSH is in high concentration in cells and can effect transport
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Figure 1 The reaction diagram. The diagram depicts the traditional Challenger pathway [6] augmented by
three effects of glutathione. V1 and V2 are the velocities of the methylation steps. GSH and other reductants
increase the velocity of the reduction reactions. GSH increases the activation of AS3MT. GSH conjugates and
sequesters the arsenicals iAs, MMAsIII , and DMAsIII . Although not indicated, the half-life of GSH in reaction
mixtures is taken into account. The various inhibitions of iAs and MMAsIII are indicated. The kinetics of V1 and
V2 and the functional form, U(GSH) by which GSH affects AS3MT are given in the Methods.

processes that control arsenic uptake and removal from cells, as well as the availability of
other thiols. Furthermore, GSH is known to bind to xenobiotics, including metals, and,
indeed, arsenic-glutathione conjugates appear in the bile of rats fed arsenic containing
diets [25], so arsenic conjugation may be an important arsenic excretion pathway. None
of these details is in our model.
There are different kinds of experiments, and corresponding models, that shed light

on arsenic methylation and arsenic detoxification. There are studies in humans where
arsenic metabolites are measured in urine and blood [8,26-29]. There are cell culture
experiments in which arsenicals are typically measured in the external medium [10]. And,
there are experiments in which reactionmixtures of arsenicals, AS3MT, and various other
metabolites are prepared [17-21]. A number of pharmacokinetic models have been
used to interpret data in these different experimental situations. We have previously
constructed a whole body model of arsenic methylation [30] and compared the results
to the clinical results of Buchet et al. [26,27] and the clinical trial of Gamble et al. in
Bangladesh [28,29]. There are other whole body models [31-35]. We used a reduced ver-
sion of our whole body model to study the cell culture experiments in [36]. Previous
models for these cell culture experiments were created in [37,38]. In two recent papers,
Georgopoulos and coworkers create mathematical models based on the Hayakawa path-
way to study hepatocyte culture experiments including GSH conjugation, reactive oxygen
species, and DNA damage [39,40].
Our model, which investigates the three “effects” of GSH described above and depicted

in Figure 1, builds on our previous model of arsenic detoxicfication [30]. Although the
model simplifies complicated and interesting biochemical and physiological questions
that are the object of current investigations, it enables us to understand three important
effects of GSH on arsenic methylation. It is vital to understand the effects of GSH on
detoxification mechanisms in hepatocytes, because such understanding may give impor-
tant information onwhether substrates like N-acetyl-cysteine that increase liver GSHmay
be useful supplements in regions of the world where arsenic is endemic in the water or
food supply.

Methods
A diagram of the reactions in ourmodel is depicted in Figure 1. The variables in themodel
are defined in Table 1, followed by the differential equations and Table 2, which gives
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Table 1 Variables in themodel (μM)

iAs Inorganic arsenic

MMAsIII Monomethylarsonous acid

MMAsV Monomethylarsonic acid

DMAsIII Dimethylarsinous acid

DMAsV Dimethylarsinic acid

AsTG Arsenic triglutathione

GSH Glutathione

MMAsG Monomethylarsenic diglutathione

DMAsG Dimethylarsenic glutathione

the values of the rate constants. After Table 2, the functions U ,V1,V2 in the differential
equations are defined and important modeling issues are discussed.

d[iAs]
dt

= U([GSH]) · V1([iAs], [MMAsV]) − k1[GSH]3 [iAs]+ k−1[ATG]

d[MMAsV]
dt

= k6U(GSH) · V1([iAs], [MMAsV]) − (k5 + k6[GSH])[MMAsV]

d[MMAsIII]
dt

= (k5 + k6[GSH])[MMAsV]− U([GSH]) · V2([MMAsIII], [iAs])

− k2[MMAsIII] [GSH]2 + k−2[MMAsG]
d[DMAsV]

dt
= U(GSH) · V2([MMAsIII], [ iAs]) − (k7 + k8[GSH])[DMAsV]

d[DMAsIII]
dt

= (k7 + k8[GSH])[DMAsV]− k3[DMAsIII] [GSH]+ k−3[DMAsG]

d[ATG]
dt

= k1[GSH]3 [iAs]− k−1[ATG]

d[GSH]
dt

= − k4[GSH]− 3k1[GSH]3 [iAs]+ 3k−1[ATG]− 2k2[GSH]2 [MMAsIII]

+ 2k−2[MMAG]− k3[GSH] [DMAsIII]+ k−3[DMAG]
d[MMAG]

dt
= k2[GSH]2 [MMAsIII]− k−2[MMAG]

d[DMAG]
dt

= k3[GSH] [DMAsIII]+ k−3[DMAG]

Table 2 Rate constants in themodel (μM/hr)

k1 = 10−11 k−1 = 375 iAs� AsTG

k2 = 10−5 k−2 = .25 MMAs�MAsDG

k3 = 10−3 k−3 = 10−3 DMAs� DAsG

k4 = ln(2)/2.5 GSH decay

k5 = 100 k6 = .1 Reduction of MMAsV

k7 = 5 k8 = .1 Reduction of DMAsV

V1 Km = 4.6 Km for [ iAs]

KAi = 1.26

KMi = 40

V2 Km = 4.6 Km for [ iAs]

KA2i = 40

KM2
i = √

6
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Methylation reactions

The velocity, V1, of the reaction in which iAsIII is methylated to become MMAsV is given
by:

V1([iAsIII], [MMAsV]) = Vmax[iAsIII](
Km + [iAsIII]

) (
1 + [iAsIII]

KA
i

) (
1 + [MMAsV]

KM
i

) .

We use the value Km = 4.6 μM for the Michaelis-Menten constant for AS3MT for iAsIII

as found in [41]. The reaction has substrate inhibition by iAsIII; we take the inhibition
constant to be KA

i = 1.26 μM as found in [42]. It is known that this reaction is inhibited
by the product MMAsV and we take the inhibition constant, KM

i = 40 μM from [35]
and [43]. We note that it is not certain that the enzyme investigated in [43] is identical to
AS3MT.
The velocity, V2, of the reaction in which MMAsIII is methylated to become DMAsV is

given by:

V2([MMAsIII], [iAsIII]) = Vmax[MMAsIII]
(
Km + [MMAsIII]

) (
1 + [iAsIII]

KA2
i

) (
1 + [MMAsIII]2

(KM2
i )2

) .

As above we take Km = 4.6 μM and we set KA2
i = 40 μM as in [35] and [43]. The inhi-

bition of V2 by MMAsIII is proposed in this paper; the inhibition constant KM2
i = √

6 μM
was obtained by fitting the data in [19]. It is reasonable that the second methylation reac-
tion be inhibited by MMAsIII since the first methylation reaction is inhibited by MMAsV

[35,43], though this doesn’t seem to have been remarked on before. We were driven to
include this inhibition by the data in [19], their Figure six, which is discussed in detail
under Results. The square gave a much better fit of the data, which suggests that the
inhibition is cooperative.

Glutathione as a reductant

It has been known since [12,44,45] that GSH acts to reduce pentavalent to trivalent arseni-
cals. In cells or in vivo other thiols can also act as reductants. We take the rate of the
reaction from MMAsV to MMAsIII to be k5 + k6[GSH], the k5 term representing the
reduction by other endogenous thiols and the second term representing the reduction by
GSH. The concentration of GSH is varied in some of the experiments in [19,20] and in
some of our simulations. We take the rate of the reaction from DMAsV to DMAsIII to be
k7 + k8[GSH] for similar reasons.

Glutathione affects arsenic methyltransferase

It has been known for a long time that the presence of GSH helps the reduction steps in
the methylation chain. The importance of the Styblo data, in [19], Figure six, is that both
DMAsIII and total DMAs go up by a factor of about four in the presence of GSH. This
shows conclusively that GSH increases substantially the activity of AS3MT. We chose a
Hill function for the effect of GSH on AS3MT, U(GSH) = k9[GSH]5

(k10)5+[GSH]5 , and the rate
constants because they gave a good fit of the data in [19,20].
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Glutathione sequesters arsenic

Arsenic has an affinity for sulfur [12], so it is not surprising that it binds to GSH, especially
since a major role of GSH in the liver is to remove xenobiotics including metals. Indeed,
arsenic-glutathione compounds can be found in the bile of rats fed arsenic diets [25]. We
include in our model the formation of arsenic triglutathione, AsTG, monomethylarsenic
diglutathione, MMAsG, and dimethylarsenic glutathione, DMAsG, from iAsIII, MMAsIII,
and DMAsIII, respectively. We assume mass-action kinetics and that the reactions are
reversible; rate constants are given in Table 2.

Results
The Styblo experiments on MMAsIII

Styblo and colleagues conducted test tube experiments in which MMAsIII was methy-
lated to DMAsV and DMAsIII in the presence of AS3MT and SAM, both with and
without 1 mM GSH [19]. Such experiments on intermediates are particularly valuable
for understanding the details of a reaction chain. Both DMAsIII and total DMAs were
measured and the results are shown in [19], Figure six. Both quantities rise as MMAsIII

increases when MMAsIII is low. However, DMAsIII and total DMAs start to decrease as
MMAsIII gets still larger, showing clear evidence of inhibition of the second methylation
step by MMAsIII. This is reasonable, of course, since MMAsV inhibits the first methy-
lation step, but does not seem to have been commented on before. Our model gives
quite good fits to these experiments (see Figure 2), both in the presence and absence of
1 mM GSH.
It has been known for a long time that the presence of GSH helps the reduction steps in

the methylation chain. The importance of the data in [19], Figure six is that both DMAsIII

and total DMAs go up by a factor of about four in the presence of GSH. This shows
conclusively that GSH increases substantially the activity of AS3MT.

Figure 2 MMAsIII inhibits the secondmethylation step. The red dots are data regraphed from Panels C
and D (WT) in Figure six of [19]. The blue curves were computed from the mathematical model. For both the
data and model curves, the reaction mixture had either 0 mM GSH (left panel) or 1 mM GSH (right panel).
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Time-course data

In one set of experiments in [19], 1 μM of iAs was introduced into a reaction mix-
ture of volume 100 μl that contained 5 μg of recombinant AS3MT, 1 μM of SAM, and
either 0 mM or 1 mM GSH. Other reductants were also in the reaction mixture. Over
40 minutes, the concentrations of MMAsIII, total MMAs, DMAsIII, and total DMAs were
measured. In Figure 3 below, the red and green dots reproduce the data from those exper-
iments originally reported in Figure three, panels A and B in [19] with wild type enzyme.
In the left panels of our Figure 3, the data points for iAs were calculated by subtract-
ing total MMAs plus total DMAs from the original amount of iAs, namely 1 μM. We
note that the measurements of arsenicals in [19] do not distinguish between arsenicals
and arsenicals bound to GSH. The blue and black curves in Figure 3 are model calcula-
tions of this experimental situation. The blue curves in the left panels are [iAs] + [AsTG].
In the middle panels, the black curve is [MMAsIII] + [MMAsV] + [MMAsG], and the
blue curve is [MMAsIII] + [MMAsG]. In the right panels, the black curve is [DMAsIII] +
[DMAsV] + [DMAsG], and the blue curve is [DMAsIII] + [DMAsG]. The top row has
0 mM GSH in the reaction mixture and the bottom row has 1 mM GSH in the reaction
mixture.
Themodel curves fit the data points in each panel very well. Note that in the presence of

1 mM GSH more total DMAs is formed and also that there is almost no DMAsV present
because, in this experimental context, it is immediately reduced to DMAsIII, most of which
is conjugated with GSH.

Figure 3 Time course experiments. 1 μM iAs was introduced into a reaction mixture containing 0 mM GSH
(upper panels) or 1 mM GSH (lower panels). The red and green dots are data points taken from [19]; the
curves are the result of model computations. The experimental measurements did not distinguish between
arsenicals and arsenicals bound to GSH, so, likewise, the model curves represent the named arsenicals plus
their GSH conjugates. For more detail, see the text.
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The influence of GSH onmethylation

Both the Styblo group ([19], Figure two) and the Wang group ([20], Figure six) conducted
in vitro experiments in which different amounts of GSH were incubated in a reaction
mixture for two hours and then the amounts of MMAs and DMAs and their GSH conju-
gates were measured. As reported above, they did not distinguish between the arsenicals
and their GSH conjugates. The reaction mixtures were quite similar except that theWang
group had more AS3MT. The Wang group collected data for 1,3,5,7,10,20 mM GSH
and the Styblo group for 1,5,10,20 mM GSH. Their results, which are quite similar, are
shown as green dots (Styblo) and red dots (Song) in Figure 4. The connected blue dots
are the predictions of our model. As one can see, the model predictions capture well the
qualitative behavior of both data sets. At low GSH values and at very high GSH values
methylation proceeds slowly, but at intermediate values in the range 5–10 μM methyla-
tion proceedsmuchmore quickly. Interestingly, this intermediate level is the physiological
range of GSH in human hepatocytes [46,47].

In silico experiments

One of the advantages of mathematical models is that one can add or remove effects of
some variables on other variables to see what difference those effects have. Often it is
difficult or impossible to perform the corrresponding biological experiments. That is the
case here. In our model, GSH has three effects: (i) reduction of arsenicals with valence 5
to valence 3; (ii) activation of AS3MT; (iii) sequestration of arsenicals by binding to GSH.
We showed in the previous section (Figure 4) that with these three effects present, the
model reproduces well the experimental data of [20] and [19] on the effect of the amount
of GSH in the reaction mixture on MMAs, DMAs, and MMAs + DMAs concentrations
(left, middle, and right panels in Figure 4). Figure 5 reproduces the right panel of Figure 4
and shows what would happen if the activation of AS3MT by GSH or the sequestration
of arsenicals by GSH is eliminated. In our model, the excitation of AS3MT is given by
U(GSH) (see Methods), a Hill function. If, instead, we make U(GSH) a constant equal to
5000, a number in the midrange of the values of U, then our computed model curve for
MMAs + DMAs would be the black curve in the left panel of Figure 5. This curve, which
is monotone decreasing because U does not increase with GSH and more and more of

Figure 4 The influence of GSH onmethylation. 1 μM iAs was introduced into reactions mixtures with the
indicated amount of GSH. MMAs and DMAs (and their GSH conjugates) were measured after two hours. The
green dots and red dots are redrawn data from the experiments in [19], Figure two and [20], Figure six,
respectively. The connected blue dots, which are the predictions of our mathematical model, capture the
qualitative features of the experimental data.
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Figure 5 Removing influences of GSH onmethylation. The left and right panels both reproduce the
experimental data, [20] red and [19] green, and blue model curve for MMAs + DMAs with varying amounts of
GSH from the right panel of Figure 4. The black curve in the left panel shows what themodel fit would be if we
removed from the model the excitatory influence of GSH on AS3MT. The black curve in the right panel shows
what our model fit would be if we removed the binding of arsenicals to GSH from the model. Clearly, neither
black curve fits the data. Both influences of GSH (blue curve) are necessary to explain the experimental data.

the arsenicals are sequestered by GSH, clearly does not fit the data. On the other hand, if
we keep our usual model function U and remove the binding of GSH to arsenicals then
the model produces the black curve in the right panel of Figure 5 for MMAs + DMAs.
This curve, which is monotone increasing because the activation of AS3MT increases
with GSH concentration and there is no sequestration effect, clearly does not fit the data.
These results show conclusively that both effects, activation of AS3MT and sequestration
of arsenicals by GSH are necessary to explain the experimental data. Similar results hold
for the individual curves for MMAs and DMAs (simulations not shown).

Temporal variation of GSH

In hepatocytes, GSH has concentrations in the mM range but is exported rapidly and
turns over with a half-life of 1.5 to 2.5 hours [48]. The solutions in which cells are main-
tained typically contain the amino acids (cysteine, glycine, and glutamate or glutamine)
necessary for the cells to resynthesize GSH. Nevertheless, the GSH concentration may
vary considerably. For example, in the human hepatocytes used in [36], the cellular GSH
concentration increased by 80% from day 1 to day 7. The experiments in [20] and [19]
that we discussed above were conducted with purified enzymes in solution and not with
living cells in vitro. The half-life of GSH in solution was found to vary from .2 to 70
hours depending on pH and temperature [49]. This raises the question of whether GSH
degradation might play a role in experiments with purified enzyme in solution.
We investigated the effect of GSH degradation by a model simulation in which the half-

life of GSH was assumed to be 2.5 hours. The initial amount of GSH in the reaction
mixture was 20 mM and the initial amount of iAs was 1 μM. Figure 6 shows the time
courses of the rate of first methylation step (V1), the rate of the second methylation step
(V2), and the total rate of methylation as a function of time over 8 hours. In the begin-
ning, methylation is very slow because there is so much GSH in the mixture and the GSH
sequesters the arsenicals. Later, around 4–5 hours, there is much less sequestering and the
activation of AS3MT causes methylation to proceed rapidly. Finally, at 7–8 hours, much
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Figure 6 The effect of the half-life of GSH. The reactions mixture starts with 20 mM GSH and 1 μM iAs. We
assume the half-life of GSH in the mixture is 2.5 hours. The rates of the first methylation step, V1, the second
methylation step, V2, and total methylation vary dramatically throughout an 8 hour period. For explanations,
see the text.

of the GSH has degraded and so the methylation reaction runs slowly because of the lack
of activation of AS3MT and the fact that many of the arsenicals have already been methy-
lated. The main point is that, in both in vitro experiments and experiments in solution,
the amount of GSH in the solution, the medium, and the cells should be tracked in time
course experiments, because if it varies considerably that would affect the interpretation
of the results.

Discussion
The main point of this study was to explore the different ways that GSH could affect
the Challenger pathway [6] for oxidative methylation of inorganic arsenic. Three effects
were included: (i) reduction of arsenicals with valence 5 to valence 3; (ii) activation of
AS3MT; (iii) sequestration of arsenicals by binding to GSH.We used the model to analyze
the experimental data in [20] and [19]. First we showed that experiments with MMAs as
a substrate in [19] show clearly that MMAsIII is an inhibitor of the second methylation
step. Next we showed that the model predictions, Figure 3, match well the experiments
in [19] where the amounts of iAs, MMAs, and DMAs were followed over time. Both [20]
and [19] show that methylation proceeds slowly at low GSH and high GSH, but quite
quickly at intermediate GSH ranges. This important finding is reproduced by the model,
Figure 4, and we show that the reason for this is the combined effect of AS3MT activation
by GSH and the sequestration of arsenicals by GSH. Finally, we pointed out that temporal
variation in the amount GSH in reaction mixtures or cells needs to be taken into account
in interpreting experimental data.
An important consequence of these findings is that recent experimental data can be

explained well by the Challenger pathway augmented with these effects of GSH. This does
not prove that the Hayakawa pathway [21], in which only GSH-conjugated arsenicals are
methylated, is wrong. It just shows that the methylation of GSH-conjugated arsenicals is
not necessary to explain the effects of GSH seen in [20] and [19]. Indeed, it is possible
that both GSH free arsenicals and GSH bound arsenicals can be methylated, perhaps at
different rates. There is some evidence that for a methyl transferase that is orthologous
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to AS3MT that GSH-conjugated arsenicals are preferred substrates for binding to the
enzyme’s active site [23].
Easterling et al. [38] created a pharmacokinetic model to study the hepatocyte data in

[36]. In order to fit the data, they needed to introduce a storage compartment for arseni-
cals in cells. Likewise, in our whole body model and hepatocyte model [30] we needed to
introduce cellular storage compartments. It is tempting to speculate that the binding of
arsenicals to GSH was an important part of the“storage mechanism” in both cases.
S-adenosylmethionine (SAM) is the methyl group donor in the methylation reactions.

It is not included explicitly in our model because SAM was not varied in the experiments
that we were trying to explain. The SAM concentration occurs implicitly in the Vmax
values of the first and second methylation reactions. The Km of AS3MT for SAM was
measured as 11.8 μM in [41], but the data in [20] imply that the Km is 50 μM. This is
an important issue for the applications of arsenic biochemistry to human toxicity stud-
ies. Gamble and coworkers [28,29] showed that folate supplementation of folate-deficient
individuals in Bangladesh lowers blood arsenic levels. Raising folate levels can raise SAM
concentrations in folate deficient individuals [50], so the presumed mechanism was that
SAM levels were raised, thus making more methyl groups available for the methylation
reactions. However, once SAM levels are back into the normal range (50–100 μM for
rats), raising SAM more by further folate supplementation won’t help if the Km = 11.8
because the reaction will already be saturated, whereas if the Km = 50 μM then further
supplementation should help.
The binding of GSH to arsenicals may be a significant detoxification mechanism as

there is evidence that arsenic binds to GSH and then is removed in the bile [25,51] and
sequestration might also reduce the toxicity of trivalent arsenicals. Thus, whole body
models of arsenic detoxification need to take into account this removal mechanism as
well as the removal of arsenic-GSH conjugates from the liver to the blood and urine. This
will be the subject of future work.
The effects of GSH on arsenic methylation discussed in this study and the removal of

arsenic-GSH complexes in the bile and urine imply that increasing GSHmight be a way to
reduce As toxicity. GSH levels are under strong regulatory control in the liver [52]. Nev-
ertheless, supplementation strategies have proven useful in several circumstances where
GSH liver levels are low. N-acetyl cysteine is the antidote given in emergency departments
in cases of acetaminophen overdose [53,54] and glutamine is often given after surgery or
other trauma to decrease inflammation [55,56]. In both cases the intent is to increase GSH
production in the liver. Plasma GSH levels in Bangladesh are quite low, 2.6 μM [57] as
compared to the normal range, 2–20 μM [47,58,59]. This suggests that supplementation
by N-acetyl-cysteine may be a viable strategy for reducing arsenic toxicity.

Conclusions
• The Challenger pathway, supplemented by three effects of glutathione, is sufficient to

explain recent data on arsenic methylation.
• Monomethylarsonous acid inhibits the second methylation step.
• The three different effects of glutathione on arsenic methylation make the

interpretation of experimental results difficult.
• Mathematical modeling of arsenic methylation can aid in the interpretation of

experimental data.
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• Supplementation by N-acetyl-cysteine may be a viable strategy for reducing arsenic
toxicity.
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