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Abstract

Lyme disease imposes increasing global public health challenges. To better understand
the joint effects of seasonal temperature variation and host community composition
on the pathogen transmission, a stage-structured periodic model is proposed by
integrating seasonal tick development and activity, multiple host species and complex
pathogen transmission routes between ticks and reservoirs. Two thresholds, one for
tick population dynamics and the other for Lyme-pathogen transmission dynamics, are
identified and shown to fully classify the long-term outcomes of the tick invasion and
disease persistence. Seeding with the realistic parameters, the tick reproduction
threshold and Lyme disease spread threshold are estimated to illustrate the joint
effects of the climate change and host community diversity on the pattern of Lyme
disease risk. It is shown that climate warming can amplify the disease risk and slightly
change the seasonality of disease risk. Both the “dilution effect” and “amplification
effect” are observed by feeding the model with different possible alternative hosts.
Therefore, the relationship between the host community biodiversity and disease risk
varies, calling for more accurate measurements on the local environment, both biotic
and abiotic such as the temperature and the host community composition.

Keywords: Seasonal tick population, Lyme disease, Host diversity, Climate, Threshold,
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Introduction
Lyme disease is acknowledged as a common infectious disease for the most of the world,
especially in Europe and North America. The disease is caused by a bacterium called Bor-
relia burgdorferi, transmitted by ticks, especially Ixodes scapularis [1,2]. It affects both
humans and animals, with more than 30,000 cases reported annually in the United States
alone [3]. The pathogen transmission involves three ecological and epidemiological pro-
cesses: nymphal ticks infected in the previous year appear first; these ticks then transmit
the pathogen to their susceptible vertebrate hosts during a feeding period; the next gen-
eration larvae acquire infection by sucking recently infected hosts’ blood and these larvae
develop into nymphs in the next year to complete the transmission cycle.
Understanding the factors that regulate the abundance and distribution of the Lyme-

pathogen is crucial for the effective control and prevention of the disease. Host diversity
and temperature variation have direct influence on Lyme transmission patterns [4]. The
tick vectors need to complete the transition of four life stages of metamorphosis (eggs,
larvae, nymphs and adults) and each postegg stage requires a blood meal from a wide
range of host species, and every host species has a specialized reservoir competence,
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namely ability to carry and transmit the pathogen [5]. Moreover, weather conditions
(temperature, rainfall, humidity, for example) are known to affect the reproduction, devel-
opment, behavior, and population dynamics of the arthropod vectors [6-9], thereby the
spread of the Lyme-pathogen in vectors. In particular, the temperature is regarded as an
important factor affecting the tick development and tick biting activity, which gives rise
to tick seasonal dynamics [1,10,11]. In summary, host diversity [12-16], stage structure of
ticks [1,13,17-22] and climate effects [1,10,11,13,20,23] are considered to be crucial for
the persistence of Lyme infection. Therefore modeling Lyme-pathogen transmission with
multiple tick life stages, tick seasonality and host community composition is pivotal in
understanding the pathogen transmission.
There have been a range of tick-borne disease modeling efforts dedicating to different

aspects of Lyme disease transmission: the basic Lyme transmission ecology [24,25], effect
of different hosts and their densities on the persistence of tick-borne diseases [15,16,26],
threshold dynamics for disease infection [27,28], seasonal tick population dynamics and
disease transmission [2,10,29], climatic effects [1,2,22], spatial heterogeneity [18,30,31],
among others. These previous studies promote our understanding on the transmission
mechanisms and designing effective prevention and control measures. In this paper, we
develop a modeling framework incorporating the impact of multiple tick life stages, tick
seasonality and host diversity on the Lyme disease transmission cycle. We follow the
generic model proposed by Randolph and Rogers [21], and divide the vector popula-
tion into 7 stages with 12 subclasses, as illustrated in Figure 1. This generic model is
able to account for the following key features: (i) temperature-dependent/temperature-
independent development rates; (ii) temperature-dependent host seeking rates; (iii)
density-dependent mortalities, caused by the hosts’ responses during the feeding period;
(iv) constant mortalities of off-host development stages. The proposed model below is
different from these existing models by incorporating all aforementioned aspects of Lyme
disease transmission in a single framework, and as such this framework permits us to
analytically define the thresholds of tick population dynamics and pathogen transmission
dynamics under seasonal temperature variation, and establish the relationship of these
thresholds to the tick establishment and pathogen persistence.
The remaining parts of the paper are organized as follows. In the spirit of striking

a delicate balance between the feasibility for the recognized mathematical analysis and
the necessity for capturing the key ecological/epidemiological reality, a stage-structured
deterministic model is formulated in the next section. Moreover, two thresholds, one for
the tick population dynamics and the other for the Lyme-pathogen transmission dynam-
ics are derived and shown to be pivotal in determining the tick population establishment
and disease invasion. The model is parameterized in section ‘Model parametrization’.
Then the question concerning whether the climate change and an additional host species
can amplify/dilute disease prevalence and change the seasonality of disease risk will be
addressed through model simulation in section ‘Results’. A discussion section concludes
the paper.

Mathematical model
Model formulation

In line with the complex physiological process of Ixodes scapularis, we divide them into
four stages: eggs (E), larvae (L), nymphs (N) and adults (A). Each postegg stage is further
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Figure 1 Schematic diagram for the Lyme disease transmission. To describe the tick development and
biting activities, the tick population is divided into 7 stages, stratified further as the uninfected or infected
epidemiological classes for postegg stages. Immature ticks can feed on two host species, the mice (H1) and
an alternative host (H2), while adult ticks are assumed to feed only on deer in this study.

divided into two groups: questing (Q) and feeding (F) according to their behavior on or
off hosts. Moreover, in terms of their infection status, each group is stratified into two
subgroups: susceptible (S) and infected (I). All variable notations are self-explained as
summarized in Table 1. For instance, LFS represents the subgroup of susceptible feeding
larvae.
We assume that the host community of the tick population contains three species

groups: (i) the white-footedmiceH1 (mainly Peromyscus leucopus) with the mortality rate
μH1 , which is widely known as a primary food provider of immature I. scapularis ticks and
a key reservoir competent host of B. burgdorferi reflecting the strong ability to be infected
with the pathogen and to transmit the pathogen to its vector; (ii) the white-tailed deer
D (mainly Odocoileus virginianus), which is believed to be the paramount food provider
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Table 1 Variable explanations used in themodel (1)

Variable Meaning

E the number of eggs

LQ the number of questing larvae

LFS the number of susceptible feeding larvae

LFI the number of infected feeding larvae

NQS the number of susceptible questing nymphs

NQI the number of infected questing nymphs

NFS the number of susceptible feeding nymphs

NFI the number of infected feeding nymphs

AQS the number of susceptible questing adults

AQI the number of infected questing adults

AFS the number of susceptible feeding adults

AFI the number of infected feeding adults

H1I the number of infected white-footed mice

H2I the number of infected alternative hosts

for adults and in-transmissible for the spread of Lyme-pathogen [32]; and (iii) an alterna-
tive host H2 with mortality rate μH2 such as the eastern chipmunk, the Virginia opossum
and the western fence lizard, which is used to study the impact of host community com-
position on the Lyme disease risk. For the sake of simplicity, we further assume that the
total number of each host species (susceptible plus infected) in an isolated habitat is con-
stant. However the number of infected hosts can vary with time, denote by H1I and H2I ,
respectively. The Lyme-pathogen transmission cycle between the hosts and multi-stage
tick population is presented in the diagram of Figure 1.
In the host-pathogen-tick transmission cycle, larvae and nymphs will bite their host

species, however their biting preference to different host species may be different. In
order to identify the difference, we use the coefficients, p1 (p2), to describe larval
(nymphal) ticks biting bias on their hosts [33,34]. Specifically, p1 > 1 (p2 > 1) indicates
one hostH2 can attract more larval (nymphal) bites than one hostH1 and vice versa when
0 < p1 < 1 (0 < p2 < 1). Using the method described in [35], FL(t) H1

H1+p1H2
H1I (t)
H1

is the
average rate at which a susceptible questing larva finds and attaches successfully onto the
infected mice, where FL(t) is the feeding rate of larvae, and then βH1LFL(t)

H1
H1+p1H2

H1I (t)
H1

is the average infection rate at which a susceptible larva gets infected from mice, where
βH1L is the pathogen transmission probability per bite from infectious miceH1 to suscep-
tible larvae. Using the same idea, the infection rate of larvae from the infected alternative
host H2 can be accounted. Therefore, the larval infection rate is given by

βH1LFL(t)
H1

H1 + p1H2

H1I(t)
H1

LQ(t) + βH2LFL(t)
p1H2

H1 + p1H2

H2I(t)
H2

LQ(t)

=
(

βH1L
H1I(t)

H1 + p1H2
+ βH2L

p1H2I(t)
H1 + p1H2

)
FL(t)LQ(t).

Similarly, the nymphal infection rate which comes from the contact of questing
susceptible nymphs and infectious hosts is given by

βH1NFN (t)
H1

H1 + p2H2

H1I(t)
H1

NQS(t) + βH2NFN (t)
p2H2

H1 + p2H2

H2I(t)
H2

NQS(t)

=
(

βH1N
H1I(t)

H1 + p2H2
+ βH2N

p2H2I(t)
H1 + p2H2

)
FN (t)NQS(t).
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The susceptible hosts can get infected when they are bitten by infected questing
nymphs. The conservation of bites requires that the numbers of bites made by ticks and
received by hosts should be the same. The disease incidence rate for mice is therefore
given by

FN (t)βNH1(NQI(t) + NQS(t))
NQI(t)

NQI(t) + NQS(t)
H1

H1 + p2H2

H1 − H1I(t)
H1

= FN (t)βNH1NQI(t)
H1 − H1I(t)
H1 + p2H2

.

Similarly, the alternative host is infected by the infectious nymphal biting at a rate

FN (t)βNH2NQI(t)
p2(H2 − H2I(t))

H1 + p2H2
.

Therefore, the disease transmission process between ticks and their hosts can be
described by the following system:

dE
dt

= b(t)(AFS(t) + AFI(t)) − μEE(t) − dE(t)E(t),

dLQ
dt

= dE(t)E(t) − μQLLQ(t) − FL(t)LQ(t),

dLFS
dt

=
(
1 −

(
βH1L

H1I(t)
H1 + p1H2

+ βH2L
p1H2I(t)
H1 + p1H2

))
FL(t)LQ(t)

−μFLLFS(t) − DL(LFS(t) + LFI(t))LFS(t) − dL(t)LFS(t),
dLFI
dt

=
(

βH1L
H1I(t)

H1 + p1H2
+ βH2L

p1H2I(t)
H1 + p1H2

)
FL(t)LQ(t)

−μFLLFI(t) − DL(LFS(t) + LFI(t))LFI(t) − dL(t)LFI(t),
dNQS
dt

= dL(t)LFS(t) − μQNNQS(t) − FN (t)NQS(t),

dNQI
dt

= dL(t)LFI(t) − μQNNQI(t) − FN (t)NQI(t),

dNFS
dt

=
(
1 −

(
βH1N

H1I(t)
H1 + p2H2

+ βH2N
p2H2I(t)
H1 + p2H2

))
FN (t)NQS(t) (1)

−μFNNFS(t) − DN (NFS(t) + NFI(t))NFS(t) − dN (t)NFS(t),
dNFI
dt

= FN (t)NQI(t) +
(

βH1N
H1I(t)

H1 + p2H2
+ βH2N

p2H2I(t)
H1 + p2H2

)
FN (t)NQS(t)

−μFNNFI(t) − DN (NFS(t) + NFI(t))NFI(t) − dN (t)NFI(t),
dAQS
dt

= dN (t)NFS(t) − μQAAQS(t) − FA(t)AQS(t),

dAQI
dt

= dN (t)NFI(t) − μQAAQI(t) − FA(t)AQI(t),

dAFS
dt

= FA(t)AQS(t) − μFAAFS(t) − DA(AFS(t) + AFI(t))AFS(t),

dAFI
dt

= FA(t)AQI(t) − μFAAFI(t) − DA(AFS(t) + AFI(t))AFI(t),

dH1I
dt

= FN (t)βNH1NQI(t)
H1 − H1I(t)
H1 + p2H2

− μH1H1I(t),

dH2I
dt

= FN (t)βNH2NQI(t)
p2(H2 − H2I(t))

H1 + p2H2
− μH2H2I(t).

We assume all the coefficients in the system are nonnegative and the time-dependent
coefficients are τ -periodic with period τ = 365 days. The detailed parameter definitions
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and sample values of these parameters are represented in Table 2. These time-dependent
parameters will be estimated in subsection ‘Time-dependent parameters’ below.

Dynamics analysis

Positivity and boundedness of solutions

Our first task is to show that the mathematical model (1) is biologically meaningful. To do
this, we first establish the following theorem to ensure that all solutions through nonneg-
ative initial values remain nonnegative and bounded. You may refer Appendix 1 for the
proof.

Theorem 2.1. For each initial value x0 ∈ X := {x ∈ R
14+ : H1I ≤ H1,H2I ≤ H2}, system

(1) has a unique and bounded solution x(t, x0). Moreover, the solution x(t, x0) remains in
X for any t ≥ 0. Here, x ∈ R

14+ denotes a generic point with components

(E, LQ, LFS, LFI ,NQS,NQI ,NFS,NFI ,AQS,AQI ,AFS,AFI ,H1I ,H2I).

Table 2 Definitions and corresponding values of themodel parameter with the daily
timescale

Parameter Meaning (Value, [reference]) or estimation

μE mortality rate of eggs (0.0025, [1])

μQL mortality rate of questing larvae (0.006, [1])

μQN mortality rate of questing nymphs (0.006, [1])

μQA mortality rate of questing adults (0.006, [1])

μFL natural mortality rate of feeding larvae (0.038, A)

μFN natural mortality rate of feeding nymphs (0.028, A)

μFA natural mortality rate of feeding adults (0.018, A)

H1 the number of white-footed mice (200, [1])

βH1L transmission probability from H1 to larvae (0.6, [13])

βNH1 transmission probability from nymphs to H1 (1, [13])

μH1 death rate of the white-footed mice (0.012, [13])

H2 the number of alternative host H2 (variable)

βH2L transmission probability from H2 to larvae (variable, [36])

βNH2 transmission probability from nymphs to H2 (variable, [36])

μH2 death rate of the alternative host H2 (variable)

D the number of deer (20, [1])

p the maximum number of eggs produced (3000, [1])

p1 larval biting bias for host H2 (variable, [37])

p2 nymphal biting bias for host H2 (variable, [37])

b(t) birth rate of eggs produced (see subsection ‘Time-dependent parameters’)

dE(t) development rate of eggs (see subsection ‘Time-dependent parameters’)

dL(t) development rate of larvae (see subsection ‘Time-dependent parameters’)

dN(t) development rate of nymphs (see subsection ‘Time-dependent parameters’)

FL(t) feeding rate of larvae (see subsection ‘Time-dependent parameters’)

FN(t) feeding rate of nymphs (see subsection ‘Time-dependent parameters’)

FA(t) feeding rate of adults (see subsection ‘Time-dependent parameters’)

DL density-dependent mortality rate of feeding larvae ( 0.001084H1+p1H2
, E)

DN density-dependent mortality rate of feeding nymphs ( 0.001084H1+p2H2
, E)

DA density-dependent mortality rate of feeding adults ( 0.001084D , E)

Where E: estimation based on [38] and A: assumption.
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Using change of variables LF = LFS + LFI , NQ = NQS + NQI , NF = NFS + NFI , AQ =
AQS + AQI and AF = AFS + AFI , system (1) reduces to

dE
dt

= b(t)AF(t) − (μE + dE(t))E(t),

dLQ
dt

= dE(t)E(t) − (μQL + FL(t))LQ(t),

dLF
dt

= FL(t)LQ(t) − DLL2F(t) − (μFL + dL(t))LF(t),

dNQ
dt

= dL(t)LF(t) − (μQN + FN (t))NQ(t),

dNF
dt

= FN (t)NQ(t) − DNN2
F (t) − (μFN + dN (t))NF(t),

dAQ
dt

= dN (t)NF(t) − (μQA + FA(t))AQ(t), (2)

dAF
dt

= FA(t)AQ(t) − μFAAF(t) − DAA2
F(t),

dLFI
dt

=
(

βH1L
H1I(t)

H1 + p1H2
+ βH2L

p1H2I(t)
H1 + p1H2

)
FL(t)LQ(t)

−DLLF(t)LFI(t) − (μFL + dL(t))LFI(t),
dNQI
dt

= dL(t)LFI(t) − (μQN + FN (t))NQI(t),

dH1I
dt

= FN (t)βNH1NQI(t)
H1 − H1I(t)
H1 + p2H2

− μH1H1I(t),

dH2I
dt

= FN (t)βNH2NQI(t)
p2(H2 − H2I(t))

H1 + p2H2
− μH2H2I(t).

Note that we have other three equations for infected feeding nymphs (NFI ), questing
adults (AQI ) and feeding adults (AFI ), which is decoupled from the above system. Biologi-
cally, we pay attention to the population size of infected questing nymphs whose bites are
themain courses of human Lyme disease.We thereby focus on system (2) in the remaining
of the paper.

The tick population dynamics

We firstly consider the following stage-structured system for the tick population growth
decoupled from system (2):

dE
dt

= b(t)AF(t) − (μE + dE(t))E(t),

dLQ
dt

= dE(t)E(t) − (μQL + FL(t))LQ(t),

dLF
dt

= FL(t)LQ(t) − DLL2F(t) − (μFL + dL(t))LF(t),

dNQ
dt

= dL(t)LF(t) − (μQN + FN (t))NQ(t), (3)

dNF
dt

= FN (t)NQ(t) − DNN2
F (t) − (μFN + dN (t))NF(t),

dAQ
dt

= dN (t)NF(t) − (μQA + FA(t))AQ(t),

dAF
dt

= FA(t)AQ(t) − μFAAF(t) − DAA2
F(t).
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Linearization of system (3) at zero leads to the following linear system

dE
dt

= b(t)AF(t) − (μE + dE(t))E(t),

dLQ
dt

= dE(t)E(t) − (μQL + FL(t))LQ(t),

dLF
dt

= FL(t)LQ(t) − (μFL + dL(t))LF(t),

dNQ
dt

= dL(t)LF(t) − (μQN + FN (t))NQ(t), (4)

dNF
dt

= FN (t)NQ(t) − (μFN + dN (t))NF(t),

dAQ
dt

= dN (t)NF(t) − (μQA + FA(t))AQ(t),

dAF
dt

= FA(t)AQ(t) − μFAAF(t).

Let F(t) = (
fij(t)

)
7×7, where f1,7(t) = b(t) and fi,j(t) = 0 if (i, j) �= (1, 7), and V (t) =⎛

⎜⎜⎜⎜⎜⎜⎜⎝

μE + dE(t) 0 0 0 0 0 0
−dE(t) μQL + FL(t) 0 0 0 0 0

0 −FL(t) μFL + dL(t) 0 0 0 0
0 0 −dL(t) μQN + FN (t) 0 0 0
0 0 0 −FN (t) μFN + dN (t) 0 0
0 0 0 0 −dN (t) μQA + FA(t) 0
0 0 0 0 0 −FA(t) μFA

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Then we can rewrite (4) as

dx(t)
dt

= (F(t) − V (t))x(t),

where a vector x(t) = (E(t), LQ(t), LF(t),NQ(t),NF(t),AQ(t),AF(t))T . Assume Y (t, s), t ≥
s, is the evolution operator of the linear periodic system dy

dt = −V (t)y. That is, for each
s ∈ R, the 7 × 7 matrix Y (t, s) satisfies

d
dt

Y (t, s) = −V (t)Y (t, s) ∀t ≥ s, Y (s, s) = I,

where I is the 7 × 7 identity matrix. Let Cτ be the Banach space of all τ -periodic func-
tions from R to R

7, equipped with the maximum norm. Suppose φ ∈ Cτ is the initial
distribution of tick individuals in this periodic environment. Then F(s)φ(s) is the rate of
new ticks produced by the initial ticks who were introduced at time s, and Y (t, s)F(s)φ(s)
represents the distribution of those ticks who were newly produced at time s and remain
alive at time t for t ≥ s. Hence,

ψ(t) =
∫ t

−∞
Y (t, s)F(s)φ(s)ds =

∫ ∞

0
Y (t, t − a)F(t − a)φ(t − a)da

is the distribution of accumulative ticks at time t produced by all those ticks φ(s)
introduced at the previous time.
Following ideas proposed in [39,40], we define a next generation operator G : Cτ → Cτ

by

(Gφ)(t) =
∫ ∞

0
Y (t, t − a)F(t − a)φ(t − a)da ∀t ∈ R, φ ∈ Cτ .
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Then the spectral radius of G is defined asRv := ρ(G). In what follows, we callRv as a
threshold for tick population dynamics.
Let �P(t) and ρ(�P(τ )) be the monodromy matrix of the linear τ -periodic system

dz
dt = P(t)z and the spectral radius of �P(τ ), respectively. Then, from [40], Theorem
2.2, we conclude (i) Rv = 1 if and only if ρ(�F−V (τ )) = 1; (ii) Rv > 1 if and only if
ρ(�F−V (τ )) > 1; (iii)Rv < 1 if and only if ρ(�F−V (τ )) < 1. We also know that the zero
solution is locally asymptotically stable ifRv < 1, and unstable ifRv > 1.
Note that the Poincaré map associated with system (3) is not strongly monotone since

some coefficients are not strictly positive (remain zero in a nonempty interval). How-
ever, if we regard a τ -periodic system (3) as a 6τ -periodic system, we can show that the
Poincaré map with respect to the 6τ -periodic system is strongly monotone by using the
same idea as in [41], Lemma 3.2. We then use [42], Theorem 2.3.4, to the Poincaré map
associated with system (3) to obtain the following result, with the proof in Appendix 2.

Theorem 2.2. The following statements are valid:

(i) IfRv ≤ 1, then zero is globally asymptotically stable for system (3) in R
7+;

(ii) IfRv > 1, then system (3) admits a unique τ -positive periodic solution

(E∗(t), L∗
Q(t), L∗

F(t),N∗
Q(t),N∗

F (t),A∗
Q(t),A∗

F(t)),

and it is globally asymptotically stable for system (3) with initial values in R
7+ \ {0}.

The global dynamics of the full model

If threshold for ticksRv > 1, then there exists a positive periodic solution,

(E∗(t), L∗
Q(t), L∗

F(t),N∗
Q(t),N∗

F (t),A∗
Q(t),A∗

F(t)),

for system (3) such that

lim
t→∞{(E(t), LQ(t), LF(t),NQ(t),NF(t),AQ(t),AF(t))

− (E∗(t), L∗
Q(t), L∗

F(t),N∗
Q(t),N∗

F (t),A∗
Q(t),A∗

F(t))} = 0.

In this case, equations for the infected populations in system (2) give rise to the
following limiting system:

dLFI
dt

=
(

βH1L
H1I(t)

H1 + p1H2
+ βH2L

p1H2I(t)
H1 + p1H2

)
FL(t)L∗

Q(t)

−DLL∗
F(t)LFI(t) − (dL(t) + μFL)LFI(t), (5)

dNQI
dt

= dL(t)LFI(t) − (μQN + FN (t))NQI(t),

dH1I
dt

= FN (t)βNH1NQI(t)
H1 − H1I(t)
H1 + p2H2

− μH1H1I(t),

dH2I
dt

= FN (t)βNH2NQI(t)
p2(H2 − H2I(t))

H1 + p2H2
− μH2H2I(t).
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Following ideas of [39,40], as proceed in the definition ofRv in the previous section, we
can define a threshold for the pathogen. To do this, we introduce

F̃(t) =

⎛
⎜⎜⎜⎜⎜⎝

0 0
βH1LFL(t)L

∗
Q(t)

H1+p1H2

p1βH2LFL(t)L
∗
Q(t)

H1+p1H2

0 0 0 0
0 FN (t)βNH1H1

H1+p2H2
0 0

0 p2FN (t)βNH2H2
H1+p2H2

0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

and

Ṽ (t) =

⎛
⎜⎜⎜⎝

DLL∗
F(t) + dL(t) + μFL 0 0 0

−dL(t) μQN + FN (t) 0 0
0 0 μH1 0
0 0 0 μH2

⎞
⎟⎟⎟⎠ .

Assume Ỹ (t, s), t ≥ s, is the evolution operator of the linear periodic system dy
dt =

−Ṽ (t)y. Let C̃τ be the Banach space of all τ -periodic functions from R to R
4, equipped

with the maximum norm. Suppose φ ∈ C̃τ is the initial distribution of infectious tick and
host individuals in this periodic environment. Then F̃(s)φ(s) is the rate of new infectious
ticks and host individuals produced by the initial infectious ticks and hosts who were
introduced at time s, and Ỹ (t, s)̃F(s)φ(s) represents the distribution of those ticks who
were newly produced at time s and remain alive at time t for t ≥ s. Hence,

ψ̃(t) =
∫ t

−∞
Ỹ (t, s)̃F(s)φ(s)ds =

∫ ∞

0
Ỹ (t, t − a)̃F(t − a)φ(t − a)da

is the distribution of accumulative infectious ticks and hosts at time t produced by
all those infectious individuals φ(s) introduced at the previous time. Define the a next
generation operator G̃ : C̃τ → C̃τ by

(G̃(φ))(t) =
∫ ∞

0
Ỹ (t, t − a)̃F(t − a)φ(t − a)da ∀t ∈ R, φ ∈ C̃τ .

It then follows from [39,40] that the spectral radius of G̃ is define as R0 := ρ(G̃), and
shows that it is a threshold of the Lyme-pathogen dynamics (5).
Using the same argument as in the proof of Theorem 2.2 (see also the proof of Lemma

2.3 in [43]), we have the following results:

Theorem 2.3. (i) If R0 ≤ 1, then zero is globally asymptotically stable for system
(5) in R

4+; (ii) If R0 > 1, then system (5) admits a unique positive periodic solution
(L∗

FI(t),N
∗
QI(t),H

∗
1I(t),H∗

2I(t)) and it is globally asymptotically stable for system (5).

Based on the aforementioned two thresholds, Rv for ticks dynamics and R0 for the
pathogen dynamics, we can completely determine the global dynamics of the system (2).
The detailed proof is shown in Appendix 3.

Theorem 2.4. Let x(t, x0) be the solution of system (2) through x0. Then the following
statements are valid:

(i) IfRv ≤ 1, then zero is globally attractive for system (2);
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(ii) IfRv > 1 andR0 ≤ 1, then

lim
t→∞{(x1(t), x2(t), x3(t), x4(t), x5(t), x6(t), x7(t))

− (E∗(t), L∗
Q(t), L∗

F(t),N∗
Q(t),N∗

F (t),A∗
Q(t),A∗

F(t))} = 0,

and limt→∞ xi(t) = 0 for i ∈[ 8, 11];
(iii) IfRv > 1 andR0 > 1, then there exists a positive periodic solution x∗(t), and this

periodic solution is globally attractive for system (2) with respect to all positive
solutions.

Summary of mathematical results

By incorporating the tick physiological development and multiple host species, we pro-
pose a seasonal deterministic stage-structured Lyme disease transmission model. The
model turns out to be a periodic system of ordinary differential equations with high
dimensions. As the pathogen has a negligible effect on population dynamics of the ticks
and their hosts, the dynamics of the ticks is independent of the pathogen occurrence.
This allows us to obtain an independent subsystem for the dynamics of the tick popula-
tion. Taking the advantage of this observation and with the help of the developed theory
for chain transitive sets, we are able to derive two results on global stability of the model
system (2). Two biologically significant indices, the tick reproduction threshold Rv and
the Lyme disease invasion thresholdR0 are derived and shown to completely classify the
long term outcomes of the tick and pathogen establishment.

Model parametrization
In this section, we present the estimation of the time-dependent parameters and other
parameters related to the host species.

Alternative hosts species and their reservoir competence

To study the potential effect of of host community biodiversity on the risk of Lyme dis-
ease, three types of alternative host species are considered which are different from their
reservoir competence, namely, the product of host infection probability bitten by infec-
tious nymphs and larvae infection probability from infectious hosts [36]. The first type is
considered as the one with high reservoir competence such as the short-tailed shrew, the
marked shrew and the eastern chipmunk. The values of βH2L and βNH2 are set as 0.569
and 0.971, respectively, as reported in [36]. The second type that we want to compare is
the one with low reservoir competence, in which βH2L and βNH2 are set to be 0.0025 and
0.261, respectively, which are similar to those in [36] for the Virginia opossum. The third
type of host species is non-competent, βH2L=βNH2=0, such as the western fence lizard.
The authors in [44,45] stated that the western fence lizard is not able to spread the Lyme-
pathogen since the species has a powerful immune system so that it can clean up the
Lyme-pathogen when it is bitten by an infected tick. The death rate of each host species
is set as μH2 = 0.0027 per day due to their similar life spans.

Time-dependent parameters

In order to investigate the impact of climate warming on the seasonal tick population
abundance and Lyme-pathogen invasion, temperature is considered as a variable index in
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our study and we assume that it changes periodically with time. Therefore, those time-
dependent coefficients are indeed temperature-dependent, and periodic in time. In order
to parameterize these coefficients, we first estimate these values at a discrete manner
at each day of a year, then these coefficients are smoothed into a continuous manner
by employing Fourier series. In the remaining of this subsection, we will estimate each
time-dependent coefficient at each day of a year.
To begin with this, the model is parameterized for the location Long Point, reported

to be the first tick endemic area in Canada. Two temperature datasets for this area are
collected from nearby meteorological stations, the Port Dover for the period 1961− 1990
and Delhi CDA for the period 1981− 2010 due to the unavailability of Port Dover Station
recently. For these two stations, the 30-year normal temperature data are collected from
the Environment Canada website (Figure 2) [46].
Next we turn to the estimation of time-dependent development rates: b(ti), dE(ti), dL(ti)

and dN (ti), at day ti for ti = 1, 2, · · · , 365. To estimate these values, the following relations
[1,8,47-49]

D1(ti) = 1300 × T(ti)−1.42 + 10 (pre-oviposition period), (6)

D2(ti) = 34234 × T(ti)−2.27 + 21 (egg to larva period), (7)

D3(ti) = 101181 × T(ti)−2.55 + 3 (larva to nymph period), (8)

D4(ti) = 1596 × T(ti)−1.21 + 5 (nymph to adult period) (9)

will be used, where T(ti) represents temperature at the specific day ti in unit Celsius (◦C).
Using the same method presented in [2], the birth rate b(ti) is directly obtained from the
product of maximum number of eggs p produced and the reciprocal of duration of pre-
oviposition period at day ti as shown Eq. 6, namely b(ti) = p/D1(ti). The development
rate of eggs dE(ti) is directly calculated as reciprocal of development duration from egg to
larva (Eq.7). The calculation of development rate of nymphs dN (ti) is composed by two
cases: (i) it is directly estimated as a reciprocal of development duration from nymph to
adult (Eq. 9) before diapause; (ii) it is calculated by the method in [2] during diapause. The
estimate of larval development rate dL(ti) is a bit complex. We first consider the concept
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Figure 2 30 year normal meanmonthly temperature under two settings near Long Point. The blue
solid and red dashed curves represent the monthly temperature for the periods 1961 − 1990 period and
1981 − 2010, respectively. We set monthly temperature to be 0°C if it is lower than 0°C. Both are collected
from Environment Canada website [46].
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of the daily development proportion of larvae which is calculated as the reciprocal of
development duration from larva to nymph at some specific days (Eq. 8) [2]. To obtain
dL(ti), we therefore calculate all daily development proportions from day ti until day ti+n
for the subsequent n days such that the sum of these proportions reaches unity, then n
is regarded as the development duration of larvae at the specific day ti. Finally, dL(ti) is
estimated as 1

n which is dependent of the temperatures of subsequent days.
The feeding rates FL(ti), FN (ti) and FA(ti), affected by both hosts abundance and

ambient temperatures, are directly calculated from the following formulas [1]:

FL(ti) = 0.0013(H1 + p1H2)
0.515θL(T(ti)),

FN (ti) = 0.0013(H1 + p2H2)
0.515θN (T(ti)),

FA(ti) = 0.086D0.515θA(T(ti)),

where θL(T(ti)), θN (T(ti)) and θA(T(ti)) represent questing activity proportions at
respective tick stage at day ti which are calibrated with data from Public Health Agency
of Canada (personal communication). We refer the readers to the literature [2] for more
details on the estimation of these periodic parameters. Figure 3 shows the patterns of
these time-dependent parameters in one-year for the case p1=p2=0.

Results
We use various indices to measure the Lyme disease risk to humans: (i)Rv, used to deter-
mine the tick population persistence; (ii) R0, as an index for the pathogen population
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Figure 3 Development rates and feeding rates of I. scapularis ticks within one year period. The blue
solid and red dashed curves are related to the associated development rates and feeding rates under
temperatures in the periods 1961 − 1990 and 1981 − 2010, respectively; The numbers at the left top corner
in each subfigure indicate the areas under the associated curves, which are used to differentiate the
differences of these rates under the two temperature settings.
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persistence; (iii) density of questing nymphs (DON) in a seasonal pattern; (iv) density of
infected questing nymphs (DIN), which reveals the absolute risk of Lyme disease by show-
ing the absolute amount of infected ticks and the pattern of seasonality; and (v) nymphal
infection prevalence (NIP) in a seasonal pattern, the proportion of the number of infected
questing nymphs in total number of questing nymphs, which characterizes the degree
of humans to be infected. All these are widely used indices and we use them to jointly
measure the Lyme disease risk to humans [1,12,16,18,26,28,31].
In all simulations, every solution, irrespective of the initial values, of the model sys-

tem (2) approaches to a seasonal state which is consistent with the theoretical results.
Moreover, disease risk goes extinct whenR0 < 1, while the seasonal risk pattern appears
whenR0 > 1. The numerical calculation ofRv is implemented by the dichotomymethod
where the system dX/dt=(F(t)/Rv − V (t))X(t) has a dominant Floquet multiplier equal
to 1 [50]. A similar method is used to estimate R0. In what follows, all results are based
on the model outputs at the steady state by running 40 years simulations.

Impact of climate warming on tick population growth and pathogen transmission

To study the potential effect of climate warming on disease risk, we compare simulations
for two different temperature settings, at periods 1961 − 1990 and 1981 − 2010, with
the absence of alternative host species. The curves of time-dependent parameters under
these two temperature settings are shown in Figure 3. Moreover, the numbers on the
upper left corner represent the areas under the corresponding curves, reflecting the vari-
ation of time-dependent parameters in different temperature consitions. We notice that
the development rates and the feeding rates of immature ticks increase with increased
temperature. However the feeding rate of adults decreases instead, which is because
adult ticks have the limiting host seeking capacity when the temperature is too low or
high [1].
With climate warms up from the period 1961 − 1990 to 1981 − 2010, the value of Rv

increases from 1.38 to 1.62, and the values ofR0 also increases from 0.90 (below unity) to
1.19 (above unity). As shown in Figure 4, our simulations confirm the persistence of tick
population whenRv > 1 and establishment of pathogen population ifR0 > 1. These are
in agreement with the theoretical conclusions. We also notice that the number of quest-
ing nymphs increases with higher temperature (Figures 4(a), (c)). Moreover, the pattern of
infected questing nymphs changes from extinction to an absolutely positive stable oscilla-
tion showing the emergence of disease risk (Figures 4(b), (d)). It is important to notice that
the active window of (infected) nymphs has been slightly enlarged with warmer tempera-
ture (Figure 4(c)). In summary, our study shows that climate warming plays an important
role to accelerate the reproduction of the tick population and extend their active windows,
and therefore increase the risk of Lyme disease. Moreover, the pattern of seasonality for
ticks and pathogens may be changed with the temperature.

Impact of host biodiversity on the disease risk

Now, we seed the model with temperature condition in the 1981 − 2010 period so that
time-dependent birth rate and development rates remain the same. However, we add an
alternative host species to the original host community which is assumed to be composed
of the white-footed mice and the white-tailed deer alone. This permits us to study the
potential impact of host biodiversity on the risk of Lyme disease. Then, the number of
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Figure 4 The variations in the sizes of total questing nymphs and infected questing nymphs with the
two temperature settings mentioned above. The red solid curves represent the outputs by seeding the
model with 1961 − 1990 temperature data (Rv = 1.38 andR0 = 0.90 in this case), while the blue dashed
curves represent the model outputs by 1981 − 2010 temperature data (Rv = 1.62 andR0 = 1.19 in this
case). (a) Total questing nymphs; (b) infected questing nymphs in the 40 year simulation; (c) seasonality of
questing nymphs at the steady state; (d) seasonality of infected questing nymphs at the steady state, where
shaded portions in both (c) and (d) represent the active seasons of the questing nymphs.

the alternative host species will change the density-dependent death rates and the feeding
rates of ticks.
As shown in Figure 5, regardless of the newly introduced alternative species, we always

observe that the values of Rv continuously increase with the increased number of hosts;
while the change ofR0 is closely connected to the species of the introduced hosts. Intro-
duction of new hosts will always provide more food for the ticks and thus promotes the
growth of tick population. However, the variation of the disease risk is not as simple as
we imagine. For instance, the values ofR0 persistently increase with the increased num-
ber of the eastern chipmunk introduced, however continuously decrease for the Virginia
opossum, while first increase then decrease for the western fence lizard (Figure 5). For
the eastern chipmunk, recognized as the type with a high reservoir competence (βH2L =
0.569 and βNH2 = 0.971), their ability of Lyme-pathogen transmission and high biting bias
coefficient of nymphs (p2 = 3.5) facilitate the growth of tick population and spread of the
pathogen. For the Virginia opossum with a low reservoir competence (βH2L = 0.0025 and
βNH2 = 0.261), the reduction of R0 largely attributes to not only the low transmission
ability, but also their large biting biases coefficients (p1 = 7.2, p2 = 36.9). In this scenario,
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Figure 5 Log plots of variations of ratiosRv andR0 against the number of alternative hosts. In the
case of the eastern chipmunks, p1 = 0.4, p2 = 3.5, βH2L = 0.569, βNH2 = 0.971, μH2 = 0.0027; for the
western fence lizard, p1 = 1, p2 = 1, βH2L = 0, βNH2 = 0, μH2 = 0.0027; for the Virginia opossum, p1 = 7.2,
p2 = 36.9, βH2L = 0.0025, βNH2 = 0.261, μH2 = 0.0027. For all simulations, the temperature condition is fixed
on the period 1981 − 2010.

a great amount of tick bites are attracted to the low competent hosts, and infectious bites
are wasted on this incompetent host. For the case of the western fence lizard, we also
observe thatR0 increases at the small size of this species even it is a non-competent host,
but eventually reduces when the size of western fence lizard attains a certain level.
To clearly understand the “dilute effect” and “amplification effect” in this respect, we

would like to examine three indices: DON, DIN and NIP. As shown in Figure 6, introduc-
tion of numbers of the eastern chipmunk from 10, 20 to 40 leads to continuous increase of
DON, DIN and NIP, and this indicates that the eastern chipmunk offers an efficient host
species to amplify the risk of Lyme disease; if the same numbers of the Virginia opossum
as these of the eastern chipmunk are added, we notice that DON increases, but both DIN
and NIP decrease instead, input of this species indeed reflects the “dilute effect” through
reducing not only the absolute amount of infected ticks, but also the proportion of infec-
tion; we are surprised to observe that DON continuously increases, DIN first increases
and then decreases, while NIP continuously decreases when the western fence lizard is
added into the existing host community. That is, this non-competent additional species
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Figure 6 Variations in the sizes of DON, DIN and NIP under different host sizes. The numbers on the left
panel indicate that the sizes of associated alternative hosts are added into the host community. The scenarios
where the eastern chipmunk is added are shown on the upper panel. The middle panel shows the scenarios
where the Virginia opossum is considered as the alternative host; the bottom panel shows the situations
where the western fence lizard is added. All the associated parameter values are the same as those in
Figure 5 except the sizes of alternative hosts.

amplifies the risk of Lyme disease in the sense of absolute amount; on the contrary it also
dilutes the risk in the sense of relative proportion of infection. This finding is in good
agreement with the debate raised in [14,51], where authors revealed that the western fence
lizard, as a non-competent host, does not always dilute the risk of Lyme disease.
We also perform sensitivity analysis of the threshold R0 against the biting biases p1

and p2. The result shows that R0 is very sensitive to the variations of both biting biases
(Figure 7). Moreover, the relationships betweenR0 and p1 and p2 varies with host species:
(i)R0 increases with increased p1 and p2 in the case of the eastern chipmunk, and there-
fore this species always facilitates disease transmission within our parameter region; (ii)
the relation betweenR0 and the larvae bias p1 is neither positive nor negative for the case
of the western fence lizard or the Virginia opossum, which implies both “dilution effect”
and “amplification effect” would occur.

Discussion and conclusion
In this paper, we developed a periodic deterministic system of ordinary differential
equations to investigate the impact of both climate condition and host biodiversity on
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Lyme disease pathogen transmission through the mathematical analysis and computer
simulations. The model was parameterized using field and local ecological and epidemio-
logical data. The critical ratios,Rv andR0, in combination with other widely used indices,
can then provide pivotal information on the impact of temperature variation and host
biodiversity on Lyme disease spread.
We found that climate warming facilitates the reproduction of I. scapularis population

and accelerates the spread of Lyme-pathogen, and then increases the risk of Lyme disease
infection. Furthermore, we also have noticed that climate change can slightly change the
seasonality of the infected questing nymphs and slightly broaden the active period of the
infected questing nymphs, and therefore slightly change the seasonality of the risk of Lyme
disease. However, when a new host species was added, we didn’t observe the change of
seasonality of the tick population, but we observed the increase of the quantity of total
ticks including infected ticks.
The impact of host biodiversity on the Lyme disease risk is a complex issue and remains

challenging in conservation ecology and zoonotic epidemiology. However, this issue has
both theoretical and practical importance since this may reveal whether the biodiversity
conservation can be used as an effective measure for the prevention and control of the
zoonotic disease. For Lyme disease, both the dilution effect [5,52-57] and amplification
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effect [14] have been observed through field and theoretical studies, where many factors
such as spatial scale, host competition, host resistance, tick contact rate were consid-
ered [26,37,58,59]. Through this modeling study, both “amplification effect” and “dilution
effect” have been observed, where multiple indices (Rv,R0, DON, DIN and NIP) instead
of a single index were utilized. However, the effect does not depend upon the host compe-
tence alone, but is a joint outcome of current climate condition, host transmission ability,
the numbers of hosts and so on.
In conclusion, climate warming plays a crucial role to speed up the spread of Lyme

disease and hence increase the disease risk since climate warming can promote the tick
population growth. Introduction of new host species into host community can certainly
increase the amount of total ticks, but is not necessary increase the number of infected
ticks. In order to obtain a definitive answer to the question “How does the biodiversity of
the host community affect the disease risk?”, reliable field study in combination with local
abiotic and biotic factors is necessary.
By assuming a spatially homogeneous habitat, the model formulated here has not eval-

uated the effect of spatial heterogeneity on disease pattern. As ticks can disperse mainly
due to its host movement, such as short distance movement due to rodents, long dis-
tance travel due to deer [18] and even longer distance because of the bird migration [60].
In 2002, Caraco et al. [18] proposed a reaction-diffusion model for Lyme disease in the
northeast United States to investigate the spreading speed of the Lyme disease. The global
dynamics of this model was further anlyzed in [61]. A periodic reaction-diffusion system
was proposed to study the impact of spatial structure and seasonality on the spreading
of the pathogen [31]. The effect of bird migration on Lyme dispersal was studied in [62].
It would be interesting to incorporate our current model formulation into the aforemen-
tioned studies involving spatial aspect of Lyme disease spread to address the complicated
spatiotemporal spread patterns of Lyme disease with biodiversity and seasonal variation.

Appendix 1: Proof of Theorem 2.1
Proof. It follows from [63], Theorem 5.2.1, that for any initial value x0 ∈ X, system (1)

admits a unique nonnegative solution x(t, x0) through this initial value with the maximal
interval of existence [ 0, σ) for some σ > 0.
Let LF = LFS + LFI , NQ = NQS + NQI , NF = NFS + NFI , AQ = AQS + AQI and

AF = AFS+AFI . Then we can see that the tick growth is governed by the following system:

dE
dt

= b(t)AF(t) − μEE(t) − dE(t)E(t),

dLQ
dt

= dE(t)E(t) − μQLLQ(t) − FL(t)LQ(t),

dLF
dt

= FL(t)LQ(t) − μFLLF(t) − DLL2F(t) − dL(t)LF(t),

dNQ
dt

= dL(t)LF(t) − μQNNQ(t) − FN (t)NQ(t), (10)

dNF
dt

= FN (t)NQ(t) − μFNNF(t) − DNN2
F (t) − dN (t)NF(t),

dAQ
dt

= dN (t)NF(t) − μQAAQ(t) − FA(t)AQ(t),

dAF
dt

= FA(t)AQ(t) − μFAAF(t) − DAA2
F(t).
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For any periodic nonnegative function f (t) with period τ , denote f̂ = maxt∈[0,τ ] f (t)
and f̃ = mint∈[0,τ ] f (t). It is easy to see that system (10) can be controlled by the following
cooperative system:

du1
dt

= b̂u7(t) − μEu1(t),

du2
dt

= d̂Eu1(t) − μQLu2(t),

du3
dt

= F̂Lu2(t) − μFLu3(t),

du4
dt

= d̂Lu3(t) − μQNu4(t), (11)

du5
dt

= F̂Nu4(t) − μFNu5(t),

du6
dt

= d̂Nu5(t) − μQAu6(t),

du7
dt

= F̂Au6(t) − μFAu7(t) − DAu27(t).

Clearly, there is only one nonnegative equilibrium zero for system (11) when

F̂A
d̂N
μQA

F̂N
μFN

d̂L
μQN

F̂L
μFL

d̂E
μQL

b̂
μE

≤ μFA.

If F̂A d̂N
μQA

F̂N
μFN

d̂L
μQN

F̂L
μFL

d̂E
μQL

b̂
μE

> μFA, system (11) admits another positive equilibrium. It
then follows from [64], Corollary 3.2, that either zero is globally asymptotically stable or
the positive equilibrium is globally asymptotically stable for all nonzero solutions. Hence
the comparison principle implies that (E(t), LQ(t), LF(t), NQ(t), NF(t), AQ(t), AF(t)) is
bounded for any t ∈[ 0, σ). Thus, we see that σ = ∞ and the solution for model (1) is
bounded and exists globally for any nonnegative initial value.

Appendix 2: Proof of Theorem 2.2
Proof. Theorem 2.3.4 in [42] directly implies that if Rv ≤ 1, then zero is globally

asymptotically stable for system (3) in R
7+; if Rv > 1, then system (3) admits a unique

6τ -positive periodic solution

(E∗(t), L∗
Q(t), L∗

F(t),N∗
Q(t),N∗

F (t),A∗
Q(t),A∗

F(t)),

and it is globally asymptotically stable for system (3) with initial values in R
7+\ {0}. It

remains to prove that the 6τ -positive periodic solution (E∗(t), L∗
Q(t), L∗

F(t), N∗
Q(t), N∗

F (t),
A∗
Q(t), A∗

F(t)) is also τ -periodic. Since for any x ∈ R
7+\{0}, limn→∞ P6n(x)=(E∗(0), L∗

Q(0),
L∗
F(0), N∗

Q(0), N∗
F (0), A∗

Q(0), A∗
F(0)) where P is the Poincaré map associated with the τ -

periodic system (3). Hence,

lim
n→∞P(P6n(x)) = P(E∗(0), L∗

Q(0), L∗
F(0),N∗

Q(0),N∗
F (0),A∗

Q(0),A∗
F(0)).

On the other hand,

lim
n→∞P6n(P(x)) = (E∗(0), L∗

Q(0), L∗
F(0),N∗

Q(0),N∗
F (0),A∗

Q(0),A∗
F(0)).
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Thus,

P(E∗(0), L∗
Q(0), L∗

F(0),N∗
Q(0),N∗

F (0),A∗
Q(0),A∗

F(0))

= (E∗(0), L∗
Q(0), L∗

F(0),N∗
Q(0),N∗

F (0),A∗
Q(0),A∗

F(0)),

which implies that (E∗(t), L∗
Q(t), L∗

F(t), N∗
Q(t), N∗

F (t), A∗
Q(t), A∗

F(t)) is τ -periodic.

Appendix 3: Proof of Theorem 2.4
Proof. We first consider the τ -periodic system as a 11τ -periodic system. Let P be the

Poincaré map of system (2), that is, P(x0) = x(11τ , x0), where x(t, x0) is the solution of
system (2) through x0. Then P is compact. Let ω =ω(x0) be the omega limit set of P(x0).
It then follows from [65], Lemma 2.1, (see also [42], Lemma 1.2.1) that ω is an internally
chain transitive set for P.
(i) In the case whereRv ≤ 1, we obtain limt→∞ xi(t) = 0 for i ∈[ 1, 9]. Hence, ω={(0, 0,

0, 0, 0, 0, 0, 0, 0)} × ω1 for some ω1 ⊂ R
2. It is easy to see that

P|ω(0, 0, 0, 0, 0, 0, 0, 0, 0,H1I(0),H2I(0)) = (0, 0, 0, 0, 0, 0, 0, 0, 0,P1(H1I(0),H2I(0))),

where P1 is the Poincaré map associated with the following equation:

dH1I
dt

= −μH1H1I ,

dH2I
dt

= −μH2H2I . (12)

Since ω is an internally chain transitive set for P, it easily follows that ω1 is an internally
chain transitive set for P1. Since {0} is globally asymptotically stable for system (12), [65],
Theorem 3.2, implies that ω1 = {(0, 0)}. Thus, we have ω = {0}, which proves that every
solution converges to zero.
(ii) In the case whereRv > 1, then there exists a positive periodic solution, (E∗(t), L∗

Q(t),
L∗
F(t), N∗

Q(t), N∗
F (t), A∗

Q(t), A∗
F(t)), for system (3) such that for any x0 with

∑7
i=1 x0i > 0,

we have

lim
t→∞{(x1(t), x2(t), x3(t), x4(t), x5(t), x6(t), x7(t))

− (E∗(t), L∗
Q(t), L∗

F(t),N∗
Q(t),N∗

F (t),A∗
Q(t),A∗

F(t))} = 0.

Thus, ω = {(E∗(0), L∗
Q(0), L∗

F(0),N∗
Q(0),N∗

F (0),A∗
Q(0),A∗

F(0))} × ω2 for some ω2 ⊂ R
4,

and

P|ω
(
E∗(0), L∗

Q(0), L∗
F(0),N∗

Q(0),N∗
F (0),A∗

Q(0),A∗
F(0), x8, x9, x10, x11

)
=

(
E∗(0), L∗

Q(0), L∗
F(0),N∗

Q(0),N∗
F (0),A∗

Q(0),A∗
F(0),P2 (x8, x9, x10, x11)

)
,

where P2 is the Poincaré map associated with system (5). Since ω is an internally chain
transitive set for P, ω2 is an internally chain transitive set for P2. SinceR0 ≤ 1, {(0, 0, 0, 0)}
is globally asymptotically stable for system (5) according to Theorem 2.3. It then follows
from [65], Theorem 3.2, that ω2 = {0}. This proves

ω = {(E∗(0), L∗
Q(0), L∗

F(0),N∗
Q(0),N∗

F (0),A∗
Q(0),A∗

F(0), 0, 0, 0, 0)}.

Therefore, statement (ii) holds.
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(iii) In the case whereRv > 1 andR0 > 1, then there exists a positive periodic solution,
(E∗(t), L∗

Q(t), L∗
F(t),N∗

Q(t),N∗
F (t),A∗

Q(t),A∗
F(t)), for system (3) such that for any x0 with∑7

i=1 x0i > 0, we have

lim
t→∞

{(
(x1(t), x2(t), x3(t), x4(t), x5(t), x6(t), x7(t))

−(E∗(t), L∗
Q(t), L∗

F(t),N∗
Q(t),N∗

F (t),A∗
Q(t),A∗

F(t))
)}

= 0.

It then follows thatω = {(E∗(0), L∗
Q(0), L∗

F(0),N∗
Q(0),N∗

F (0),A∗
Q(0),A∗

F(0)))}×ω3 for some
ω3 ⊂ R

4, and

P|ω
(
E∗(0), L∗

Q(0), L∗
F(0),N∗

Q(0),N∗
F (0),A∗

Q(0),A∗
F(0), x8, x9, x10, x11

)
=

(
E∗(0), L∗

Q(0), L∗
F(0),N∗

Q(0),N∗
F (0),A∗

Q(0),A∗
F(0),P2 (x8, x9, x10, x11)

)
,

where P2 is the solution semiflow of system (5). Sinceω is an internally chain transitive set
for P, it follows that ω3 is an internally chain transitive set for P2. We claim that ω3 �= {0}
for any (x08, x09, x010, x011) > 0.
Assume that, by contradiction, ω3 = {0}. That is

ω = {(E∗(0), L∗
Q(0), L∗

F(0),N∗
Q(0),N∗

F (0),A∗
Q(0),A∗

F(0), 0, 0, 0, 0)}
for some (x08, x09, x010, x011) > 0. Then, we have

lim
t→∞(x(t) − (E∗(t), L∗

Q(t), L∗
F(t),N∗

Q(t),N∗
F (t),A∗

Q(t),A∗
F(t), 0, 0, 0, 0)) = 0. (13)

Since R0 > 1, there exists some δ > 0 such that the spectral radius of the Poincaré map
associated with the following linearized system is greater than unity:

dLFI
dt

= (βH1L
H1I(t)

H1 + p1H2
+ βH2L

p1H2I(t)
H1 + p1H2

)FL(t)(L∗
Q(t) − δ)

−DL(L∗
F(t) + δ)LFI(t) − (dL(t) + μFL)LFI(t),

dNQI
dt

= dL(t)LFI(t) − (μQN + FN (t))NQI(t),

dH1I
dt

= FN (t)βNH1NQI(t)
H1 − H1I(t)
H1 + p2H2

− μH1H1I(t),

dH2I
dt

= FN (t)βNH2NQI(t)
p2(H2 − H2I(t))

H1 + p2H2
− μH2H2I(t).

It then follows from the same argument as in the proof of Theorem 2.3 that the following
system

du1
dt

=
(

βH1L
u3(t)

H1 + p1H2
+ βH2L

p1u4(t)
H1 + p1H2

)
FL(t)

(
L∗
Q(t) − δ

)
−DL

(
L∗
F(t) + δ

)
u1(t) − (dL(t) + μFL)u1(t),

du2
dt

= dL(t)u1(t) − (
μQN + FN (t)

)
u2(t),

du3
dt

= FN (t)βNH1u2(t)
H1 − u3(t)
H1 + p2H2

− μH1u3(t),

du4
dt

= FN (t)βNH2u2(t)
p2 (H2 − u4(t))
H1 + p2H2

− μH2u4(t)

admits a positive periodic u∗(t) such that

lim
t→∞(u(t) − u∗(t)) = 0, ∀u(t) �= 0.
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Therefore, there exists some τ0 > 0 such that for all t > τ0,

‖(x1(t), · · · , x7(t)) − (E∗(t), L∗
Q(t), L∗

F(t),N∗
Q(t),N∗

F (t),A∗
Q(t),A∗

F(t))‖ ≤ δ.

Hence, we conclude that
dx8
dt

≥
(

βH1L
x10(t)

H1 + p1H2
+ βH2L

p1x11(t)
H1 + p1H2

)
FL(t)

(
L∗
Q(t) − δ

)
−DL

(
L∗
F(t) + δ

)
x8(t) − (dL(t) + μFL) x8(t),

dx9
dt

= dL(t)x8(t) − (
μQN + FN (t)

)
x9(t),

dx10
dt

= FN (t)βNH1x9(t)
H1 − x10(t)
H1 + p2H2

− μH1x10(t),

dx11
dt

= FN (t)βNH2x9(t)
p2 (H2 − x11(t))

H1 + p2H2
− μH2x11(t),

for all t > τ0. By a standard comparison argument, we have

lim inf
t→∞

(
(x8(t), x9(t), x10(t), x11(t)) − u∗(t)

) ≥ 0,

a contradiction to (13).
Since ω3 �= {0} and the positive periodic solution (L∗

FI(t),N
∗
QI(t),H

∗
1I(t),H∗

2I(t)) is
globally asymptotically stable for system (5) in R

4+ \ {0}, it follows that
ω3 ∩ Ws((L∗

FI(0),N
∗
QI(0),H

∗
1I(0),H∗

2I(0))) �= ∅,
where Ws

((
L∗
FI(0),N

∗
QI(0),H

∗
1I(0),H∗

2I(0)
))

is the stable set for (L∗
FI(0), N

∗
QI(0), H

∗
1I(0),

H∗
2I(0)) with respect to the Poincaré map P2. By [65], Theorem 3.1, we then get

ω3 =
{(

L∗
FI(0),N

∗
QI(0),H

∗
1I(0),H∗

2I(0)
)}

.

Thus,

ω =
{(

E∗(0), L∗
Q(0), L∗

F(0),N∗
Q(0),N∗

F (0),A∗
Q(0),A∗

F(0), L∗
FI(0),N

∗
QI(0),H

∗
1I(0),H∗

2I(0)
)}

,

and hence, statement (iii) is valid.
At last, using a similar argument as in the proof of Theorem 2.2, we can show that the

globally attractive 11τ -periodic solution in each case is also τ -periodic solution.
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