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Abstract

A variety of topics are reviewed in the area of mathematical and computational
modeling in biology, covering the range of scales from populations of organisms to
electrons in atoms. The use of maximum entropy as an inference tool in the fields of
biology and drug discovery is discussed. Mathematical and computational methods
and models in the areas of epidemiology, cell physiology and cancer are surveyed.
The technique of molecular dynamics is covered, with special attention to force
fields for protein simulations and methods for the calculation of solvation free
energies. The utility of quantum mechanical methods in biophysical and biochemical
modeling is explored. The field of computational enzymology is examined.
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Introduction
Mathematical, computational and physical methods have been applied in biology and

medicine to study phenomena at a wide range of size scales, from the global human

population all the way down to the level of individual atoms within a biomolecule.

Concomitant with this range of sizes between global to atomistic, the relevant model-

ing methods span time scales varying between years and picoseconds, depending on

the area of interest (from evolutionary to atomistic effects) and relevance. This review

will cover some of the most common and useful mathematical and computational

methods. Firstly, we outline the maximum entropy principle as an inference tool for

the study of phenomena at different scales, from gene evolution and gene networks to

protein-drug molecular interactions, followed with a survey of the methods used for

large scale systems—populations, organisms, and cells—and then zooming down to the

methods used to study individual biomolecules—proteins and drugs. To study the large

systems, the most common and reliable mathematical technique is to develop systems

of differential equations. At the molecular scale, molecular dynamics is often used to

model biomolecules as a system of moving Newtonian particles with interactions de-

fined by a force field, with various methods employed to handle the challenge of solv-

ent effects. In some cases, pure quantum mechanics methods can and should be used,
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which describe molecules using either wave functions or electron densities, although

computational costs in time and resources may be prohibitive, so hybrid classical-

quantum methods are often more appropriate. Quantum methods can be particularly

valuable in the study of enzymes and enzymatic reactions.
Maximum entropy in biology and drug discovery
Two reasoning methods, deduction and inductive inference, have been utilized in the

development of theories to interpret phenomena we observe in nature, and to make

predictions about complex systems. Deduction allows us to draw conclusions when

sufficient information is available, and is contrasted with inductive inference (also

known as inductive logic or probable inference). Inductive inference provides a least

biased way to reason when the available information is insufficient for deduction. It is

called “inference” when we make estimates of quantities for which we do not have

enough information to use deductive reasoning, and “induction” when we are general-

izing from special cases [1].

When we deal with complex systems, for example either many-body interactions at

the microscopic level, complicated regulatory protein-protein networks at the meso-

scopic level, or population genetics at the macroscopic level, we never have enough

knowledge to completely understand the system. Therefore, we normally rely on inductive

inference based on the available information to infer the most preferred solution to prob-

lems related to these systems. Particularly, we are interested in a mathematical tool for

inductive inference based on the Bayesian interpretation of probability, the rules of prob-

ability theory, and the concept of entropy. Bayesian interpretation treats probability as a

degree of our knowledge about a system of interest, rather than the frequency of appear-

ance of an event. Cox demonstrated that this type of probability can be manipulated by

the rules of standard probability theory [2]. This forms the building blocks of inductive in-

ference, termed Bayesian inference. Moreover, Caticha and Giffin have shown that Bayesian

inference is a special case of entropy-based inference [3]. Therefore, our discussion in this

section will be founded on entropy-based inference.

First, we briefly address the basics of entropy-based inference, which includes using en-

tropy as an information measure and a tool for inductive inference, then we provide ex-

amples in the fields of biology and drug discovery to demonstrate that these fields benefit

from the application of inductive inference. Regarding using entropy as an information

measure, we consider two examples. The first example provides a clue to investigate gen-

omic evolution through appropriate genomic sequence analysis [4]. The second one dis-

cusses robustness of biological networks from information point of view [5]. Regarding

using entropy as a tool for inductive inference, we consider another two examples. The

first one demonstrates the benefit of introducing this inference in virtual screening for

drug discovery [6]. The second one then shows an application of this scheme in fragment-

based drug design [7]. These examples also illustrate in a straightforward way how to ex-

tract information and unveil the global characteristics of the biological systems. They

show that there exists a universal reasoning platform to solve any problem of interest that

is independent of the specifics of a given type of problem. The key in this platform lies in

the answer to the question, “What are the constraints in the system?” Once the con-

straints are determined, the maximum entropy principle provides a robust, universal and



Tuszynski et al. Theoretical Biology and Medical Modelling 2014, 11:52 Page 3 of 42
http://www.tbiomed.com/content/11/1/52
least biased prescription for information processing. Furthermore, it helps us to analyze

problems and gain insights into the functioning of the underlying complex systems.

Entropy as an information measure

Shannon’s pioneering work on the quantification of information loss during communication

established a new viewpoint on entropy, which was until then only known as a measure of

randomness in thermodynamics [8]. Since then, using entropy as an information measure

has attracted much attention not only in signal processing, but also in the field of biology.

Information in genomic evolution

With the advance of genomic sequencing technology there is more and more genomic

sequence data available for species across the three domains: Bacteria, Archaea, and

Eukaryota. The question is, how do we compare complete genomes and extract useful

information from the sequencing data?

To address the question of genome comparison, Chang et al. [4] proposed an

entropy-based scheme for complete genome comparison. The foundation of their ap-

proach is to define the probability distribution that represents our current state of

knowledge regarding the occurrence of different combinations of the four bases in

DNA sequences. Chang et al. [4] specified that k-mer nucleotides in the sequence en-

code genetic information, where k is an arbitrary number. The occurrence of k-mers in

a DNA sequence characterizes that sequence. Based on this definition, information in

sequences can be quantified with Shannon information. Furthermore, Chang et al. [4]

introduced the concept of reduced Shannon information, which is defined as the ratio

of the Shannon information of the genome to the Shannon information of random se-

quences, so as to quantify to what extent the information contained in the genome is

different from the information in a random DNA sequence. Note that this concept is

similar to the concept of relative entropy, which is discussed in the next section. Based

on reduced Shannon information (or relative entropy), a universal feature across three

taxonomic domains was observed; namely, the effective root-sequence length of a gen-

ome, which is defined as the ratio of genome length and reduced Shannon information,

linearly depended on k, and was a genome-independent constant. Furthermore, this

study revealed a possible genome growth mechanism: at an early stage of evolution, a

genome is likely to utilize random segmental duplication, which would maximize re-

duced Shannon information. These insights not only provide a clue to the origin of

evolution but also may shed light on further questions, such as which genes are respon-

sible for drug resistance.

Robustness of biological networks

The development of high throughput screening techniques, such as microarray technol-

ogy, has generated numerous protein-protein interaction data to map out biological net-

works, and has revealed regulatory mechanisms of the biological entities involved in the

networks. Many studies have suggested that the robustness of biological networks may be

the key for identifying systems that can tolerate external perturbations and uncertainty

triggered by external forces [9,10]. It has further been shown that the robustness of bio-

logical networks shares a global feature; these networks are scale-free networks, which

means that one can observe a power-law degree distribution in these networks.
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Therefore, there have been many endeavors to provide more insights into the origin

of these power-law distributions. Bak et al. [8] proposed the mechanism of self-

organized criticality, which leads to a scale-free structure in complicated systems. An

entropy-based interpretation described by Dover [5] suggested a promising and intui-

tive way to understand the emergence of power-law distributions in complicated net-

works. According to Dover’s studies on a toy model, the emergence of the power-law

distributions is merely a consequence of the maximum entropy principle when the in-

ternal order of sub-networks of a complicated large network remained fixed. Note that

the internal order was defined as the mean of the Boltzmann entropy over all sub-

networks. In the framework of entropy-based inference, the power-law distributions of

biological networks simply represent the most preferred choice that maintains the fixed

internal order of the sub-networks.

Entropic scheme for inductive inference

In addition to the use of entropy as an information measure, the concept of entropy

also plays a role in inductive inference. The inductive inference addressed here refers to

two processes. The first process is the determination of the most likely state of know-

ledge about a system of interest based on the information in hand. The second process

is the determination of the most likely updated state of knowledge when we acquire

new information regarding the system. The foundation of inductive inference is the

maximum entropy principle and relative entropy. The least biased inference one can

make based on the information in hand is the one that maximizes the relative entropy

of all possible new and old beliefs. For more details, the reader is referred to Caticha [1].

Entropy in molecular docking

Our first example of applying entropy for inductive inference is in silico drug discovery.

Virtual screening has attracted much attention in the pharmaceutical industry [12,13].

It provides a more economical way to screen diverse chemicals as drug candidates

compared with a wet-lab approach. Basically, it consists of the creation of a chemical li-

brary, followed by searching optimal ligand-receptor binding modes through docking al-

gorithms, and finally the evaluation of binding affinities. There are three criteria that are

required to successfully identify drug candidates. First, the chemical library needs to be

large and contain diverse chemical structures. Second, conformational search algorithms

need to be able to search possible binding modes within a reasonable time. Third, an ap-

propriate scoring function needs to be utilized to correctly evaluate the binding affinity of

the chemical structures. In the framework of information theory, the first and third cri-

teria are the fundamental information required in virtual screening process. The second

criterion then can be treated as an information processing guideline. The efficiency and

accuracy of this step will depend on the methods of information processing.

Genetic algorithms, which borrow from the concept of genomic evolution processes

to search conformations of complex targets and chemical structures, are commonly

used in docking protocols, such as AutoDock [14]. Chang et al. have offered a better al-

ternative, MEDock [6]. Although MEDock did not completely exploit entropic-based

inductive inference for searching, it does utilize the maximum entropy principle as a

guideline to make decisions during this process. The fundamental question asked in

MEDock is “What is the probability of finding the deepest energy valley in a ligand-
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target interaction energy landscape?” Maximum entropy provides a direction to update

the initial guess of binding modes (described by an almost uniform distribution) to the

optimal mode (a localized distribution around the global energy minimum).

Entropy in aptamer design

The second example of entropy for inductive inference is aptamer design. Aptamers

are short nucleic acid sequences that are traditionally identified through an experimen-

tal technique, the Systematic Evolution of Ligands by Exponential Enrichment (SELEX)

[15,16]. Aptamers can bind to specific molecular targets including small molecules,

proteins, nucleic acids, and phospholipids, and can also be targeted to complex struc-

tures such as cells, tissues, bacteria, and other organisms. Because of their strong and

specific binding through molecular recognition, aptamers are promising tools in mo-

lecular biology and have both therapeutic and diagnostic clinical applications [15-18].

Unfortunately, some limitations of SELEX have slowed the progress of discovering spe-

cific aptamers for various applications [18]. With the help of entropy-based inductive

inference, a fragment-based approach has been developed to design aptamers given the

structure of the target of interest [18].

The concept of the fragment-based approach to aptamer design is to ask the question

“Given the structural information about the target, what is the preferred probability

distribution of having an aptamer that is most likely to interact with the target?” The

solution was found using entropy-based inductive inference [7]. This approach initially

determines the preferred probability distribution of first single nucleotide that

likely interacts with the target. Subsequently, the approach iteratively updates the

probability distribution as more nucleotides are added to the growing aptamer. The

maximum entropy principle allows us to determine to what extent this update is suffi-

cient, and what is the sequence of nucleotides that is most likely to bind to the target.

This method has been applied to design aptamers to bind specifically to targets such as

thrombin, phosphatidylserine [19] and galectin-3 (under experimental confirmation).

The maximum entropy principle and inductive inference just provide one reasoning

platform to make the most preferable inference based on all kinds of information for

understanding biological systems at different scales. In the next section, a variety of

mathematical and computational models addressing other aspects that have been

developed for biological and medical problems are surveyed.

Mathematical and computational models for biological systems
In recent years, mathematical biology has emerged as a prominent area of interdiscip-

linary scientific research. It is not a new area of research, but with recent advances in

medical and computational methods, it has grown extensively, being applied to solve

many health related problems across a spectrum of life sciences. Areas of mathematical

biology where modeling has made contributions to biology and medicine include epi-

demiology, cell physiology, cancer modeling, genetics, cellular biology, and biochemis-

try. Because there is such a broad range of topics and methods that can be discussed,

we limit ourselves to a discussion of how differential equations have been used to solve

important biological problems in epidemiology, cell physiology, and cancer modeling,

and briefly discuss some of the clinical advances that have arisen from such efforts. For

a more extensive review on mathematical modeling for each of these branches of
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science, we refer the reader to recent books on these topics [20-23]. For the reader who is

interested in learning more about mathematical biology from a beginner’s perspective,

books by Edelstein-Keshet [24], Murray [25,26], and Britton [27] are also recommended.

Here, we highlight only a few of the models that have been developed to study epi-

demiological, physiological, and cancer problems. The reader is encouraged to look

more extensively into the literature regarding other models that have been developed

and successfully applied to improve present medical treatments.

Mathematical models in epidemiology

Epidemiology describes the study of patterns, cause and effect, and treatment of disease

within a given population [28]. Here, we provide a brief introduction to epidemiological

models used for studying the spread of various types of disease, many of which are out-

lined in [25,27]. One of the first models to describe the dynamics of a disease caused

by a viral infection is the so-called SIR model, an ordinary differential equation (ODE)

model developed by Kermack and Mckendrick in 1927 [29].

dS
dt

¼ −βIS ð1Þ

dI
dt

¼ βIS−μI ð2Þ

dR
dt

¼ μI ð3Þ

This model, given by equations (1), (2), and (3) (for all differential equation models
we omit initial and boundary conditions for ease in reading), describes the rate of

change of the number of susceptible (S), infected (I), and recovered (R) individuals in a

population over time, where β describes the rate of transmission of disease, and μ de-

scribes the rate of removal of infected individuals (those that have recovered). An im-

portant feature of this model is that it incorporates recovered patients, meaning that an

individual can acquire immunity, as is often the case for viral-type infections like influ-

enza and measles. This model, although quite basic, provides important information to

health care professionals interested in understanding how severe an outbreak is. For ex-

ample, from these equations, the basic reproduction number given by

R0 ¼ βS 0ð Þ
μ

ð4Þ

describes the average number of secondary infections produced by one infected individ-

ual introduced into a completely susceptible environment. High values of R0, corre-

sponding to high numbers of initially susceptible individuals S(0), and/or high disease

transmission rates β, result in the high probability of an outbreak. In particular, if R0 is

less than 1, the infection will not persist (and will eventually die out), whereas if R0 is

greater than 1, the infection will grow (and there will be an epidemic).

One key assumption of this model is that the total population N (N = S + I + R) is con-

stant and that there is no death or birth. Many models have since been developed to in-

clude such population demographics [30-32], the first being completed by Soper [31] in

an attempt to understand the dynamics of measles.
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A number of extensions have been made to describe a wider class of infections. For

example, the SIRS and SIS models allow for the movement of individuals back into a

susceptible class S, meaning there may be no immunity to re-infection [30]. Such

models are useful in studying bacterial-type infections like tuberculosis and gonorrhea.

Other models, referred to as SEIR and SEIRS models, where “E” stands for a latent

class of individuals (exposed but not showing symptoms), can be used to describe a dis-

ease where a delayed time of infection may exist [33]. For example, this is often the

case with individuals suffering from malaria.

A disadvantage of ODE-based modeling is that it assumes the well mixing of large

populations of individuals. Also, such models are deterministic, meaning that the out-

come is determined solely on the initial conditions and the parameters that govern the

dynamics. For some populations, where contacts and transmission rates between indi-

viduals may vary, agent based [34,35] stochastic [36] or network type [36] models may

be more useful. Also, age-structured models [37] may be more appropriate for diseases

that depend on age, such as AIDS.

Another disadvantage of ODE-based modeling is that it does not describe the move-

ment of individuals through space. This information is extremely important because a

disease may not just spread within a single population, but may spread from one loca-

tion to another. Examples of models that incorporate spatial dynamics include partial

differential equations (PDEs). These models have been used to study the outbreak of ra-

bies in continental Europe in the early 1940s [38], as well as to study the more recent

outbreak of the West Nile Virus in 1999 in New York State [39]. Other models used to

study the spatial spread of disease include patch models [40]. In the patch model of

Lloyd and May [40] the authors consider an SEIR modeling approach. Here, the total

population is broken up into subpopulations (patches), where Si, Ei, Ii, and Ri denote

the number of susceptible, exposed (latent), infected, and recovered individuals, in each

patch i, respectively. The dynamics of each patch are governed by their own similar set

of differential equations,

dSi
dt

¼ dNi−dSi−σ iSi; ð5Þ

dEi

dt
¼ σ iSi− d þ εð ÞEi; ð6Þ

dIi
dt

¼ εEi− d þ γð ÞIi; ð7Þ

dRi

dt
¼ γIi−dRi: ð8Þ

In each patch, all model parameters are the same, except the infection rate σi, which

depends on each connection between patches. Here, σi is called the force of infection,

and is given by the mass action expression

σ i ¼
Xn
j¼1

βijI j; ð9Þ

where n is the total patch number and βij is the rate of infection between patches

i and j.
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Mathematical models have influenced protocol in disease control and management.

Now, such modeling is part of epidemiology policy decision making in many countries

[41]. Some important modeling contributions include the design and analysis of epi-

demiology surveys, determining data that should be collected, identifying trends and

forecasting outbreaks, as well as estimating the uncertainty in these outbreaks.

Physiological models at the cellular level: enzyme kinetics, ion channels, and

cell excitability

The field of physiology is arguably the number one biological field where mathematics has

had the greatest impact. Two broad areas of physiology where mathematics has made a pro-

found impact are cell physiology and systems physiology. Here, we focus on cell physiology,

and restrict ourselves to the topics of enzyme kinetics, ion channels, and cell excitability. For

an excellent review on systems physiology, the reader is referred to Keener and Sneyd [22].

The rate of change of a simple chemical reaction can be described by the law of mass

action, a law that describes the behavior of solutions in dynamic equilibrium [42]. That

is, for a simple reaction given by

Aþ B→
kþ

C; ð10Þ

where k+ is the reaction rate constant, the rate of the production of product molecules

is given by

d C½ �
dt

¼ kþ A½ � B½ �; ð11Þ

where [X] is the concentration of each species X = A, B, C. Equation (11) is commonly re-

ferred to as the law of mass action. The above formulation can only be used for the sim-

plest of reactions involving a single step and only two reactants, although extensions are

fairly straight-forward and have been developed over the past century to describe more

complicated reactions [43]. One example is the model of Michaelis and Menten [44], used

to describe reactions catalyzed by enzymes. Given the reaction scheme

S þ E →k1

←k−1
C→

k2 P þ E; ð12Þ

where S is the substrate, E the enzyme, P the product concentration, and k1, k−1, and k2
are the reaction rate constants, Michaelis and Menten describe this reaction by the fol-

lowing four ODEs,

ds
dt

¼ k−1c−k1se; ð13Þ

de
dt

¼ k−1 þ k2ð Þc−k1se; ð14Þ

dc
dt

¼ k1se− k2 þ k−1ð Þc; ð15Þ

dp
dt

¼ k2c: ð16Þ

Assuming that the substrate is at equilibrium (ds/dt = 0), one can simplify this system
and find explicit solutions. Also, without solving these equations, one can gain useful
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information about the process. For example, the velocity of the reaction (the rate at

which the products are formed) is

V ¼ dp
dt

¼ Vmaxs
Ks þ s

; ð17Þ

where Vmax = k2eo and Ks = k−1/k1 (Ks is called the equilibrium constant). Equation

(17) is often referred to as the Michaelis–Menten equation. Also, the steady-state ap-

proximation simplifies the above system of equations so that we can find explicit solu-

tions [45]. This approximation requires that the rates of formation and breakdown of

the complex c are essentially always equal (dc/dt = 0). Further extensions of this model

have been developed to describe other types of enzyme activity, such as cooperativity

[46] and enzyme inhibition [47], and have had similar success.

Computational systems biology has been creating a series of tools that are useful for

application to enzyme kinetics. This is particularly true in the area of parameter estima-

tion where several algorithms have been shown to be useful to enzyme kinetics. The

availability of increasingly sophisticated and standardized modeling and simulation soft-

ware will undoubtedly benefit enzyme kinetics [48].

Biochemical networks are sets of reactions that are linked by common substrates and

products. The dynamics of biochemical networks are frequently described as sets of

coupled ODEs, similar to those given by equations (13) through (16), that represent the

rate of change of concentrations of the chemical species involved in the network [48].

The right-hand side in these ODEs is typically the algebraic sum of the rate laws of the

reactions that produce or consume the chemical species (positive when it is produced,

negative when consumed). There is formally no difference between a biochemical net-

work and an enzyme reaction mechanism, as both conform to this description. For sys-

tems biology studies, it is sufficient to represent each enzyme-catalyzed reaction as a

single step and associate it with an appropriate integrated rate law [49]. The systems

biologist should be cautioned, though, that mechanistic details may indeed affect the

dynamics, as is the case with competitive versus uncompetitive inhibitor drugs [50-52].

The Systems Biology Markup Language (SBML) [53] is a standard format to encode

the information required to express a biochemical network model including its kinetics.

SBML is based on the Extended Markup Language (XML), which is itself a standard

widely adopted on the Internet. After a series of progressive developments, there are

now several compatible software packages available to model biochemical networks.

Some are generic and provide many algorithms, while others are more specialized. This

includes not only simulators [54], but also packages for graphical depiction and analysis

of networks [43,55,56], and databases of reactions and kinetic parameters [57], to name

but a few examples. In some cases these packages can even work in an integrated way,

such as in the Systems Biology Workbench (SBW) suite [58].

Another area of cell physiology where mathematical modeling has been used to

describe complex molecular-scale dynamics is the study of ion channels. Molecules

(both large and small) move back and forth across a cell membrane, to ensure that con-

ditions for homeostasis are met [42]. Some molecules are small enough (and soluble to

lipids) to diffuse across the membrane, while others require energy, working against

electrochemical gradients between the outside and the inside of the cell [42]. For
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example, differences in ionic potential across a cell membrane can drive ionic current.

The Nernst equation,

V ¼ RT
zF

ln
ce
ci

� �
; ð18Þ

describes the potential difference V across a cell membrane, where ce and ci are the ex-

ternal and internal ionic concentration (of a particular ion) respectively, R is the univer-

sal gas constant, T is the absolute temperature, F is Faraday's constant, and z is the

ion’s charge. To determine the ionic current across a membrane, one can write the total

potential drop across the cell membrane, VT, as the addition of the Nernst potential

V to the potential drop due to an electrical current rIc (where r is the resistance), so

that VT = V + rIc. Solving for the ionic current we arrive at

Ic ¼ g VT−Vð Þ; ð19Þ

where g = 1/r is the membrane conductance. Ions only travel through small pores, re-

ferred to as ion channels, and the control of such ionic current is vital for proper cellu-

lar function.

A second model for determining the ionic flow across a cell membrane is given by

the Goldman–Hodgkin–Katz equation,

I ¼ P
z2F2

RT
V
ci−ceexp −zFV

RT

� �
1−exp −zFV

RT

� � ; ð20Þ

where P is the permeability of the membrane to the ion [59]. Such an equation is de-

rived under the assumption of a constant electric field. The use of either the linear

equation (19) or nonlinear equation (20) in defining ionic current is often debated and

depends on the underlying properties of the particular cell studied.

Using the fact that we can model the cell membrane as a capacitor (since it sepa-

rates charge), and knowing that there is no net build-up of charge on either side of

the membrane, the sum of the capacitive and ionic currents across a membrane

should add up to zero,

Cm
dV
dt

þ I ion V ; tð Þ ¼ 0: ð21Þ

Here, Cm is the capacitance, Iion is the ionic current, and V = Vi − Ve. In 1952,

through a series of pioneering papers, Hodgkin and Huxley presented experimental

data and a comprehensive theoretical model that fit experimental findings, to de-

scribe the action potential across the giant axon of a squid [60-64]. The model given

by equation (22) (and based on equation (21)), was awarded the Nobel Prize in Physi-

ology and Medicine in 1963, and is possibly one of the greatest mathematical results

in physiology to date:

cm
dV
dt

¼ −gNa V−VNað Þ−gK V−VKð Þ−gL V−V Lð Þ þ Iapp: ð22Þ

In equation (22), gNa, gK, and gL describe the sodium, potassium, and leakage con-

ductance (other ionic contributions, including the chloride current, that are small), re-

spectively, VNa, VK, and VL are their respective resting potentials, and Iapp is a small

applied current. Hodgkin and Huxley were able to measure the individual ionic
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currents, and to use this information to determine the functional forms for each of

the conductances.

Much of the work completed on ion channels and cell excitability has been used to

study diseases that are associated with malfunction of ion channels. As a result, such

channels have become new targets for drug discovery [47]. One example of a disease

caused by the disruption of the action potential of cardiac myocytes is cardiac

arrhythmia. Certain drugs used in the treatment of arrhythmias, such as lidocaine and

flecainide, are sodium channel blockers, and so interfere with open sodium channels.

Although these drugs have been used in treatment for cardiac arrhythmias, their exact

mode of action is not well understood. Current computational models are being devel-

oped to understand the function of these, as well as other anti-arrhythmia drugs [65].

Another example of a disease caused by the disruption of ion channels is cystic fibrosis

(CF), which has been found to be associated with malfunctions in chloride channel op-

eration [66]. Although there is still no cure for CF, new directions for treatment proto-

cols are being developed [67].

Models of cancer growth and spread: avascular tumor growth, tumor-induced angiogen-

esis, and tumor invasion

The primary mathematical modeling techniques used in the area of cancer modeling,

include the study of avascular tumor growth, angiogenesis, and vascular tumor growth

(tumor invasion), and so in what follows we limit ourselves to these topics.

Growth and development of a solid tumor occurs in two stages: avascular growth

and vascular growth (leading to tumor invasion), and has been studied extensively in a

biological framework [68]. The modeling of avascular tumor growth is one of the earli-

est approaches taken by mathematicians to study cancers [69]. The simplest type of

model that can be used to describe how cancer cells of a solid tumor change over time

is the exponential growth law, given by equation (23).

dN
dt

¼ rN ð23Þ

Such an equation is limited in its application, since it suggests that tumors grow (with

growth rate r) to a tumor of unbounded size. Other models, such as the logistic growth

equation (24)

dN
dt

¼ rN 1−
N
k

� �
ð24Þ

have been used to describe tumor size saturation (a type of volume constraint). In par-

ticular, equation (24) describes the rate of change of cancer cells N in a tumor, where r

is the growth rate and k is the carrying capacity (the maximum number of cancer cells

within the tumor).

A limiting case of the logistic equation is the Gompertz model, given by equation (25).

dN
dt

¼ rlog
k
N

� �
N ð25Þ

This model is one of the most commonly used tumor growth models to date, and
was first used by Casey to fit real tumor growth in 1934 [70]. Such ODE-based models
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are useful because they can be easily analyzed. Also, these models have the advantage

that they can be expanded to incorporate other cell types (such as proliferating, quies-

cent, and dead cells) by the inclusion of more ODEs, one for each cell type. Since these

models are similar to the compartmental SIR model described in the section concern-

ing epidemiology, they have similar limitations, one being a lack of spatial information

(such as the location of each cell type within a tumor). Some models for solid tumor

growth have included such information by incorporation of reaction-diffusion type equa-

tions, like equation (26). This latter model, studied by Murray [26], was developed to

describe the spatio-temporal invasion of gliomas. Equation (26) is read as follows: cancer

cells C grow exponentially with rate ρ, and diffuse at a rate that depends on whether cells

are moving in white brain matter or gray brain matter (diffusion given by D(x)).

dC
dt

¼ ∇⋅ D xð Þ∇Cð Þ þ ρC ð26Þ

Other models by Cruywagen et al. [71] and Tracqui et al. [72] have used a more real-
istic logistic growth term for cancer cell growth. However, the survival times calculated

for these models are only slightly different from those calculated using model (26), and

so using either logistic growth or exponential growth is appropriate in this modelling

framework. One limitation of the Cruywagen et al. [71] and Tracqui et al. [72] is that

they are constructed under the assumption of constant diffusion, thus neglecting to dis-

tinguish between grey and white matter in the brain. Simulation of models similar to

(26), such as those completed by Swanson et al. [73], show that incorporation of a

spatially dependent diffusion coefficient D(x) produces images that are in good agree-

ment with real images of gliomas produced by magnetic resonance imaging (MRI).

Other spatial models, like that of equation (27), describe the movement of certain

chemical signals, such as growth factors (GFs), which dictate directions for tumor

growth [74,75].

dC
dt

¼ D∇2C−γC þ σS rð Þ ð27Þ

In equation (27), the first term on the right-hand side describes the diffusion of the

concentration of GFs denoted by C, while the second term describes the degradation of

C with rate γ. The third term describes production of C at a rate σ by a source S(r).

The source is a function of the tumor radius r. Some models incorporate integro-

differential equations that describe the radius of tumors over time [75], providing a type

of spatial information for each cell type within the tumor. For example, the nutrient

concentration often dictates where each type of cell is most likely located within the

tumor. Thus, in a radially-symmetric cell, there are typically zero nutrients located at

the center of the tumor, and so cells there are dead, defining a necrotic core, whereas

the outermost layer is generally nutrient rich, and so it is composed of proliferating

cells. Other models, such as those incorporating systems of PDEs, are used to describe

the spatial movement over time of proliferating and quiescent cancer cells in the pres-

ence of GFs [76].

Typically, solid tumors initially grow to about 2 mm in size. To grow larger, tumors

require nutrients. Such nutrients are additionally acquired through the process of

angiogenesis, the formation of blood vessels that connect the tumor to the circulatory
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system [68]. The switch to this angiogenic stage can occur due to multiple factors,

many of which are outlined in Semenza [77]. Tumor-induced angiogenesis, caused by

the release of GFs or tumor angiogenic factors (TAFs) from the tumor, promotes the

growth of endothelial cells (EC), which make up the linings of capillaries and other ves-

sels. ECs then migrate towards the TAF source by chemotaxis. In other words, blood

vessels grow towards the tumor.

The first model (given by equation (28)) to describe chemotaxis in a biological system

using PDEs was developed by Keller and Segel [78]. Such an equation was initially de-

veloped to describe the chemotactic movement of slime molds towards an attracting

source called cyclic adenosine monophosphate (cAMP):

du
dt

¼ ∇D∇u−χu∇υ ð28Þ

In the context of cancer cells, the first term on the right-hand side of equation (28) de-
scribes random motion (diffusion) D of a cell population u, while the second term corre-

sponds to chemotaxis of the cells u towards a GF. The chemotactic effect is given by χ

and υ is the concentration of the GF. The dynamics of the growth factor is typically mod-

eled by reaction-diffusion equations similar to that given above in equation (27).

Many other models, typically PDE-type models, have extensions similar to those de-

scribed above, incorporating not only the key interactions of the endothelial cells with

angiogenic factors, but also the macromolecules of the extracellular matrix [79,80]. For

an excellent review on mathematical approaches to studying tumor-induced angiogen-

esis we refer the reader to Mantzaris, Webb, and Othmer [81].

After a tumor has progressed to the stage of angiogenesis, by successfully recruiting

blood vessels, the tumor eventually becomes vascular, thus connecting itself to the cir-

culatory system [68]. Once this happens, tumor cells have the ability to enter the circu-

latory system, depositing themselves at secondary locations within the body and

possibly promoting the growth of a secondary tumor, a process referred to as metasta-

sis [68]. As soon as this occurs the cancer has progressed to the point where it is nearly

impossible to cure the patient. One of the key steps in the progression to metastasis is

the degradation of the extracellular matrix (ECM) by matrix-degrading proteins depos-

ited by cancer cells, and the movement of cancer cells through the ECM. Newer math-

ematical approaches, using integro-PDEs, have been able to capture the qualitative

movement of such cells through the ECM [82-84]. One such model was proposed by

Hillen [82].

dp x; t; vð Þ
dt

þ v⋅∇p x; t; vð Þ ¼ −μ
Z
V

q x; t; ~vð Þ
w

p x; t; ~vð Þd~v ð29Þ

Here, p(x, t, v) describes the density of tumor cells at location x, time t > 0, and vel-
ocity v in V = [vmin, vmax]. The advection term on the left-hand side of equation (29)

describes directed movement of cells along collagen fibers in the ECM with speed v.

The right-hand side describes changes in the cell’s velocity due to changes in the matrix

orientation q(x, t, v), where w is an appropriate weighting function. This matrix can

change over time due to cuts made by matrix degrading proteins. For ease in reading

we do not give the evolution equation for the matrix distribution q.
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Many different cancer treatment modalities are available, including the administra-

tion of chemotherapeutic drugs and their combinations [85] and radiation treatment

[86]. Also, as is often the case with avascular tumors, the solid tumor may be surgically

removed, if discovered early enough. With the advancement in imaging techniques,

much work has been done to extend earlier modelling of glioma to better model tumor

growth as it applies to treatment (removal and radiation). In particular, better models

for predicting survival rates have been developed [87], as well as models that predict ef-

ficacy of radiotherapy for individual patients [88]. Typically, MRI is used to detect tu-

mors, and provides the imaging information needed for validating mathematical models.

Other imaging techniques, such as Diffusion Tensor Imaging (DTI) (a technique which

measures the anisotropic diffusion of water molecules in a tissue), have been used to bet-

ter establish diffusion parameters required for models to predict the appropriate boundary

of a tumor. Such information can be used to describe the appropriate boundary required

for either surgical removal of a tumor or radiation treatment [89,90].

Even though many treatment protocols exist, the probability of individuals surviving

advanced stages of cancer is very low. As a result, many questions still remain as to

how chemotherapeutic drugs work at a molecular level (e.g., which proteins they target

by design and which by accident), and how radiation treatments should be delivered in

order to maximize the death of cancer cells, while minimizing the harm to normal

healthy tissue. Mathematical and computational modeling plays an important role in

understanding radiation treatment protocols. For example, many models have been de-

veloped to define a tumor control probability (TCP) [91], where TCP is defined as the

probability that no clonogenic cells survive radiation treatment [92]. TCP models have

been incorporated into existing cancer models that describe cancer growth without

treatment, such as those described above, to better understand the effects of

radiation treatment on normal tumor dynamics [93].

The models discussed above describe the spatial and temporal changes of certain quan-

tities that are of interest in various biological systems. In particular, the differential equa-

tions described above give temporally dependent solutions (and spatially dependent

solutions in the case of the PDEs described) for various quantities, including the total pop-

ulations of individuals, the total number/density of cells, or the total molecular concentra-

tion of a certain compound. Many of the successes and limitations of a differential

equation modeling approach are highlighted above. One limitation, not highlighted in the

above sections, is that such methods (those that use only a handful of differential equa-

tions) are not appropriate for describing the smaller scale movements of molecules. The

movement and structure of an individual molecule is based on the many complex interac-

tions between the individual atoms within a molecule, as well as its interactions with sur-

rounding molecules. In order to follow the motions of every atom and molecule over

extremely small timescales, computational methods such as molecular dynamic simula-

tions (designed to solve extremely large systems of differential equations over very small

timescales) can be applied. This technique is described in the following section.
Molecular dynamics
The sophistication of the model used to study a given system depends on the property of

interest. Often, a 3D model of a molecule or complex that shows the spatial relationships



Tuszynski et al. Theoretical Biology and Medical Modelling 2014, 11:52 Page 15 of 42
http://www.tbiomed.com/content/11/1/52
between atoms is the best way to understand a system. Such computational models pro-

vide a means of observing the structure and motion of individual atoms within complex

biomolecular systems. Although a physical model of a small molecule with less than 20

atoms can be easily made from plastic or wire in a few minutes, a similar model of a pro-

tein or an enzyme involves hundreds or thousands of atoms. Over the last decade im-

provements in a combination of computer graphics programs, and molecular modeling

techniques and hardware have resulted in an unprecedented power to create and manipu-

late 3D models of molecules.

Molecular dynamics (MD) simulations follow the motions of atoms and molecules,

and provide a means of investigating biological problems at a molecular level. This is

achieved by solving Newton’s equations of motion (EOM) for interacting atoms and

evolving a system through time and space. Changes in atomic positions and velocities

over time, usually ranging from nano- to milliseconds, result in a trajectory. In simple

cases with few atoms, analytic solutions to Newton’s EOM can be obtained, giving a

trajectory that is a continuous function of time (Figure 1). However, in a computer

simulation with many atoms, the EOM are solved numerically. Forces are evaluated for

discrete intervals, or time steps (Δt, Figure 1) on the order of femtoseconds, where the

forces are considered constant over a given time step. The goal is to follow the continu-

ous function of time as closely as possible, which requires small time steps to ensure

the motions of all atoms are resolved.

The forces on each atom are derived from the potential energy of the system, which

can be described with quantum or classical mechanics. Since quantal descriptions are

generally limited to small systems, classical descriptions are commonly used when

studying biological systems and will be discussed in this section. It is worth noting that

MD is a deterministic approach for exploring the potential energy surface of a system,

while a stochastic approach can be obtained using Monte Carlo methods.
Figure 1 The evolution of a trajectory, showing the continuous, true trajectory (red), being closely
followed by the MD trajectory (black).
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MD trajectories are analyzed to obtain information about the system, including struc-

tural changes as measured by atomic root-mean-square deviation (RMSD), non-

covalent interactions, binding free energies [94], structural stability, short-lived reaction

intermediates [95], conformational changes, flexibility, ligand binding modes [96], as

well as ionic conductivity and mobility [97]. Numerous and diverse applications include

the investigation of clinically important proteins such as HIV-1 gp120 [98], protein

binding sites [99], drug resistance mechanisms of HIV-1 protease [100], protein folding

[101,102] and the role of crystal water molecules in ligand-protein binding [103].

Force fields for protein simulations

Newton’s second law, m€x ¼ −∇V , establishes the relation between mass (m) and acceler-

ation (€x), as well as force (−∇V), which is the negative of the gradient of the potential en-

ergy function (V). During an MD simulation, the forces acting on each atom of the system

are calculated and atoms are moved according to those forces. In a classical MD simula-

tion, the potential is calculated with a force field. The potential terms in a force field are a

sum of contributions due to covalently-bonded interactions (Vbond, Vangle, Vtorsion) and

non-bonded interactions. Non-bonded interactions are calculated pairwise between two

atoms, denoted i and j, and commonly include van der Waals (Vij,vdW) and electrostatic

(Vij,electrostatic) contributions.

V ¼
X
bonds

V bond þ
X
angles

V angle þ
X

torsions

V torsion þ
X
i<j

V ij;vdW þ
X
i<j

V ij;electrostatic ð30Þ

Due to the pairwise calculation of non-bonded interactions, such force fields scale as

N2, where N is the number of atoms in the system. Each potential term contains pa-

rameters, where fitting to experiment is required to calculate these interactions [104].

Parameter fitting is done to reproduce the behavior of real molecules. This includes de-

termining the van der Waals’ radii, partial charges on atoms, bond lengths, bond angles

and force constants. These parameters, along with the functional form of each potential

term, collectively define a force field. Today, several types of force fields are available:

(a) all-atoms force fields (parameters are considered for every atom), (b) united-atoms

force fields (aliphatic hydrogen atoms are represented implicitly) and (c) coarse-grained

force fields (groups of atoms are treated as super atoms). For a list of all force fields

discussed, see Table 1.

Most all-atom force fields for proteins use relatively simple functions for modeling

the potential energy surface [105], which correspond to the terms in Equation (30):

V ¼
X
bonds

Kb b−b0ð Þ2 þ
X
angles

Kα α−α0ð Þ2 þ
X

torsions

Kϕ cos nϕ þ φ0ð Þ þ 1½ �

þ
XN
i<j

Aij

r12ij
−
Bij

r6ij

 !
þ
XN
i<j

qiqj
4πε0rij

ð31Þ

The variables are indicated in Figure 2. The first term includes the stretching of

bonds, where the potential is calculated using parameters Kb (related to force constant)

and b0 (related to equilibrium bond length), as well as the variable, b, which is the dis-

tance between bonded atoms. Similarly, the second term includes angle bending, where

parameters Kα and α0, represent force constants and equilibrium angles, and the variable

(α) is the angle obtained from the structure of interest. The third term, representing the



Table 1 List of force fields

Name Family Type Reference

ff94 Amber All-atoms [104]

ff99 Amber All-atoms [107]

ff99SB Amber All-atoms [106]

ff03 Amber All-atoms [112,113]

ff03.r1 Amber All-atoms

ff03ua Amber United-atoms [114]

ff12SB Amber All-atoms [110]

ff14SB Amber All-atoms

GAFF Amber All-atoms [115]

CHARMM CHARMM United-atoms [117]

CHARMM19 CHARMM United-atoms [118]

CHARMM22 CHARMM United-atoms [119]

CHARMM22/CMAP CHARMM United-atoms [120]

CHARMM27 CHARMM United-atoms [116]

CGenFF CHARMM United-atoms [121]

OPLS-UA OPLS United-atoms [117]

OPLS-AA OPLS All-atoms [122]

GROMOS (A-version) GROMOS United-atoms [125]

GROMOS (B-version) GROMOS United-atoms [125]

43A1 GROMOS United-atoms [126]

45A3 GROMOS United-atoms [127]

53A5 GROMOS United-atoms [128]

53A6 GROMOS United-atoms [128]

54A7 GROMOS United-atoms [129,130]

54B7 GROMOS United-atoms [129,130]

54A8 GROMOS United-atoms [129,130]

MARTINI MARTINI Coarse-grained [131-134]
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potential from dihedral angles, involves parameters Kϕ, (barrier for rotation), n (number

of maxima) and φ0 (angular offset), as well as the variable φ, obtained from dihedral angles

in the structure. The final two terms in Equation (31) represent non-bonded interactions

between atoms i and j, which are summed over N atoms of the system. In this potential

function, the van der Waals term is represented by the Lennard-Jones potential, where Aij

and Bij are atom specific parameters related to atom size, and rij is a variable representing

the distance between atoms i and j. The electrostatic term in Equation (31) is calculated
Figure 2 An illustration of the variables involved in a basic all-atom force field, corresponding to
Equation (31).
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by a Coulomb potential, where parameters qi and qj are (fixed) charges on atoms i and j,

respectively, and the constant ε0 is the permittivity of free space. The force constants are

obtained by empirical methods or by quantum mechanics calculations, depending on the

force field. Here we present a summary of the most commonly used force fields in MD

simulations, namely Amber, CHARMM, OPLS, GROMOS and MARTINI.

Amber force fields

The functional form from which most of the Amber (Assisted Model Building with En-

ergy Refinement) force fields come uses Equation (31) and was developed by Cornell

and co-workers (denoted ff94) [104]. However, various revisions have since been

developed that vary in their parameterization, with the goal of improving results. One

notable revision of Amber for proteins and nucleic acids is ff99SB [106], which was de-

veloped at Stony Brook University as a modification of the old ff99 force field [107]

and improves on ff99 in its description of the φ and ψ dihedral angles of the protein

backbone, resulting in a better balance between secondary structures, and improved

treatment of glycine [108,109]. The ff12SB revision [110] reparameterizes backbone tor-

sion angles, side chain torsions in select amino acids, and incorporates improved back-

bone torsions in DNA and RNA, with recent studies finding ff12SB performs better

than ff99SB [111]. The current and most recent version, ff14SB, is recommended by

Amber developers and minimizes dependencies of protein side chain conformations on

backbone conformations by including side-chain corrections, and improves upon dihe-

drals in DNA and RNA, particularly χ. Another extensively-used Amber force field is

ff03 [112,113] (the latest version is ff03.r1), which improves upon the charges calculated

by ff99 by using charges derived from quantum calculations with a continuum dielec-

tric to simulate the solvent polarization. A united-atom version of ff03, ff03ua, is also

available [114]. Expanding the utility of the Amber force fields beyond peptides and nu-

cleotides is the general Amber force field (GAFF) [115], which includes a complete set

of parameters for a large number of small molecules while still remaining fully compat-

ible with the other versions of the Amber force fields discussed above. This allows for

Amber and GAFF to be combined to examine protein-ligand complexes, as well as

modified proteins, DNA or RNA.

CHARMM force fields

The CHARMM (Chemistry at Harvard Macromolecular Mechanics) force fields are also a

prominent set of force fields for studying biological systems. The functional form of the

force field used by CHARMM is based on Equation (31), but also includes additional

terms to treat improper torsions and atoms separated by two bonds (Urey-Bradley term)

[116]. The CHARMM force fields use classical (empirical or semi-empirical) and quantum

mechanical (semi-empirical or ab initio) energy functions for different types of molecular

systems. They include parameters for proteins, nucleic acids, lipids and carbohydrates,

allowing simulations on many common biomolecules. The initial version of the

CHARMM force field was developed in the early 1980s, and used an atom force field with

no explicit hydrogens [117]. However, in 1985, CHARMM19 parameters were developed

in which hydrogen atoms bonded to nitrogen and oxygen were explicitly represented; hy-

drogens bonded to carbon or sulfur were still treated as extended atoms [118].

CHARMM19 parameters aimed to provide a balanced interaction between solute-water
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and water-water energies. Although this force field was tested primarily on gas-phase sim-

ulations, it is now used for peptide and protein simulation with implicit solvent models.

Newer versions of CHARMM, such as CHARMM22, include atomic partial charges that

are derived from quantum chemical calculations of the interactions between model com-

pounds and water [119]. Although CHARMM22 is parameterized for the TIP3P explicit

water model, it is frequently used with implicit solvents. CHARMM27 parameters were

developed for nucleic acids (RNA, DNA) and lipid simulations [116]. Since both

CHARMM27 and CHARMM22 are compatible, it is recommended CHARMM27 be used

for DNA, RNA and lipids, while CHARMM22 should be applied to protein components

[116]. A more recent, dihedral-corrected version of CHARMM22 was developed, denoted

CHARMM22/CMAP, which improves the parameters describing the φ and ψ dihedral an-

gles of the protein backbone [120]. A general version of the CHARMM force field

(CGenFF) also exists which allows to the treatment of drug-like while maintaining com-

patibility with other the CHARMM force fields [121].

OPLS force fields

For the OPLS (Optimized Potentials for Liquid Simulations) family of force fields the

form of the potential energy function differs from Equation (28) in the dihedral term,

and was parameterized by Jorgensen and co-workers [117]. OPLS force fields were pa-

rameterized simulate the properties of the liquid states of water and organic liquids

[118]. For proteins, a united-atom version was first developed (OPLS-UA), followed by

an all-atoms version (OPLS-AA) [122]. Charges and van der Waals terms were ex-

tracted from liquid simulations. The OPLS-AA force field uses the same parameters as

the Amber force fields for bond stretching and angles. The torsional parameters were

obtained by using data from ab initio molecular orbital calculations for 50 organic mol-

ecules and ions [123]. Several improvements and re-parameterizations were proposed

in later years for this set of force fields [122,124], including for simulations of phospho-

lipid molecules [125].

GROMOS force fields

The GROMOS (Groningen Molecular Simulation) force fields are united-atom force

fields that that were developed in conjunction with the software package of the same

name to facilitate research efforts in the field of biomolecular simulation in a univer-

sity environment [125]. Its functional form varies from Equation (31) in the dihedral

term, and differs from other force fields in its goal of reproducing enthalpies of hy-

dration and solvation. The initial GROMOS force field (A-version) was developed for

applications to aqueous or apolar solutions of proteins, nucleotides and sugars. How-

ever, a gas phase version (B-version) for the simulation of isolated molecules is also

available [125]. Important versions of the GROMOS force fields include GROMOS

43A1 [126] (improved treatment of lipid bilayers), GROMOS 45A3 [127] (relevant to

lipid membranes and micelles) and GROMOS 53A5 and 53A6 [128] (recommended

for the simulation of biomolecules in explicit water). Recent releases such as GRO-

MOS 54A7 and 54B7 involve modifications to φ and ψ protein dihedral angles, new

lipid atoms types, new ion parameters and additional improper dihedral types, while

GROMOS 54A8 accurately models the structural of lipid bilayers, proteins and elec-

trolyte solutions [129,130].
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MARTINI force fields

The semi-empirical MARTINI force field is the most commonly used coarse-grained

force field for biomolecular system simulations; it was originally developed for lipid

simulations [131]. In this potential energy surface, four heavy atoms in a molecule are

considered as a single interaction site, and only four types of interaction have been con-

sidered, namely polar, non polar, apolar and charged; moreover, each particle has differ-

ent subtypes for taking in account the underlying atomic structure; a special particle

types has been introduced for the ring conformations, as the four-to-one mapping is

not appropriate to represent small ring molecules. Initially developed for lipid simula-

tions, this force field includes now extensions for the parameterization of proteins

[132], carbohydrates [133] and more recently glycolipids [134]. With the approxima-

tions introduced by the coarse grain approach it is possible to increase both the time-

scale and the size of systems compared with all-atoms or united-atoms force field

simulations. The list of fields where MARTINI was employed includes characterization

of lipid membranes [135], protein-protein interactions [136], self assembly of peptides

and proteins [137] and interactions between nanoparticles and biological molecules, as

for example the study of the mechanism by which fullerene can penetrate the cellular

lipid membrane performed by Wong-Ekkabut et al. [138] and other applications [139].

However, MARTINI cannot be used for protein-folding studies [139], as the secondary

structure is a required input parameter.

Calculation of solvation free energies

The calculation of solvation free energies is a challenging problems in MD simulations.

Determining solvation free energy is especially difficult in aqueous bio-systems due to

the size of the system [140]. Solvation free energy, ΔGsolv, is a thermodynamic property

defined as the net energy change upon transferring a molecule from the gas phase into a

solvent with which it equilibrates [141]. Solvation effects can change the physical and

chemical properties of biomolecules including charge distribution, geometry, vibrational

frequencies, electronic transition energies, NMR constants and chemical reactivity [142].

Several methods have been developed for modeling solvation and one can select the

most advantageous choice among them based on the required accuracy and computa-

tional cost. To simulate effects of solvent on biomolecules, one can use explicit or implicit

solvent models. While explicit solvent models include solvent molecules in the system,

implicit models use a mean field approach [143,144]. Although explicit solvent simula-

tions are computationally expensive because of the enormous numbers of atoms involved,

they provide a more realistic picture of solute-solvent interactions, reflecting the molecu-

lar complexity of the biomolecule and its environment. In comparison, implicit solvent

models increase the speed of the simulation since the Newtonian equations of motion are

not solved for additional solvent molecules. Table 2 lists the solvation models discussed.
Implicit water models

The simplest approach to solvation is to treat the effects (e.g. electrostatic interactions,

cavitation, dispersion attraction and exchange repulsion) of solvent on the solute with

an implicit model. These methods represent the solvent as a continuum environment,

where the quality of the results is most affected by the electrostatic and cavitation (the



Table 2 List of solvation models

Name Type Reference

Poisson–Boltzmann (PB) Implicit [145,146]

Generalized Born (GB) Implicit [140,141,147,149-151]

3D-RISM RISM [140,152-158]

3D-RISM-KH RISM [156,164]

MTS-MD/OIN/ASFE/3D-RISM-KH RISM [149]

3D-RISM-KH-NgB RISM [168]

SPC Explicit [174]

SPC/E Explicit [174]

POL3 Explicit [175]

TIP3P Explicit [176]

TIP3P/F (TIP3P-PME/LRC) Explicit [177]

TIP4P Explicit [176,178]

TIP4P/Ew Explicit [179]

TIP5P Explicit [180]
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size and shape of a cavity that the solute occupies) contributions. The solvation free en-

ergy of a molecule, ΔGsolv, can be divided into two parts: electrostatic (ΔGel) and non-

electrostatic (ΔGnonel). The electrostatic energy is defined as the free energy required to

remove all the charges in vacuum and add them back to the solute in the presence of

continuum solvent [140,141]. The origin of the non-electrostatic energy is a combin-

ation of favorable solute-solvent van der Waals interactions and the unfavorable disrup-

tion of the water structure by solute molecules (cavitation), and corresponds to

solvating the neutral solute. There are several different implicit solvent models dis-

cussed below: the Poisson–Boltzmann model and the generalized Born model, which

differ in how ΔGel is obtained.

Poisson–Boltzmann model Solving Poisson’s equation, which is valid under condi-

tions where ions are absent, gives a second order differential equation describing the

electrostatic environment that is modeled with a dielectric continuum model [145],

∇⋅ε rð Þ∇φ rð Þ ¼ −4πρ rð Þ; ð32Þ

where φ(r) is the electrostatic potential, ε(r) is the dielectric constant and ρ(r) is the

charge density.

Poisson’s equation cannot be solved analytically for most systems, and must be solved

using computers and adopting numerical methods. The Boltzmann contribution, along with

the assumptions of the Debye–Hückel theory, describes the charge density due to ions in

solution. This results in the (non-linearized) Poisson–Boltzmann (PB) equation [146]:

∇⋅ε rð Þ∇φ rð Þ− εskT
e

S rð Þκ2sinh eφ rð Þ=kT½ � ¼ −4πρ rð Þ; ð33Þ

where κ denotes the Debye–Hückel parameter, εs is the solvent dielectric constant, S(r)

is a “masking” function with value 1 in the region accessible to the ions in the solvent

and value 0 elsewhere; e is the protonic charge; k is Boltzmann’s constant; T is the ab-

solute temperature. Here, the charge density on the right represents the partial charges
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in the cavity. When the ionic strength of the solution or the potential is low, Equation

(33) can be linearized by expanding the second term on the left into a Taylor series and

retaining only the first term:

∇⋅ε rð Þ∇φ rð Þ−εsκ2S rð Þφ rð Þ ¼ −4πρ rð Þ; ð34Þ

The non-electrostatic contribution (ΔGnonel) to the solvation free energy is calculated
by empirical methods and is proportional to the solvent accessible surface area. This is

added to the electrostatic part to yield the solvation free energy. Although the PB ap-

proach is mathematically rigorous, it is computationally expensive to calculate without

approximations [141,147,148]. The generalized Born model provides a more efficient

means of including solvent in biomolecular simulations.

Generalized born model The generalized Born (GB) model is based on the Born ap-

proximation of point charges, modeling solute atoms as charged spheres with an in-

ternal dielectric (generally equal to 1) that differs from the solvent (external) dielectric.

The polarization effects of the solvent are represented by a dielectric continuum repre-

sents the polarization effects of the solvent. Numerical methods are used to determine

the charges on the solute spheres that result in the same electrostatic potential on the

cavity surface that mimics that of the solute in a vacuum.

By making approximations to the linear Poisson-Boltzmann equation (Equation 31),

the electrostatic contribution of the generalized Born model is obtained:

ΔGel ¼ −
1
2

1
εint

−
1
εext

� �X
ij

qiqj

r2ij þ αiαjexp −r2ij
.
4α iαj

� �� �1=2; ð35Þ

where αi is effective Born radius of particle i, rij is the distance between atoms i and j,

εint and εext the internal and external dielectric constants, respectively, and qi is the

electrostatic charge on particle i. Like the PB method, ΔGnonel is calculated from the

solvent-accessible surface area [140,141,147,149-151].

Reference interaction site model

Another type of solvation model is a probabilistic method known as the 3D reference

interaction site model (3D-RISM) [140,152-158]. This molecular theory of solvation

simulates the solvent distributions rather than the individual solvent molecules. How-

ever, the solvation structure and the associated thermodynamics are obtained from the

first principles of statistical mechanics.

In this method, the 3D site density distributions of the solvent are obtained, which

accounts for different chemical properties of the solvent and solute. These properties

include hydrogen bonding, hydrophobic forces and solvation thermodynamics, such as

the partial molar compressibility and volume. In addition, the solvation free energy po-

tential and its energetic and entropic components can be calculated. The solvation free

energy is calculated from the RISM equation as well as the closure relation [159-163].

Several additional advances have been made in formulating improved versions of the

3D-RISM theory including the hypernetted chain (HNC) closure approximation

[152,153]. Another derivation came from the molecular Ornstein–Zernike integral

equation [163] for the solute-solvent correlation functions [155,156,164]. Sometimes
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the calculated solvation free energy for ionic and polar macromolecules involves large

errors due to the loss of long-range asymptotics of the correlation functions. Work has

been done to account for the analytical corrections of the electrostatic long-range as-

ymptotics for the 3D site direct correlation functions as well as the total correlation

functions [157,158,164]. Other developments include the closure approximation, 3D-

RISM-KH closure, for solid-liquid interfaces, fluid systems near structural and phase

transitions, as well as poly-ionic macromolecules [156,164].

Two methods have been developed to couple 3D-RISM with MD. The first method

makes use of a multiple time step (MTS) algorithm [165,166] wherein the 3D-RISM

equations are solved for a snapshot of the solute conformation, then solved again after

a few MD steps. This method is limited by the requirement to re-solve the 3D-RISM

equations every few MD steps, which is computationally expensive for large biomolecu-

lar systems. The second of these methods involves the contraction of the solvent de-

grees of freedom and the extrapolation of the solvent-induced forces. These methods

are aimed at speeding up the calculations, which is useful for larger systems [149].

Other work has involved the development of the multi-scale method of multiple time

steps molecular dynamics (MTS-MD) in a method referred to as MTS-MD/OIN/

ASFE/3D-RISM-KH [149]. Specifically, this method converges the 3D-RISM-KH equa-

tions at large outer time steps and uses advanced solvation force extrapolation to calcu-

late the effective solvation forces acting on the biomolecule at inner time steps. The

integration between the inner and outer time steps is stabilized by the optimized iso-

kinetic Nosé–Hoover chain (OIN) ensemble, which enables an increase of the outer

time step. Furthermore, effort was expended on MTS-MD aimed at converging the 3D-

RISM-KH integral once every few OIN outer time steps, and the solvation forces in be-

tween were obtained by using solvation force-coordinate extrapolation (SFCE) in the

subspace of previous 3D-RISM-KH solutions [167]. Another developed model is the

3D-RISM-KH-NgB [168]. In this model the non-polar component of the hydration free

energy obtained from 3D-RISM-KH is corrected using a modified Ng bridge function

[169]. Calibration of this model is based on the experimental hydration free energy

values of a set of organic molecules.

Lastly, work has been done to improve the performance of 3D-RISM calculations by

running them on graphical processing units (GPUs). To overcome memory issues, a

modification of the Anderson Method [170] that accelerates convergence was intro-

duced [171]. This method was reported to be eight times faster on an NVIDIA Tesla

C2070 GPU as compared to the time taken on an eight-core Intel Xeon machine run-

ning at 3.33 GHz.

Although 3D-RISM calculations are more computationally expensive than GB and

PB based solvation methods [172], they overcome some of the inherent shortcomings

of these empirical methods [173].

Explicit water models

Explicit solvation is characterized by modeling individual water molecules around a solute.

Several explicit water models are available in the Amber, NAMD and Gromacs MD simu-

lation packages. These include simple explicit solvent models (SPC [174], SPC/E [174]),

polarizable models (such as POL3 [175]), and fixed-charge explicit solvent models (TIP3P

[176], TIP3P/F [177], TIP4P [176,178], TIP4P/Ew [179] and TIP5P [180]).
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Examples of explicit water models are the simple point charge (SPC) model and the

extended simple point charge (SPC/E) model [174]. In both of these models the water

molecules are rigid. A derivative of SPC with flexible water molecules has been devel-

oped [181]. Another simple explicit model is the POL3 water model, which is a

polarizable model [175].

More complex explicit water models include the transferable intermolecular potential

n point (TIPnP), where n represents the number of interaction sites on each model.

These are the most common classes of explicit solvent models in use [147]. In the case

of TIP3P, the most simple TIPnP model, the interaction sites includes the oxygen and

two hydrogen atoms [176]. A re-parameterized model of TIP3P is the TIP3P-PME/

LRC, also referred to as TIP3P/F [177], which calculates electrostatic contributions by

particle mesh Ewald (PME) summation and includes a long-range van der Waals cor-

rection (LRC). TIP4P [176,178] introduced a fourth dummy atom bonded to the oxy-

gen to improve the electron distribution in the water molecule. This model has been

re-parameterized for use with Ewald sums: TIP4P/Ew [176,178]. The five interaction

points in the TIP5P [180] model include two dummy atoms near oxygen, which further

improves the charge distribution around the water molecule.
Molecular dynamics methods

Examining the dynamics of a system at an atomic scale requires beginning with a model

having atomic-level resolution. For biological macromolecules, this may be experimentally

obtained from nuclear magnetic resonance (NMR) spectroscopy or X-ray crystallographic

data. Although electron microscopy data does not provide structures with atomic reso-

lution, this data can be combined with structural data from NMR or crystallography to

obtain a high-resolution structure. NMR, crystallographic and electron microscopy struc-

tures of bio-macromolecules can be downloaded from the Protein Data Bank (http://

www.pdb.org). In the absence of experimental data, homology modeling may be used to

generate the 3D structure of a protein (the target) using its amino acid sequence and an

experimentally-available 3D structure of a homologous protein (the template). Homology

modeling can produce high-quality structures of a target protein if the sequence identity

of the target and template is sufficiently high (typically > 40%).

As with any computational modeling, performing MD simulations requires a balance

between accuracy and efficiency. Ideally, a system should be allowed to evolve in time

indefinitely so that all states of a system may be sampled. However, this is not possible

in practice. Several techniques have been developed so improve simulation efficiency,

while still maintaining accuracy. During a simulation, costly force calculations are per-

formed in discrete time increments, known as time steps, typically on the order of fem-

toseconds. Although it is necessary to have small time steps to properly resolve the

motion of atoms, this results in many force calculations and therefore large computa-

tional costs. To address this, one can restrain the fastest vibrations, which involve

hydrogen, giving the SHAKE algorithm [182]. This allows a larger time step to be used

during simulations [183]. Additionally, the number of time-consuming non-bonded po-

tentials calculated can be limited by using a cut-off based method [184]. Here, interac-

tions are calculated between pairs of atoms within the cutoff distance, but neglected for

atom pairs that are far apart. Although this is generally appropriate for the short-range

http://www.pdb.org
http://www.pdb.org
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nature of van der Waals interactions, using cutoffs to calculate long-range Coulomb in-

teractions leads to instabilities [185]. Alternatively, the particle mesh Ewald (PME) ap-

proach [185-188] can be used to calculate electrostatic potentials, which involves the

calculation of the short range electrostatic component in real space and the long-range

electrostatic component in Fourier space.

The simplest way to enhance sampling during an MD simulation is to increase the

time duration of a simulation, which is usually on the order of nano- to milli-seconds.

Researchers may also conduct multiple simulations that begin with the same initial

structures [189], providing denser sampling of the conformational space by utilizing

multiple trajectories. Advanced techniques also exist to increase the number of states

of a system that are sampled during an MD run [190]. Enhanced sampling can be

achieved by metadynamics [191], which allows for the high-energy regions between

minima to be explored. This helps the system to escape local free energy minima and

explore metastable states separated by large free energy barriers [192]. Metadynamics,

which is used to calculate static properties, can also be used to calculate dynamic prop-

erties by introducing a history-dependent biasing potential as a function of a few col-

lective variables. Selection of collective variables is an essential part of a metadynamics

run as these variables help sample different energy basins. The use of metadynamics,

which is a combination of ideas involving coarse-grained dynamics in space and the

introduction of a history-dependent bias, can overcome the problem of limited time

scale exploration by existing sampling algorithms and computational resources.

Replica-exchange molecular dynamics (REMD) has also been preferred over standard MD

to enhance sampling by allowing systems of similar potential energies to sample confor-

mations at different temperatures [193,194]. This overcomes the energy barriers on poten-

tial energy surfaces and helps explore more conformational space. REMD can effectively

sample energy landscapes, including both high- and low-energy structures, which is espe-

cially important in the case of protein folding and unfolding processes [195].

In addition to obtaining structural information about a system, molecular dynamics

provides information about energetics, particularly binding. Given the inherent flexibil-

ity of the these biomolecules over time, and throughout an MD simulation, properties

such as the free energy are calculated as the time-average of an ensemble of snapshots

obtained from MD trajectories [196-198]. Binding calculations have applications in

drug design, protein-protein interactions and DNA stability. For example, the binding

free energy of a ligand to a protein is calculated as the difference in free energy between

the complex, and the receptor and ligand (ΔGbind = Gcomplex − Greceptor − Gligand) [199].

The free energy is calculated as a sum of the energy contributions from the force field,

free energy of solvation and entropy (G = EMM + Gsol + TΔS). Commonly in MD, the

solvation free energy is obtained from an implicit solvent model (Poisson-Boltzmann,

generalized Born) and the solvent accessible surface area (denoted MM-PBSA and

MM-GBSA, respectively) [199]. Decomposition of the binding free energies provides a

means of obtaining information about the residues that significantly contribute to the

binding affinity of a ligand. Pairwise decomposition may also provide insight into

changes in binding that result from mutations, especially single point mutations [200].

Molecular dynamics is increasingly being used to solve a host of problems [201-207].

The simulation of bio-macromolecules, especially in conjunction with solvent, is very

computationally demanding. This demand is being met by the increasing power and
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speed of modern computers, including special purpose computers such as Graphical

Processing Units (GPUs) [208]. Novel methods have been developed to enhance the ex-

ploration of conformational space. The accuracy of force fields continues to improve

with recent reparameterizations. A variety of solvation models exist, which can also be

used to calculate binding free energies, which are immensely important in drug discovery

applications, identifying enzyme inhibitors or compounds that block protein-protein inter-

actions. Although classical MD simulations have been proven useful in studying a variety

of biomolecular systems, they are limited in their application to stable structures. The

examination of systems involving chemical reactions or quantum phenomena requires

treatment using quantum mechanics methods, or the combination of quantum mechanics

and molecular mechanics methods (denoted QM/MM). The application of quantum

methods to biomolecules is discussed in the next section.

Quantum mechanics in biophysical modeling
Quantum mechanics (QM) calculations, being highly accurate and rigorous, are an es-

sential tool in computational chemistry studies. Unfortunately, the prohibitive size of

many biological systems has limited theoretical and computational studies of them to

the realm of classical mechanics, largely utilizing non-polarizable force fields in MD

simulations. This has necessarily reduced the scope of studies to conformational or

structural aspects of these bio-systems, rather than more complex problems such as

chemical reactions or quantum phenomena (excited states and charge-transfer, for ex-

ample). Although hybrid quantum mechanics/molecular mechanics (QM/MM) ap-

proaches have increased accuracy, recent improvements in software, hardware and

theory have allowed for full quantum mechanical studies of biochemical systems. The

QM methods and functionals discussed are listed in Table 3.

Quantum mechanics methods
The wavefunction, which contains all the information describing a quantum system, is

obtained by solving the Schrödinger equation, usually in its time-independent, non-

relativistic form, invoking the Born–Oppenheimer approximation.

Ĥψ ζ1; ζ2;…ζN ; R
→

A
; R
→

B
;… R

→

M

� �
¼ Eψ ζ1; ζ2;…ζN ; R

→

A
; R

→

B
;… R

→

M

� �
; ð36Þ

This wavefunction, ψ, is a function of N electronic coordinates and depends paramet-

rically on M nuclear coordinates. The coordinates of an electron are denoted ζN = (xN,

yN, zN, σN), where xN, yN, zN are the spatial coordinates of electron N, and σN is the spin

of this electron. The spatial coordinates of nucleus M are indicated by R
→

M
.

The Hartree–Fock (HF) method is the simplest ab initio QM method for obtaining

the wavefunction, where the N-electron wavefunction is approximated as a product

of N one-electron wavefunctions, expressed in a Slater determinant. However, the

HF theory is insufficient in describing electron correlation. Electron correlation is in-

cluded in post-Hartree–Fock ab initio methods such as the Møller–Plesset perturb-

ation theory (MP2) or coupled-cluster (CC) calculations, although at increased

computational cost. While HF scales formally as K4, where K is the number of basis

functions, MP2 scales as K5, and the gold-standard CCSD(T) scales as K7. A detailed



Table 3 List of QM methods and functionals

Name Type Reference

Hartree–Fock (HF) ab initio method [209]

Møller–Plesset (MP2) ab initio method [209]

Coupled-cluster (CC) ab initio method [209]

CCSD(T) ab initio method [209]

CCSD(T)/CBS ab initio method [220]

MNDO Semi-empirical method [210-212]

AM1 Semi-empirical method [210-212]

PM3 Semi-empirical method [210-212]

PM6 Semi-empirical method [210-212]

OMx Semi-empirical method [210-212]

B3LYP DFT functional [214]

PBE DFT functional [214]

TPSS DFT functional [214]

DFT-D2 DFT method [215,218]

DFT-D3 DFT method [215,218]

Effective fragment potential (EFP) Fragmentation method [241-243]

Fragment molecular orbital (FMO) Fragmentation method [244]

Elongation (ELG) Fragmentation method [245]

Divide and conquer (DC) Fragmentation method [246]
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description of these methods, and many others, is available in the Encyclopedia of

Computational Chemistry [209].

An alternative approach to including electron correlation is using semi-empirical

quantum methods, where expensive two-electron integrals in the HF method are elimi-

nated and the method is supplemented with parameters derived from experimental

data. Although these methods are computationally very efficient, their applicability is

generally limited to systems similar to the parameterization set. Many variants of semi-

empirical methods exist, with applicability to biological systems [210-212], including

MNDO, AM1, PM3, PM6, and the OMx methods.

The electron density, a physical observable, also determines all properties of a system,

and it is this fact that is utilized in the density functional theory (DFT) [213].

ρ r
→

1

� �
¼ N

Z
ψ r

→

1
; r
→

2
; r
→

3
;… r

→

N

� �����
����
2

dr2…drN ð37Þ

Since DFT methods scale as K3, they are more efficient than the HF method while

also containing electron correlation. Therefore, DFT has been successful in the study of

a variety of biological systems [214]. Many functionals exist (for example, B3LYP, PBE

and TPSS [214]), which vary based on the form of the exchange-correlation functional,

and the performance of each functional is highly dependent on the system and proper-

ties of interest [213]. Even with the formal inclusion of electron correlation, many DFT

functionals are inadequate in modeling dispersion forces, a dominant source of

stabilization in bio-macromolecules. A common approach for improving the perform-

ance of DFT functionals is to add a dispersion correction, which can be derived either
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empirically or from high-level ab initio calculations [215-217]. For example, the DFT-D2

and DFT-D3 methods are popular [215,218]. It is worth noting that the dispersion terms

have also been applied to improve semi-empirical methods [210,212,217,219].

The electronic structure methods mentioned above, particularly the ab initio methods,

have been largely limited to studying small molecules or truncated systems of biological

and medicinal/pharmaceutical interest. For example, extensive benchmarking studies have

examined non-covalent interactions to identify efficient methods of comparable accuracy

to CCSD(T)/CBS [220]. QM methods are also routinely used to develop MD force field

parameters and charges using small models, as well as to parameterize docking scoring

functions [219]. Additionally, ligand strain may be evaluated with QM methods [219].

Quantitative structure–activity relationship (QSAR) models also utilize QM methods to

calculate the predictor variables such as electrostatic potentials, orbital energies, charges,

and dipoles in small molecules [219,221]. The QM methods, specifically the semi-

empirical and DFT approaches, were combined with truncated protein models to examine

protein-ligand interactions [211]. Nevertheless, the use of QM methods to study very large

systems remains limited. In order for the extensive applications of QM methods to macro-

molecular systems of biological and medicinal interest to be feasible, significant advances

in software, hardware, and theory must be achieved [222].
Acceleration of quantum mechanics with graphical processing units

Graphics processing units (GPUs) have led to substantial accelerations in high-

performance computing, with significant advancements for costly QM calculations.

GPU-accelerated code has been developed for the HF method [223], correlated ab

initio methods [223-225], semi-empirical methods [226,227], and DFT [228]. In fact,

GPU acceleration is now implemented in many quantum chemistry programs. NVI-

DIA reports the following programs as having GPU support: ABINIT, BigDFT, CP2K,

GAMESS-US, GAMESS-UK, GPAW, LATTE, MOLCAS, MOPAC2012, NWChem,

OCtopus, PEtot, Q-Chem, QMCPACK, Quantum Espresso, TeraChem, and VASP [208].

However, the most extensive use of GPUs in a QM code [229-234] has been implemented

in TeraChem, an electronic-structure package specifically designed for use with GPUs. This

has enabled a QM description of a protein to examine charge-transfer and polarization in a

solvated environment [235], full QM optimizations of protein structures [233], and the

examination of excitations in the green fluorescent protein (GFP) chromophore [236].
Fragment-based quantum mechanics methods

One approach to making QM methods more tractable to biological and medicinal applica-

tions is the modification of methods so that they scale linearly with system size [237,238].

One such approach is based on fragmentation methods, which have been developed to fa-

cilitate the application of wavefunction and density functional methods to macromolecular

structures. These methods partition a macromolecular system and perform QM calcula-

tions on each fragment to obtain their wavefunctions and properties, which are then com-

bined to arrive at properties of the macromolecular system as a whole. Fragmentation

methods also benefit from their ability to be massively parallelized. A comprehensive sum-

mary of the many fragmentation methods available, with many applications to biological

systems, can be found in a recent review [239].
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Of the electronic structure software available, the GAMESS program includes the

greatest variety of fragmentation methods [239,240], which include the effective frag-

ment potential (EFP) methods [241-243], the fragment molecular orbital (FMO)

method [244], the elongation (ELG) method [245], and divide and conquer (DC) ap-

proaches [246]. Although the EFP methods utilize intermolecular potentials, these are dis-

tinct from those in force fields since they are rigorously derived from ab initio calculations

rather than empirical parameters. Of these fragmentation methods, the FMO approach

is arguably the most robust and has been widely applied to biological systems

[239,240,247-249], which include drug discovery, protein-ligand binding, protein-protein

interactions, enzymatic catalysis, and DNA.
Application of quantum mechanics/molecular mechanics to computational enzymology

Enzymology investigates, among other topics, enzyme kinetics and mechanisms of in-

hibition in steady-state turnover. Advances in technology and methods have led to

more detailed information about enzyme structures and mechanisms. With an explo-

sion in the number of novel and uncharacterized enzymes identified from the vast

number of genome sequences, it has become evident that the structural and functional

properties of these enzymes need to be elucidated to establish precisely their mecha-

nisms of action and how the enzymes fit into the complex webs of metabolic reactions

found in even the simplest of organisms [250].

Vast changes have occurred in the science of enzymology since molecular simulations

and modeling were first developed. Calculations can provide detailed, atomic-level insights

into the fundamental mechanisms of biological catalysis. Computational enzymology was

launched in the 1970s [251]. The pioneering studies of Warshel are particularly notable

[252,253]. By the early 1990s the number of computational mechanistic studies of enzymes

was still relatively small [254,255], but recently there have been a great number of computa-

tional studies of enzymatic reaction mechanisms published [253,256-258]. Currently, com-

putational enzymology is a rapidly developing area, focused on testing theories of catalysis,

challenging “textbook”mechanisms, and identifying novel catalytic mechanisms [259].

The choice of an appropriate method for the particular enzyme being modeled is vital.

Quantitative predictions of reaction rates or the effects of mutations remain very challen-

ging, but with appropriate methods, useful predictions can be made with some confi-

dence. Careful testing and experimental validation are important. For example, a

comparison of calculated barriers for a series of alternative substrates with experimentally

determined activation energies demonstrated good correlation validating mechanistic cal-

culations [260,261]. Some enzymes have become important model systems in the develop-

ment and testing of computational methods and protocols; these include chorismate

mutase [259,262-266], citrate synthase [267-269], P450 [257,259], para-hydroxybenzoate

hydroxylase [257,260,265] and triosephosphate isomerase [255,270,271].
Modeling enzyme-catalyzed reactions

The usual starting point for modeling an enzyme-catalyzed reaction is an enzyme struc-

ture from X-ray crystallography. When this is not available, sometimes a model may be

constructed based on homology to other structures that have been solved [272], though

such models should be treated with much more caution. The first step in studying an



Tuszynski et al. Theoretical Biology and Medical Modelling 2014, 11:52 Page 30 of 42
http://www.tbiomed.com/content/11/1/52
enzyme-catalyzed reaction is to establish its chemical mechanism. Its goal is to deter-

mine the functions of catalytic residues, which are often not obvious. Even the iden-

tities of many important groups may not be certain. Any specific interactions that

stabilize transition states or reactive intermediates should also be identified and

analyzed.

Enzymes, representing usually large molecules, need sophisticated modeling steps as

the reactions that they catalyze are complex. This can be complicated further by the

need to include a part of a particular enzyme’s molecular environment, such as the sur-

rounding solvent, cofactors, other proteins, a lipid membrane, or DNA. There are many

practical considerations in simulating such complex systems, such as the proper inter-

pretation of crystal structures and the choice of protonation states for ionizable amino

acids [273]. Here, we illustrate these challenges with recent examples of modeling

enzyme-catalyzed reactions.

The empirical valence bond method

The empirical valence bond (EVB) is considered to be one of the main methods used

for modeling enzyme-catalyzed reactions [274]. In the EVB method, a few resonance

structures are chosen to represent the reaction. The energy of each resonance form is

given by a simple empirical force field, with the potential energy given by solving the

related secular equation. The EVB Hamiltonian can be calibrated to reproduce ex-

perimental data for a reaction in solution, or ab initio results can be used [275]. The

surrounding protein and solvent are modeled by an empirical force field, using proper

long-range electrostatics. The free energy of activation is calculated from free energy per-

turbation simulations [276]. The free energy surfaces can be calibrated by comparison

with experimental data for reactions in solution. The EVB method allows the use of a

non-geometrical reaction coordinate, which helps to evaluate non-equilibrium solvation

effects [274]. A mapping procedure gradually moves the system from the reactants to

products. The simplicity of the EVB potential function allows extensive molecular dyna-

mics (MD) simulations, giving good sampling [277]. The EVB method has been widely

used for studying reactions in condensed phases, particularly in enzymes [278-284].

Quantum chemical methods

Another approach to the modeling of enzyme-catalyzed reactions is to study only the

active site using quantum chemical methods. This methodology is usually named the

cluster approach or the supermolecule approach. The active site model should contain

molecules representing the substrate(s), any cofactors, and enzyme residues involved in

the chemical reaction or in binding substrates. Important functional groups are repre-

sented by small molecules (e.g., acetate can represent an aspartate side chain). The ini-

tial positions of these groups are usually coordinates taken from a crystal structure, or

from an MD simulation of an enzyme complex.

Quantum chemical methods can give excellent results for reactions of small mole-

cules. Semi-empirical techniques, such as AM1 and PM3, can model larger systems

that contain hundreds of atoms. However, semi-empirical methods must be applied

with caution due to their sensitivity to parameterization, because typical errors may be

over 10 kcal/mol for barriers and reaction energies [285,286]. DFT methods are consid-

erably more accurate, while also allowing calculations on relatively large systems (e.g.,
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active site models on the order of 100 atoms), larger than is feasible with correlated ab

initio calculations. Many DFT methods, however, do not properly account for disper-

sion forces, which are important in the binding of ligands to proteins and can also be

important in the calculation of energy barriers [287]. Dispersion corrections may be re-

quired in such cases [215-217]. Calculations on active site models can provide models

of transition states and intermediates, which has proved particularly useful for studying

metalloenzymes using DFT methods [288,289].

Combined quantum mechanics/molecular mechanics methods

Combined quantum mechanics/molecular mechanics (QM/MM) methods are widely

applied to accurately model enzymes. This has been made possible by increased com-

puter power, and improved software packages. QM/MM approaches treat a small part

of the system quantum mechanically (describing the electronic structure of molecules)

and the rest of the system with a molecular mechanics (MM) method (using a classical

potential energy function [290]). The QM treatment accounts for the electronic rear-

rangements involved in bond breaking and bond making, while the MM treatment al-

lows to include the effects of the environment on the reaction energetics.

There are two general types of QM/MM methods. The first is additive,

Etotal ¼ EQM QMð Þ þ EMM MMð Þ þ EQM‐MM;interaction ð38Þ

where EQM(QM) is the energy of the QM region according to the QM method, EMM

(MM) is the energy of the MM region according to the MM method, and EQM-MM,inter-

action is the interaction energy between the two regions.

The second type of QM/MM method is subtractive,

Etotal ¼ EMM þ EQM QMð Þ−EMM QMð Þ ð39Þ

where EMM is the energy of the total system as calculated by the MM method, EQM

(QM) is the energy of the QM region as calculated by the QM method, and EMM(QM)

is the energy of the QM region as calculated by the MM method. This is used, for ex-

ample, in the ONIOM method [291].

In the subtractive approach, the active site region is modeled at the MM level, and the

choice of suitable MM parameters (e.g., atomic charges) for all states of the reaction is an

important and delicate consideration. Until recently, calculations using the subtractive ap-

proach typically used the more approximate “mechanical embedding” scheme, whereas

currently most implementations of both approaches allow “electrostatic embedding” [291]

which takes into account the electrostatic influence of the MM region on the QM region,

i.e., polarization of the QM region by the atomic charges of the MM region. Five general

aspects are important in a QM/MM calculation on an enzyme:
1. Choice of the QM method.

2. Choice of the MM force field (including the MM parameters for the QM region).

3. Partitioning of the system into QM and MM regions with due attention paid to any

chemical bonds that straddle the two regions.

4. Type of simulation (e.g., an MD simulation, or calculation of potential energy

profiles); whether extensive conformational sampling will be performed.

5. Construction (and testing) of an accurate molecular model of the enzyme complex.
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The MM force field employed in a QM/MM study should be chosen to describe the

part of the system outside the QM region and its interactions with the QM region. For

proteins, standard all-atom force fields such as CHARMM27, AMBER ff99 or ff99SB,

and OPLS-AA are commonly used. Apart from selecting suitable QM and MM

methods and a QM/MM approach, modeling an enzyme reaction with a QM/MM

method requires other important choices, such as deciding which atoms to include in

the QM region and how to treat covalent bonds that cross the QM/MM boundary

[292]. Another important choice is determining the protonation states of residues, and

how (long-range) electrostatic interactions are treated. The influence of such choices

on the results should be tested [267,293-296] in order to be able to draw reliable con-

clusions. Recent improvements allow relocating the QM-MM boundary on-the-fly

(adaptive partitioning) [297].
Modeling enzyme reactions by calculating potential energy surfaces

With QM or QM/MM methods, potential energy surfaces of enzyme reaction mecha-

nisms can be explored accurately enough to enable discrimination between different

mechanisms, e.g., if the barrier for a proposed mechanism is significantly larger than

that derived from experiment (using transition state theory), within the limits of accur-

acy of the computational method and experimental error, then that mechanism can be

considered to be unlikely. A mechanism with a calculated barrier comparable to the ap-

parent experimental barrier (for that step, or failing that for the overall reaction) is

more likely. However, to calculate rate constants also requires reliable estimates of en-

thalpies, internal energies, and free energies of a given reaction and activation, given

the potential energy surface. Traditional approaches to modeling reactions rely on the

identification of stationary points (reactants, products, intermediates, transition states)

via geometry optimization, followed by the computation of second derivatives to enable

relatively simplistic evaluation of zero-point corrections, thermal and entropy terms.

Algorithms developed for small molecules are often not suitable for large systems, stor-

age and manipulation of Hessian matrices become extremely difficult. A basic means of

modeling approximate reaction paths is the “adiabatic mapping” or “coordinate driving”

approach. The energy of the system is found by minimizing the energy at a series of

fixed (or restrained) values of a reaction coordinate, e.g., the distance between two

atoms. This approach has been successfully applied to many enzymes [257], but it is

only valid if one conformation of the protein can represent the state of the system at a

particular value of the reaction coordinate.

Calculations of a potential energy surface may not consider significant conform-

ational fluctuations of the enzyme. Conformational changes, even on a small scale, may

cause significant chemical changes. Conformational changes of the active site can

greatly affect the energy barrier. To take the fatty acid amide hydrolase as an example,

conformational fluctuations do not affect the general shape of the potential energy sur-

faces, but consistency between experimental and calculated barriers is observed only

with a specific infrequent arrangement of the enzyme-substrate complex [298]. These

findings indicate that investigation of different protein conformations is essential for a

meaningful determination of the energetics of enzymatic reactions for calculations of

potential energy profiles or surfaces.
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Calculating free energy profiles for enzyme-catalyzed reactions

According to transition state theory, the rate constant of a reaction is related to the free

energy barrier. The techniques described previously calculate potential energy barriers

for a particular conformation. Techniques that illustrate configurations along a reaction

coordinate give a more sophisticated and extensive description by taking account of

multiple conformations and estimating entropic effects, and can be essential for model-

ing enzyme reactions. Simulations of this type provide estimates of the free energy pro-

file along a specific reaction coordinate, which is often referred to as the potential of

mean force. MD and Monte Carlo methods allow such illustration, but do not provide

a sufficiently detailed view of high energy regions, such as those in the vicinity of tran-

sition states. Conformational illustration of processes of chemical change requires spe-

cialized techniques, e.g., to bias the simulation to sample the transition state region.

Umbrella sampling, which is widely used in MD simulations, when combined with

QM/MM techniques, can be used to model enzymatic reactions [262]. QM/MM um-

brella sampling simulations are possible with semi-empirical molecular orbital methods

(e.g., AM1 or PM3). Often, such methods are highly inaccurate for reaction barriers

and energies but their accuracy can be improved significantly by re-parameterization

for a specific reaction.

Conclusions
This review paper has aimed to provide a comprehensive guide to a plethora of math-

ematical and computational methods developed in the past few decades to tackle key

quantitative problems in the life sciences. Our critical overview covers methods used

across the life sciences, starting from macroscopic systems such as those in evolution-

ary biology, and ending with atomic level descriptions of biomolecules including

quantum mechanical or hybrid classical/quantum approaches. Particular attention was

given to large-scale computational methods, such as molecular dynamics, which play

pivotal roles in the development of our understanding of molecular mechanisms at the

level of molecular, structural, and cell biology. Important applications in medicine and

pharmaceutical sciences have been discussed, in particular in the context of extracting

crucial conclusions about complex system behavior with information limitations. We

hope the reader will be encouraged to explore particular topics at a deeper level using

the information and references provided in this review.
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