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Abstract

Background: Ebola virus disease (EVD) has generated a large epidemic in West
Africa since December 2013. This mini-review is aimed to clarify and illustrate
different theoretical concepts of infectiousness in order to compare the infectiousness
across different communicable diseases including EVD.

Methods: We employed a transmission model that rests on the renewal process in
order to clarify theoretical concepts on infectiousness, namely the basic reproduction
number, R0, which measures the infectiousness per generation of cases, the force of
infection (i.e. the hazard rate of infection), the intrinsic growth rate (i.e. infectiousness
per unit time) and the per-contact probability of infection (i.e. infectiousness per
effective contact).

Results: Whereas R0 of EVD is similar to that of influenza, the growth rate (i.e. the
measure of infectiousness per unit time) for EVD was shown to be comparatively lower
than that for influenza. Moreover, EVD and influenza differ in mode of transmission
whereby the probability of transmission per contact is lower for EVD compared to that
of influenza.

Conclusions: The slow spread of EVD associated with the need for physical contact
with body fluids supports social distancing measures including contact tracing and case
isolation. Descriptions and interpretations of different variables quantifying
infectiousness need to be used clearly and objectively in the scientific community and
for risk communication.
Background
An epidemic of Ebola virus disease (EVD) centred in three West African countries has

been ongoing since December 2013, with limited international spread to other coun-

tries in Africa, Europe and the USA [1]. It is likely that the duration of this EVD epi-

demic, associated with a high case fatality risk (CFR) estimated at ~70% [2,3], will

extend well into 2015. To investigate the ongoing EVD transmission dynamics and

consider a range of possible countermeasures, it is vital to understand the natural his-

tory and epidemiological dynamics of this disease.

Owing to the rapid progression of the EVD epidemic in West Africa, attempts have

been made to clarify the fundamental epidemiological characteristics of EVD [1,2,4]. For

instance, several studies have reported statistical estimates of the reproduction number,

i.e., the average number of secondary cases generated by a single primary case, as a meas-

ure of the transmission potential of EVD [2,5-12]. Despite substantial progress, it remains
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unclear how measures of infectiousness (or the transmissibility) of EVD should be com-

municated to the public and interpreted in light of the set of control interventions that

could be considered in practical settings. Hence, the purpose of this mini-review is to

comprehensively classify different theoretical aspects of infectiousness using a basic trans-

mission model formulated in terms of a renewal process. This approach allows us to com-

pare different measures of infectiousness across different communicable diseases and

design possible countermeasures.

Discussion
Renewal process

Here we briefly review the definition of the basic reproduction number, R0 using the re-

newal process model [13]. Let i(t) represent the incidence (i.e. the transient number of

new cases) at calendar time t. Assuming that the contribution of initial cases to the dy-

namics is negligible, the renewal process is written as

i tð Þ ¼
Z∞

0

A sð Þi t−sð Þds; ð1Þ

where A(s) is the rate of secondary transmission per single primary case at its

infection-age (i.e., the time since infection) s. Using A(s), one can model the depend-

ency of the transmission dynamics on infection-age [14]. By far the most commonly

used measure of infectiousness is the basic reproduction number, R0, which is com-

puted as

R0 ¼
Z∞

0

A sð Þds; ð2Þ

and it can be interpreted as the number of secondary cases produced by a single pri-

mary case throughout its entire course of infection in a completely susceptible popula-

tion. Although the concept of R0 is well-known, it is important to note from (2) that R0

results from the integration over all infection-ages. It is well known that the mathemat-

ical definition of R0 in a heterogeneously mixing population is described by using the

multivariate version of (1) and the next-generation matrix that maps secondary trans-

missions between and within sub-populations. R0 is defined as the largest eigenvalue of

this matrix [15,16]. Similarly, the definition of R0 can be adapted to the situation of

periodic infectious diseases by handling the seasonal dynamics using a vector and

employing Floquet theory (see e.g., [17]).

Although R0 is clearly a dimensionless quantity, the conceptual interpretation from

the renewal process (1) permits us to regard R0 as the average number of infected cases

produced “per generation”. For this reason, R0 could also be referred to as the basic re-

productive ratio, as it could be calculated as the ratio of secondary to primary cases.

Adopting the mass action principle of the so-called Kermack and McKendrick epi-

demic model, a non-linear version of the renewal equation (1) follows [13]:

i tð Þ ¼ s tð Þ
Z∞

0

β sð ÞΓ sð Þi t−sð Þds; ð3Þ
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where s(t) is the fraction susceptible at time t, β(s) the rate of transmission per single

infected individual at infection-age s, and Γ(s) the survivorship of infectiousness at

infection-age s. Here we define the force of infection, λ(t) as

λ tð Þ ¼
Z∞

0

β sð ÞΓ sð Þi t−sð Þds; ð4Þ

which yields a measure of the risk of infection in a susceptible population. The force of

infection can be interpreted as the hazard of infection in statistical sense – the rate at

which susceptible individuals are infected [18]. In the classical Kermack and McKendrick

epidemic model, λ(t) is modelled as proportional to the disease prevalence [13]. The force

of infection is useful for the analysis of incidence data.

Comparison of three communicable diseases

Table 1 shows empirical estimates of R0 and the mean generation time for three differ-

ent infectious diseases that are characterized by significantly different transmissibility

and natural history parameters, i.e., measles, influenza H1N1-2009 and EVD [1,19,20].

The mean generation time, Tg can be mathematically derived from the transmission

kernel in the renewal process (1), i.e.,

Tg ¼

Z ∞

0
sA sð Þds

Z ∞

0
A xð Þdx

: ð5Þ

The mode of transmission greatly differs for three diseases considered (Table 1). Mea-

sles is transmitted efficiently through the air while the transmission of influenza mostly

occurs via droplet although airborne transmission is also possible in a confined setting

[23]. In contrast, transmission of EVD is greatly constrained to physical contacts via

body fluids [1]. Despite the differences in the mode of transmission for these diseases,

it is important to note that the estimates of R0 for H1N1-2009 and EVD are not too dif-

ferent (Table 1). Does that indicate that influenza (H1N1-2009) and Ebola are similarly

infectious?

While the average R0 for influenza and Ebola are similar, here we underscore that

their underlying transmission dynamics show fundamental differences. This can be

understood by analysing the intrinsic growth rate r for both diseases. Assuming that

the early growth of each disease follows an exponential form, i.e., i(t) = i0exp(rt) (where
Table 1 The basic reproduction number and mean generation time of three different
diseases

Disease Basic reproduction number Mean generation time (days)a Reference

Measles 15.0 (12–18) 12.0 [19]

Influenza (H1N1-2009) 1.4 (1.2-3.1) 2.8 [20]

Ebola virus disease 1.7 (1.5-2.0) 15.0 b [1]
aIt should be noted that the mean generation time is shorter than the mean serial interval if there are asymptomatic
transmissions [21].
bThe mean incubation period of EVD is estimated to be 12 days [22] and 10 days [1], both shorter than the mean
generation time.
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i0 is a constant), the renewal equation (1) is rewritten as the so-called Euler-Lotka

equation. Replacing i(t) in both sides of (1) by i0exp(rt) and cancelling exp(rt) from

both sides, we obtain

1 ¼ R0Z ∞

0
A xð Þdx

Z∞

0

A sð Þ exp −rsð Þds; ð6Þ

yielding the relationship between R0 and the generation time,

R0 ¼ 1
Z∞

0

g sð Þ exp −rsð Þds
; ð7Þ

where g(s) is the probability density function of the generation time. Equation (7) fre-

quently appears in discussions of mathematical demography [24] and theoretical epi-

demiology [25], which is useful to describe how the relationship is determined between

R0 and the intrinsic growth rate r as a function of the generation time distribution. For

instance, if the generation time distribution follows the exponential distribution or Kro-

necker delta function, we obtain the well-known estimators of R0, i.e., R0 = 1 + rTg and

R0 = exp(rTg), respectively [26]. Assuming that g(s) follows a gamma distribution with

the coefficient of variation k, we have

R0 ¼ 1þ rTgk
2� � 1

k2 : ð8Þ

It should be noted that it is possible that the right-tail of g(s) for EVD might have

been underestimated if there were substantial number of secondary transmissions from

deceased persons during funerals. Adopting the values of R0 and Tg given in Table 1,

and assuming that the coefficient of variation of the generation time at 50%, the intrin-

sic growth rate of influenza H1N1-2009 is calculated as 0.125 per day, while that of

EVD is calculated as 0.038 per day. Figure 1A compares the growth rates (r) of three
Figure 1 Comparison of the intrinsic growth rate of infectious diseases. (A) For a given R0 and the
mean generation time Tg for a given infectious disease, the curves show the relationship between the
intrinsic growth rate (r) and the coefficient of variation of the generation time of the disease. r of measles is
the largest, followed by influenza, and then Ebola virus disease (EVD). (B) Temporal evolution in the number
of new cases of measles, influenza, and Ebola virus disease using a coefficient of variation of the generation
time at 50%. Parameter values are given in Table 1.
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representative communicable diseases for different values of the coefficient of variation

of the generation time. An epidemic of measles appears to grow the fastest followed by

one of influenza while an outbreak of EVD is expected to grow the slowest. Whereas

the R0 for EVD is similar to that of influenza, the growth rate of EVD is far smaller

than that of influenza. This is because each disease generation in the context of EVD

transmission takes approximately two weeks, while each generation of new influenza

cases occurs on a much shorter time scale - every 3 days on average. Moreover, EVD

spreads comparatively slowly mainly by physical contact. This feature indicates that so-

cial distancing measures including contact tracing and case isolation could be powerful

options for controlling EVD assuming that public health infrastructure exists for these

interventions to be feasible [27].

Thus, based on the infectiousness as measured by the growth rate of cases per unit

time, it is very encouraging that EVD is far less dispersible than influenza. Although

static countermeasures (e.g. mass vaccination at a certain age) can be planned using R0,

the feasibility to deploy dynamic countermeasures, such as contact tracing and case iso-

lation rests on the competition between the growth of cases and public health control,

and in this context, the key parameter of infectiousness to assess the feasibility of con-

trol interventions is the intrinsic growth rate of cases.

Per contact risk of infection

We further decompose the rate of secondary transmission per single primary case in

the renewal equation (3) into the product of the contact rate c(s) and the per-contact

probability of infection p(s), i.e.,

i tð Þ ¼ s tð Þ
Z∞

0

c sð Þp sð ÞΓ sð Þi t−sð Þds: ð9Þ

Assuming that the per contact probability of infection, p is independent of infection-

age, we have

p ¼ i tð Þ

s tð Þ
Z∞

0

c sð ÞΓ sð Þi t−sð Þds
: ð10Þ

The interpretation of p is straightforward, i.e., it can be regarded as the risk of suc-
cessful secondary transmission given an infectious contact to a susceptible individual.

Assuming that everyone is susceptible at time zero, R0 in (2) is rewritten as

R0 ¼ p
Z∞

0

c sð ÞΓ sð Þds: ð11Þ

As mentioned above, R0 for EVD is similar to that of influenza. Nevertheless, the in-

fectious period, modelled by Γ(s) for EVD is longer than that of influenza. Assuming an

identical contact rate, c, between EVD and influenza, equation (11) indicates that the

per-contact probability of infection for EVD is smaller than that for influenza.

The mode of transmission differs across communicable diseases. Figure 2 illustrates

the physical range of “contact” that can potentially lead to infection for three



Figure 2 The extent of the contact by different mode of transmission. Airborne transmission can
extend to different rooms and buildings, while the droplet transmission requires comparatively close
contact. EVD is mainly transmitted through a physical exposure to body fluid of infected cases, and the
extent of transmission is far less dispersible than those for measles and influenza.
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representative infectious diseases. Measles causes airborne transmission, and thus, it

can lead to secondary infections across different rooms (or sometimes even across

buildings). The extent of contact for EVD is very limited as it is highly constrained to

physical contacts with body fluids. Hence, effective contact for EVD is limited to close

contacts that might be unavoidable among healthcare workers and household members

of cases.
Conclusion
We have comparatively discussed concepts of infectiousness for EVD in relation to

other communicable diseases from a mathematical modelling point of view. The meas-

ure of infectiousness per generation of cases is R0. R0 offers a threshold principle and

we have discussed that this measure is important for planning some static countermea-

sures such as mass vaccination. Based on R0, the overall infectiousness of EVD may be

perceived to be similar to that of influenza. Nevertheless, the infectiousness per unit

time for EVD was shown to be comparatively lower than influenza. The slow spread of

EVD supports social distancing measures including contact tracing and case isolation.

Moreover, the per-contact probability of infection for EVD is lower than that for
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influenza, and the mode of transmission also differs. These findings should also be

regarded as encouraging news for healthcare workers who would have to have unavoid-

able and protected contact with EVD cases. In summary, there is a need for the use of

clear and objective descriptions and interpretations of different variables quantifying in-

fectiousness among the scientific community and for risk communication.
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