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Abstract
Background: Humans are routinely and concurrently exposed to multiple toxic chemicals, 
including various metals and organics, often at levels that can cause adverse and 
potentially synergistic effects. However, toxicokinetic modeling studies of exposures to 
these chemicals are typically performed on a single chemical basis. Furthermore, the 
attributes of available models for individual chemicals are commonly estimated specifically 
for the compound studied. As a result, the available models usually have parameters and 
even structures that are not consistent or compatible across the range of chemicals of 
concern. This fact precludes the systematic consideration of synergistic effects, and may 
also lead to inconsistencies in calculations of co-occurring exposures and corresponding 
risks. There is a need, therefore, for a consistent modeling framework that would allow the 
systematic study of cumulative risks from complex mixtures of contaminants.

Methods: A Generalized Toxicokinetic Modeling system for Mixtures (GTMM) was 
developed and evaluated with case studies. The GTMM is physiologically-based and uses a 
consistent, chemical-independent physiological description for integrating widely varying 
toxicokinetic models. It is modular and can be directly "mapped" to individual toxicokinetic 
models, while maintaining physiological consistency across different chemicals. Interaction 
effects of complex mixtures can be directly incorporated into the GTMM.

Conclusions: The application of GTMM to different individual metals and metal 
compounds showed that it explains available observational data as well as replicates the 
results from models that have been optimized for individual chemicals. The GTMM also 
made it feasible to model toxicokinetics of complex, interacting mixtures of multiple 
metals and nonmetals in humans, based on available literature information. The GTMM 
provides a central component in the development of a "source-to-dose-to-effect" 
framework for modeling population health risks from environmental contaminants. As new 
data become available on interactions of multiple chemicals, the GTMM can be iteratively 
parameterized to improve mechanistic understanding of human health risks from 
exposures to complex mixtures of chemicals.

Background
Physiologically based toxicokinetic (PBTK) models are an important class of dosimetry
models that are useful in estimating internal and target tissue doses of xenobiotics for risk
assessment applications [1]. PBTK models employ mass balances on compartments within a
human or animal body, for the purpose of estimating the time-course profiles of toxicant
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concentrations in tissues and fluids. These models are also useful for understanding
therapeutic outcomes from internal tissue exposures to pharmaceuticals [2]. In conjunc-
tion with epidemiological and demographic data, and models of environmental pollution
and exposure, PBTK models are applied to assess population health risks and provide a
scientific basis for regulating the production and use of chemicals [3]. PBTK models pro-
vide a critical mechanistic linkage between exposure models and biologically-based
dose-response models. Thus, PBTK models for complex mixtures should form a central
component of any human exposure and health risk modeling framework that aims to
address multiple contaminants [4].

Humans are typically exposed to multiple xenobiotic chemicals, such as pharmaceuti-
cals, cosmetics, alcohols, metals, solvents, pesticides, volatile and semi-volatile organic
compounds, etc., simultaneously. For this reason, there have been efforts to incorporate
metabolic interactions in PBTK models for mixtures of selected chemicals [5]. Concur-
rently, there have been increasing numbers of applications involving "whole-body" phys-
iologically-based toxicokinetic (WBPBTK) models that aim to reduce model
uncertainties and better characterize inter-individual variabilities [6]. These whole-body
models account for all major tissues and exposure pathways, and are capable of incorpo-
rating detailed physiological data. However, comprehensive mixture modeling efforts
have not been pursued in the field of toxic metal compounds, and there are currently no
available PBTK models for mixtures of metals. Indeed, toxicokinetic models have only
focused on individual metals separately, despite evidence of interactions of toxic metals
with other toxic metals [7], with essential metals [8], and even with nonmetal pollutants
[9]. Recent developments in the field of molecular biomarkers have identified toxic inter-
actions among metals such as arsenic, lead, and cadmium (including some toxic effects
that are not seen in relation to single component exposures) [7]. Though, in the long
term, there is a need for developing mechanistic toxicodynamic models for mixtures of
metal compounds, in the short term there is a need for a PBTK modeling system that is
capable of simulating multiple interacting metals and nonmetals simultaneously. Such a
system should also incorporate realistic whole-body physiology of members of both the
general and of susceptible populations.
Toxicological interactions among metals
Due to their similarities to essential metals, toxic metals are transported and eliminated
through many common cellular mechanisms by "molecular mimicry" [10]. As a result,
there exist toxicokinetic and toxicodynamic interactions among toxic and essential met-
als [7,8]. Metal absorption, elimination, and toxicokinetics should therefore be consid-
ered highly correlated for exposed individuals, with susceptibilities resulting in
differential effects of multiple metals. Population susceptibilities resulting from essential
element status are often a significant source of uncertainty and variability for metals risk
assessment [11]. For example, iron inhibits lead and cadmium intestinal uptake due to
shared absorption mechanisms [12]; conversely, toxic metals may inhibit essential ele-
ment absorption [13]. Cadmium and zinc are also known to have a variety of interactions
due to the metal-binding protein metallothionein [14]. Selenium may potentially alter
both arsenic and methylmercury toxicity [15]. Other nutrients such as antioxidants,
Vitamins A/C/E, magnesium, phosphorus, riboflavin, and methionine are also known to
impact toxic metal susceptibility [16].
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Low essential element status or illnesses may result in higher absorption of multiple
metals [17]. This has direct implications for PBTK applications to population risk assess-
ment, since failing to account for high correlations in the absorption of individual metals
may lead to misinterpretations of biomarker data. In cases where susceptible individuals
are exposed to mixtures of toxic metals while exhibiting high absorption, there is a
greater likelihood of toxic effects, either due to additive or synergistic interactions. This
is particularly important since some metals exhibit common toxic effects such as
hepatic, renal, and neurological toxicity. Molecular biomarkers of toxic metal health
effects are becoming sensitive enough to detect some toxic interactions [7]. Synergistic
toxic interactions in the liver and kidneys between arsenic and cadmium [18], and lead
and cadmium [19] have been observed in exposed human populations.
Toxicological interactions among metals and nonmetals
Toxic metals affect the toxicokinetics of additional classes of chemicals such as pesti-
cides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and
volatile organic compounds (VOCs). Indeed, these toxic metals can accumulate in the
liver and kidneys and, due to their long half-lives, affect the hepatic and renal levels of
Cytochrome P450 (CYP450) enzymes, which metabolize other xenobiotics [9]. There-
fore, there is a need for a framework that links metal toxicokinetics, CYP450 dose-
responses, and the subsequent impact of metals on the toxicokinetics of nonmetals.
Since many PCBs, pesticides, and organic pollutants also induce or inhibit CYP450
enzymes, additional metabolic interactions are expected to occur. Table 1 lists some of
the CYP450 enzymes that are affected by toxic metals, along with the classes of sub-
strates metabolized by those enzymes. Many other effects are possible in addition to
CYP450-related interactions: for example, a recent PBTK modeling study found that co-
exposure to PCBs leads to an increased lactational transfer of methylmercury in mice
[20].

Table 1: Selected interactions between metals and CYP450 enzymes in humans and 
animals

Metals CYP450 effects Potential substrates† Reference

Cadmium Induced 2A6 Carbamates, drugs [32]

Induced 2E1 Halogenated aliphates, triazines, 
organophosphates, VOCs, drugs

[32]

Induced 2C9 Drugs, organophosphates, triazines [32]

Lead Inhibited 2A6 Drugs [63]

Inhibited 1A2 (rats) Arylamines, organophosphates, triazines, 
VOCs, PCBs, drugs

[64]

Arsenic Induced 1A1 (rats) PAHs, VOCs, PCBs, triazines [65,66]

Metal mixtures Altered 1A1/2 induction 
by PAHs/TCDD (rats)

PAHs, VOCs, PCBs, triazines, 
organophosphates, drugs

[67,68]

†Substrate/P450 relationships from [24,69-71].
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Methods
Despite the critical need for a multi-chemical PBTK model that considers toxic metals,
discussed in the previous section, unique modeling challenges have so far prevented the
implementation of such a system. The half-lives of key toxic metals in humans are highly
variable, spanning time scales of days (e.g. arsenic), months (e.g. methylmercury), and
decades (e.g. lead and cadmium). As shown in Figure 1, available model formulations for
each metal differ greatly with respect to their basic conceptual and mathematical struc-
tures, making considerations of interaction and integration of multiple models for
assessing cumulative exposures difficult or impossible. Current PBTK software plat-
forms are not flexible enough to simultaneously allow the direct incorporation of a com-
plex diffusion model of lead in bone, the model of pregnancy for fetal methylmercury
exposure, and a biokinetic model of cadmium. However, in spite of these modeling dif-
ferences, many similarities exist in the toxicokinetics of metals. The Divalent Metal
Transporter 1 (DMT1) is a common gastrointestinal absorption pathway [12], and met-
allothionein plays an important role in overall absorption, distribution, elimination and
toxicity [21]. Metabolism of metal and metalloid compounds is limited to redox reac-
tions, methylation/demethylation, and protein conjugation [22]. Elimination of absorbed
dose occurs primarily by renal excretion [23]. Such commonalities narrow the focus of
the potential mixture effects to those which may have the highest impact on toxicokinet-
ics.
General model structure
Most PBTK model structures can be considered subsets of the same general "compart-
mentalized" or "network" physiology shown in Figure 2 (adapted from Georgopoulos,
2008 [4]). Blood flow rates and volumes of physiological compartments are (or at least
should be) chemical-independent. Parameters of lumped compartments (e.g. flow rates
and volumes of slowly perfused and rapidly perfused tissues) may vary based on the par-

Figure 1 A schematic depiction of PBTK model structures for two common toxic metals (cadmium 
[33]and lead [45]), and a toxic metal compound (methylmercury [56]), as they have been implemented 
in the literature. The different physicochemical properties of the toxicants of concern have resulted in differ-
ent structures (i.e. representations of the physiology) in the three models, thus limiting the usefulness of these 
formulations in assessing cumulative and/or comparative exposures and risks.

A (Cadmium) B (Lead) C (Methylmercury)
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ticular model structure and toxic endpoints of interest, and these appear as chemical-
dependent. However, even these parameters need to be constrained so as to be consis-
tent with the sum of those quantities for the remaining compartments. The model that is
presented here accounts for all major tissues, and absorption and excretion mechanisms.
Tissues that are not explicitly modeled in chemical-specific PBTK models can be lumped
into rapidly or slowly perfused groups while maintaining overall physiological consis-
tency. Deriving lumped parameter PBTK models from the general framework of Figure 2
reduces an artificial source of intermodel variation, maintains the structure of the origi-
nal models, and does not require estimation of additional parameters. Chemical-specific
PBTK models for toxic metals and nonmetals were mapped to this general formulation
in the GTMM, thus allowing for simultaneous toxicokinetic modeling with metabolic
interactions.
Mathematical formulation
The general mathematical mass balance for the set of physiological compartments
within the PBTK model is given by the matrix differential equation:

Figure 2 A schematic depiction of major compartments considered in the generalized PBTK modeling 
framework (adapted from Georgopoulos, 2008) [4].
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Matrices indexed by both tissue and chemical are defined as follows: A is the matrix of
chemical amounts in the different tissues; Q is the matrix of tissue flow rates; Cin is the
matrix of inlet concentrations to the tissues (typically the concentrations in the arterial
blood streams, but may also be a volume-weighted average of multiple inlet streams);
Cout is the matrix of outlet concentrations; R is the matrix of net rates of metabolism for
all the chemicals considered (negative values indicate formation of chemical); and T is
the matrix of net rates of transport of all chemicals considered via additional processes
(i.e. excretion, absorption, or inter-compartmental transfer). While the blood flows are
assumed to be independent of the chemical under consideration, a chemical-specific for-
mulation allows for selective lumping of the compartments for some chemicals.

At the tissue-level, there are several possible mass balance schemes. Chemicals may
diffuse through one or more barriers and accumulate in multiple tissue regions. If a tis-
sue is divided into extracellular and cellular subcompartments, the mass balances for
chemical i in compartment j can expressed by:

In the above equation, superscripts E and C denote extracellular and cellular space,
respectively. Pi,j is the tissue:blood partition coefficient, Hi,j is the lumped permeability-

area coefficient (volume/time), and  is the permeation rate of chemical through the

diffusive layer (mass/time). The outlet concentration is equal to the extracellular concen-

tration . PBTK models sometimes differ in how the driving force for diffusion is

defined. If more complex transport mechanisms other than diffusion occur (i.e. carrier-

mediated transport), alternative expressions for  are required.

If a chemical reaches rapid equilibrium in the tissue subcompartments, a simplified
perfusion-limited assumption may be used to describe the system [24]:

For the perfusion-limited assumption, the outlet concentration is equal to Ci,j/Pi,j.
Depending on the physicochemical properties of the contaminant, PBTK models may
consist entirely of diffusion- or perfusion-limited compartments, or a combination of
both.
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Equations for metabolism
If metabolism is modeled as a first-order reaction, and the metabolite is an additional
chemical in the PBTK model, a simple matrix multiplication solution can be used to cal-
culate the metabolic rates of all chemicals [25]. Within each tissue, a vector of first-order
metabolic rates for all chemicals is produced by the matrix multiplication Γ × y, where Γ
is the matrix of net rate constants (defined below), and y is a column vector of chemical
concentrations. Here, a metabolic rate constant ΓB,A, is defined for the reaction A T B,
where rate of metabolism of A due to this particular pathway is ΓB,A, × yA. It follows that
the formation rate of B is simply the negative of that for A. Such a representation is con-
venient for matrix-based computational environments. The corresponding matrix of net
first-order rate constants for N chemical species may be defined by:

For simplicity, notation for tissue index j has been omitted. For the case of Michaelis-
Menten kinetics for a mixture of chemicals which may compete for finite enzyme sites
(competitive inhibition), the kinetics may be described by [5]:

where i and k denote the metabolizing and inhibiting chemical species, respectively;
Vmax,i is the maximum reaction velocity (mass/time); Km,i is the Michaelis constant
(mass/volume); Ik,i is the competitive inhibition constant for chemical k inhibiting the
metabolism of chemical i (mass/volume). Similar generalized equations are applicable to
describe reductions in Vmax due to noncompetitive inhibition, or increases in Vmax or Γ
due to enzyme induction.
Computational implementation
The modeling system that is presented here, GTTM (Generalized Toxicokinetic Model-
ing System for Mixtures) was implemented in the Matlab programming environment,
that has previously been reviewed as a useful tool for PBPK applications [26], and
includes various toolboxes for parameter identification and visualization. Multiple
diverse PBTK models may be incorporated into a common workspace, allowing for
simultaneous, interacting simulations. In order to accommodate multiple chemicals and
a large number of potential interactions, the GTMM utilizes matrix-based formulations.
For example, every tissue is assigned a first-order reaction network matrix as shown in
Equation 4, and analogous matrices address other types of reaction and transport rates.
The mass balances of multiple chemicals in all the tissues are represented by a matrix of
ordinary differential equations (ODEs), that are solved by the ode15s stiff ODE solver
of Matlab. The inputs to the GTMM are exposure profiles, and physiological and bio-
chemical parameters. The outputs are the time-concentration profiles of different chem-
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icals in the various tissues. Physiological variability in the population may be consistently
considered across the models for all chemicals by linking with biological databases that
provide physiological values for a majority of the tissue groups. GTTM offers the option
to obtain parameters from databases for the general population (i.e. the P3M physiologi-
cal database [27]) and for susceptible populations (i.e. the elderly and health-impaired
[28]). Other sources of whole-body physiology include the PK-Pop scaling algorithm
used by PK-Sim [29], and the polynomial relationships used by PostNatal [30]. The Mat-
lab environment allows the GTMM to generate "virtual individuals" with consistent
physiology using any of the above databases.

Results
The GTMM was evaluated with respect to its ability to predict toxicokinetics of multiple
toxic metals "individually" (i.e. "one metal at a time"). Predictions of biomarkers by the
GTMM were compared with the estimates from the corresponding single-metal PBTK
models, using the same input data as the original literature evaluation studies of these
models. For the case studies involving individual metals, the major physiological param-
eters for the GTMM were set to the values used in these original modeling case studies,
so as to ensure direct comparison. Evaluations were performed for four toxic metals
(cadmium, arsenic, lead, chromium), and a toxic metal compound (methylmercury). In
all cases, the GTMM explained the available data and replicated the predictions of the
various metal-specific formulations. Subsequently, the GTMM was applied to a hypo-
thetical case involving interactions between metals and nonmetals.
Cadmium
The general population is exposed to cadmium primarily through dietary ingestion and
inhalation of cigarette smoke [31]. Kidney damage is the primary health concern; other
effects include alteration of enzyme levels, liver toxicity, cancer, and hypertension
[31,32]. Due to the long half-life of cadmium in humans, the PBTK formulation is differ-
ent from typical PBTK formulations, as shown in Figure 1. The GTMM replicates the
cadmium toxicokinetics described by the formulation by Kjellström and Nordberg (see
Additional files 1 and 2) [33]. Absorbed cadmium accumulates in the kidney and liver,
and binds to metallothionein proteins. Elimination from the body occurs primarily
through urinary excretion, which is a slow process in humans.

The GTMM was evaluated by applying estimates from the cadmium intake model by
Choudhury et al. (2001) [34,35], and comparing to available population data. Figure 3 (A)
shows comparisons to autopsy data [36-38]. Predictions were made using the median
and 95th percentiles for dietary cadmium intake [34]. Data from Friis et al. (1998) [36]
consist of 58 nonsmokers, while data from Lyon et al. (1999) [37] and Benedetti et al.
(1999) [38] each consist of approximately 300 smokers and nonsmokers. The Benedetti
data are for cadmium concentration in the whole kidney, while all other data and model
predictions are for concentration in the kidney cortex. Figure 3 (B) compares model pre-
dictions to urinary data from over 12,000 individuals of the National Health and Nutri-
tion Examination Survey (NHANES) [39]. Predictions were made assuming constant
cadmium intake of 0.4 μg/kg/day, and differences between males and females are attrib-
uted to higher fractional cadmium absorption in females.
Arsenic
Arsenic is a known human carcinogen (bladder, lung, and skin), and is also linked to a
variety of other toxic health endpoints. Inorganic arsenate (AsV) and arsenite (AsIII) exist
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in soil and drinking water, originating from both natural and man-made sources.
Organic species such as monomethylarsenic acid MMAV and dimethylarsenic acid
DMAV exist in the environment, and are also products of inorganic arsenic metabolism
in humans. While there are still uncertainties in the metabolic pathways and toxic mech-
anisms of each arsenical [40], the El-Masri/Kenyon PBTK model is currently the most
comprehensive description of arsenic toxicokinetics in humans (see Additional files 3
and 4) [41]. Major steps in the metabolism of arsenic are (1) reduction of AsV to AsIII; (2)
methylation of AsIII to MMAV; (3) methylation of AsIII to DMAV; (4) reduction of MMAV

to MMAIII; (5) methylation of MMAIII to DMAV; and (6) reduction of DMAV to DMAIII.
Oxidation occurs to a small extent for all species, however demethylation does not occur.
Noncompetitive inhibition occurs for the methylation steps 2 and 5, since these reac-
tions are catalyzed by arsenic (+3) methyltransferase (AS3MT). In this model, step 2 is
inhibited by MMAIII concentration in the liver, while step 5 is inhibited by AsIII. Urinary
excretion of organic and inorganic arsenic is currently the only mechanism for elimina-
tion in the model. The GTMM was evaluated against human data for single oral doses
(Lee, 1999 [42]) and for repeated oral doses (Buchet et al., 1981 [43]) of inorganic arse-
nic. As shown in Figure 4, the GTMM was able to explain these short timescale data
when applying the assumptions used for the evaluation of the arsenic-specific model
[41].
Lead
The general population is exposed to lead from ingestion of contaminated food and
water, and from inhalation of cigarette smoke. Children are a particularly vulnerable sub-
population, as they may receive high non-dietary exposure and are more susceptible to
neurotoxic effects [44]. Lead is cleared from plasma primarily by excretion into urine
and uptake into bone. Approximately 95% of the lead body burden in humans is in bone,
which serves as a long term reservoir for replenishment of blood lead in humans [44].
The PBTK model formulation by O'Flaherty [45] accounts for lead diffusion into several
bone compartments to describe long timescales of lead bone kinetics (Figure 1). Mature
cortical bone is a special case in which diffusion of lead is modeled as occurring across
eight cylindrical shells in the radial direction. Short timescale performance of the
GTMM was evaluated using data from a volunteer tracer lead exposure study (Rabinow-

Figure 3 Comparisons of GTMM predictions with measured human data from (A) autopsy measure-
ments of kidney cadmium levels [36-38]and (B) urinary cadmium measurements from the National 
Health and Nutrition Examination Survey (NHANES) [39]. Estimates for population exposure were obtained 
from Choudhury et al. (2001) [34]. All data points represent median values.
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itz et al., 1976 [46]), and by incorporating assumptions used by the adult lead model of
O'Flaherty (1993) (See Additional file 5) [47]. Long timescale performance of the GTMM
was evaluated by linking it with the O'Flaherty childhood model for lead exposure [48],
and comparing results with data for a subgroup of the Cincinnati Prospective Lead Study
(Bornschein et al., 1985 [49]). The model exposure parameters and corresponding data
were for the subgroup of children whose blood lead concentration did not exceed 15 μg/
dL [48]. As shown in Figure 5, the GTMM was able to explain both the short and long
timescale data.
Chromium
Hexavalent chromium (CrVI) is toxic and can lead to a variety of health effects in
humans, while trivalent chromium (CrIII) is widely considered to be an essential nutrient.
Chromium has been detected at numerous hazardous waste sites in the presence of
other metals (i.e. in a mixture); individuals living near these sites can be exposed through
multiple pathways [50]. Potential synergistic interaction for oxidative stress between
chromate and arsenite (leading to DNA damage) has been observed in vitro [51]. The

Figure 4 Comparisons of GTMM predictions with measured data of cumulative urinary arsenic from a 
volunteer human study in which individual males ingested (A) a single 100 μg AsV oral dose (Lee, 1999 
[42]), and (B) multiple 250 μg As III oral doses (Buchet et al., 1981 [43]). Data legend: Total arsenic (black di-
amond), total inorganic arsenic (blue square), total MMA (green triangle), total DMA (red circle)
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Figure 5 Comparisons of GTMM predictions with measured human data of (A) tracer blood lead for a 
male absorbing 17.5 μg/day lead-204 for 104 days (Rabinowitz et al., 1976 [46]), and (B) blood lead for 
a subgroup of children from the Cincinnati Prospective Lead Study (Bornschein et al., 1985 [49]), using 
the O'Flaherty lead exposure model to characterize ingestion and inhalation intakes [48]. The Cincinnati 
data represent the median blood lead measurements of individuals monitored from birth to early childhood, 
and only include children whose highest blood lead concentration did not exceed 15 μg/dL.
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wood preservative chromated copper arsenate (CCA) contains a mixture of CrVI, AsV,
and copper, and may pose a health risk to humans [52]. Figure 6 presents a comparison
of GTTM predictions with observed data from Kerger et al. (1996) [53], in which a male
volunteer orally ingested 5 mg of CrVI. The GTMM incorporated the same parameters as
the chromium-specific model by O'Flaherty (2001) [54], which is based on the lead
model by the same author (see Additional file 6). Since CrVI is rapidly reduced to CrIII in
the blood, CrVI is not detectable after a short period of time, hence only CrIII is used for
model evaluations.
Mercury
Methylmercury enters the food chain from both natural and man-made sources, and
high levels are found in ocean and freshwater fish consumed by humans [55]. Methyl-
mercury is a neurotoxin that can pass through the blood brain barrier and the placental
barrier. Blood methylmercury levels in infants may be higher than the maternal blood,
due to the toxicokinetics of MeHg transport across the placenta. Hence, the PBTK model
for methylmercury by Clewell et al. (1999) [56] was focused on women, and included a
dynamic fetal subsystem for pregnancy (see Additional file 7). Methylmercury may be
excreted in the urine, hair, feces, and breast milk (which becomes a pathway for neonatal
exposure), and is also converted to inorganic mercury throughout the body. Relative to
other toxic metals, absorption of methylmercury is high and not strongly influenced by
essential element status. The GTMM was evaluated using human data from Hislop et al.
(1983) [57], for an adult male consuming approximately 3 μg/kg/day MeHg for 96 days.
Evaluations were also performed for a pregnant woman and fetus, using data from
Amin-Zaki et al. (1976) [58]. The simulation for this case assumed an oral intake of 42
μg/kg/day MeHg, beginning shortly after pregnancy and continuing for 108 days. Simu-
lations for both the male and the pregnant female employed the same physiological and
exposure assumptions as the available methylmercury-specific evaluations [59]. Figure 7
presents comparisons of GTMM predictions with the observed data.
Application of the GTMM to a mixture of metals and non-metals
In order to evaluate the flexibility of the GTMM, it was applied to a hypothetical case-
study in which co-exposures to multiple metals and nonmetals were simulated simulta-
neously by taking into account potential metabolic interactions. Since toxic metal expo-
sures could disrupt the metabolism of a variety of drugs and chemicals [9], the scenario

Figure 6 Comparisons of GTMM predictions with measured human data from the volunteer study by 
Kerger et al. (1996) [53]in which an individual male ingested a 5 mg oral dose of CrVI. Results are shown 
for (A) CrIII plasma concentration and (B) CrIII urinary elimination.
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considered involved exposure to a mixture of methylmercury, cadmium, lead, arsenic
(and metabolites), toluene, and benzene (Figure 8). The simulation incorporated the
potential effect of toxic metals present in the liver on benzene and toluene metabolism,
in addition to known competitive inhibition between benzene and toluene [60]. As more
metals accumulate in the liver, the rates of metabolism of nonmetals decrease, causing
higher accumulation of benzene and toluene. As benzene and toluene concentrations
increase, the competitive inhibition between these two chemicals further reduces the
rate of metabolism, hence resulting in higher levels of both chemicals. To model a possi-
ble effect of toxic metals on the metabolic rate of benzene and toluene, a linear tissue
exposure-response model with a short time-lag was used to relate liver metal concentra-
tion to a fractional decrease in maximum reaction velocity. For the study purposes, the
contributions of each metal to the toxic effect were set to arbitrary values since the actual
magnitudes of these interactions are not known. Model parameters were adjusted to give
metals with low liver concentrations higher weights in order for each metal to have an
approximately equal toxic effect.

Figure 7 Comparisons of GTMM predictions with measured human methylmercury (MeHg) data for (A) 
a male consuming approximately 3 μg/kg/day MeHg for 96 days (Hislop et al., 1983) [57], and (B) a 
pregnant woman consuming 42 μg/kg/day MeHg for 108 days (Amin-Zaki et al., 1976 [58]). Data legend: 
hair (blue square), blood (red circle), fetal blood (purple triangle).
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Figure 8 Hypothetical inhibition of benzene (BNZ) metabolism in the liver by cadmium (Cd), lead (Pb), 
methylmercury (MeHg), total arsenic (tot As), and toluene (TOL). Metal intakes were increased by 40% of 
the original intakes at day 500. A: Metal and VOC liver concentrations for the base-case (no interactions). B: Ben-
zene liver concentrations under different interaction assumptions.
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The hypothetical case study focuses on a 30-year old male experiencing continuous
dietary exposure to metals (15 μg/day cadmium, 40 μg/day methylmercury, 70 μg/day
lead, and 100 μg/day inorganic arsenic), and inhalation exposure to volatile organics (20
ppm toluene and 10 ppm benzene). Exposures continued for 500 days, reflecting an
approximate steady state. However since the half-life of cadmium in the liver is
extremely long, its corresponding steady state levels were estimated using a PBTK model
run for an individual from birth to age 30, assuming a cadmium intake of 0.2 μg/kg/day
(which is equivalent to 15 μg/day at age 30). The levels of cadmium in all tissues at age 30
were then used as the initial condition for the short-term simulations.

After 500 days, all metal intakes were increased by 40% of their baseline values in order
to observe the dynamic (state transition) effects of a variable exposure. Exposure to tolu-
ene and benzene remained constant, and was not increased at day 500. Figure 8 (a)
shows predicted liver concentrations of cadmium, lead, total arsenic, methylmercury,
benzene, and toluene for the base-case (i.e. considering no interactions). Figure 8 (b)
shows predicted liver benzene concentration for the base-case scenario and for different
interaction assumptions. The increase in benzene concentration beyond day 500 is
attributable to increased metal exposure. These results show that, depending on the
types of metabolic interactions, there is the potential for substantial increases in the
steady-state level of benzene in the liver. It must be noted that the precise relationships
between toxic metal exposure and metabolic reaction rates of non-metals is not known
and further study is needed in this area.

Discussion and Conclusions
The previous sections outlined the need, development, implementation, and evaluation
of a Generalized Toxicokinetic Modeling system for Mixtures (GTTM), applicable to
both metals and non-metals. At the evaluation stage, the implementations of the GTTM
for individual chemicals (metals or metal compounds) employed assumptions that were
used in the formulations or applications of literature models, but were harmonized via
consistent whole body physiology. The GTMM is a step in the on-going development of
an integrative toxicokinetic/toxicodynamic system that simulates binary and higher
order metal interactions.

The GTMM provides a central component of a novel framework that aims to account
for total exposures (cumulative and aggregate) of individuals and populations to mix-
tures of chemicals; these mixtures can arise from many sources and routes, including
environmental releases, use of consumer products, and dietary intake. Specifically, the
GTMM has been developed as a component of two complementary and evolving sys-
tems that provide the above-mentioned framework: the Modeling ENvironment for
TOtal Risk studies (MENTOR) that addresses the "source-to-dose" steps in the exposure
and risk modeling sequence [61], and the DOse Response Information ANalysis system
(DORIAN) that addresses the biological "dose-to-effect" steps [4]. In the case of MEN-
TOR, the GTMM links to various multimedia/multipathway exposure modules for
chemical mixtures, while in the case of DORIAN the GTMM has been designed to pro-
vide links to biologically-based dose-response (BBDR) modules for toxicodynamic pro-
cesses, as these become available.

In addition to providing linkages of PBTK models for metal mixtures with biologically-
based dose-response (BBDR) models for toxic effects, the framework should eventually
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also provide links with PBTK/BBDR models for essential elements. A manganese PBTK
model for humans (which is in the early stages of development [62]) can be used to study
interactions of toxic and essential metals via the GTMM. For mixtures of metals such as
lead, cadmium, and arsenic, there is a need for BBDR models of renal and hepatic effects,
because renal dysfunction impacts the elimination of essential and toxic metals in the
plasma, and hepatic dysfunction may lead to potential interactions with organics, drugs,
PCBs and pesticides. The magnitudes of these interactions in vivo are not currently
known. However the GTMM can be used to study hypotheses regarding impacts of
exposures from multiple metals and nonmetals, and to help identify priority areas for
studying environmental health risks from exposures to complex chemical mixtures. The
incorporation of whole-body physiology via linkages to up-to-date parameter databases
is also useful in examining the distributions of risks within both the general population
and selected susceptible subpopulations.

Additional material

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
AFS developed and implemented the GTMM as part of his doctoral research under the joint direction of PGG and SSI. All
authors read and approved the final manuscript.

Acknowledgements
This work was supported primarily by USEPA-funded Environmental Bioinformatics and Computational Toxicology Center 
(ebCTC) under STAR Grant No. GAD R 832721-010, and the USEPA funded Center for Exposure and Risk Modeling (CERM) 
under Cooperative Agreement No. CR-83162501. Additional support was provided by the NIEHS sponsored UMDNJ Cen-
ter for Environmental Exposures and Disease under Grant No. P30ES005022.

Author Details
1Environmental and Occupational Health Sciences Institute, A joint institute of UMDNJ - Robert Wood Johnson Medical 
School and Rutgers University, Piscataway, New Jersey, USA, 2UMDNJ-Robert Wood Johnson Medical School Department 
of Environmental and Occupational Medicine, Piscataway, New Jersey, USA and 3Rutgers University Department of 
Chemical and Biochemical Engineering, Piscataway, New Jersey, USA

References
1. US Environmental Protection Agency (EPA): Approaches for the Application of Physiologically Based 

Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment (Final Report).  National Center for 
Environmental Assessment, Washington, D.C; 2006.  Tech. Rep. EPA/600/R-05/043F.

2. Isukapalli S, Roy A, Georgopoulos P: Physiologically Based Pharmacokinetic Modeling: Inhalation, Ingestion and 
Dermal Absorption.  Pharmacometrics: the Science of Quantitative Pharmacology 2007.

3. Andersen ME: Toxicokinetic modeling and its applications in chemical risk assessment.  Toxicol Lett 2003, 138(1-
2):9-27.

Additional file 1 Table of parameter values for cadmium. Model constants and parameter descriptions for the 
cadmium toxicokinetic model.
Additional file 2 Figure of cadmium toxicokinetic model. Model schematic including kinetic constants for the 
cadmium toxicokinetic model.
Additional file 3 Table of partition coefficients for arsenic. Model constants (partition coefficients) for the arse-
nic toxicokinetic model.
Additional file 4 Table of metabolic constants for arsenic. Model constants (absorption, metabolism, and elimi-
nation) and descriptions for the arsenic toxicokinetic model.
Additional file 5 Table of parameter values for lead. Model constants and parameter descriptions for the lead 
toxicokinetic model.
Additional file 6 Table of parameter values for chromium. Model constants and parameter descriptions for the 
chromium toxicokinetic model.
Additional file 7 Table of parameter values for methylmercury. Model constants and parameter descriptions for 
the methylmercury toxicokinetic model.

Received: 18 February 2010 Accepted: 2 June 2010 
Published: 2 June 2010
This article is available from: http://www.tbiomed.com/content/7/1/17© 2010 Sasso et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Theoretical Biology and Medical Modelling 2010, 7:17

http://www.biomedcentral.com/content/supplementary/1742-4682-7-17-S1.PDF
http://www.biomedcentral.com/content/supplementary/1742-4682-7-17-S2.PDF
http://www.biomedcentral.com/content/supplementary/1742-4682-7-17-S3.PDF
http://www.biomedcentral.com/content/supplementary/1742-4682-7-17-S4.PDF
http://www.biomedcentral.com/content/supplementary/1742-4682-7-17-S5.PDF
http://www.biomedcentral.com/content/supplementary/1742-4682-7-17-S6.PDF
http://www.biomedcentral.com/content/supplementary/1742-4682-7-17-S7.PDF
http://www.tbiomed.com/content/7/1/17
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12559690


Sasso et al. Theoretical Biology and Medical Modelling 2010, 7:17
http://www.tbiomed.com/content/7/1/17

Page 15 of 17
4. Georgopoulos PG: A Multiscale Approach for Assessing the Interactions of Environmental and Biological 
Systems in a Holistic Health Risk Assessment Framework.  Water, Air, & Soil Pollution: Focus 2008, 8:3-21.

5. Krishnan K, Haddad S, Beliveau M, Tardif R: Physiological modeling and extrapolation of pharmacokinetic 
interactions from binary to more complex chemical mixtures.  Environ Health Perspect 2002, 110(Suppl 6):989-94.

6. Nestorov I: Whole-body physiologically based pharmacokinetic models.  Expert Opin Drug Metab Toxicol 2007, 
3(2):235-249.

7. Wang G, Fowler BA: Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and 
arsenic.  Toxicol Appl Pharmacol 2008, 233:92-99.

8. Goyer RA: Toxic and essential metal interactions.  Annu Rev Nutr 1997:37-50.
9. Moore MR: A commentary on the impacts of metals and metalloids in the environment upon the metabolism of 

drugs and chemicals.  Toxicol Lett 2004, 148(3):153-8.
10. Bridges CC, Zalups RK: Molecular and ionic mimicry and the transport of toxic metals.  Toxicol Appl Pharmacol 

2005, 204(3):274-308.
11. Andersen O, Nielsen JB, Nordberg GF: Nutritional interactions in intestinal cadmium uptake--possibilities for risk 

reduction.  Biometals 2004, 17(5):543-7.
12. Bressler JP, Olivi L, Cheong JH, Kim Y, Maerten A, Bannon D: Metal transporters in intestine and brain: their 

involvement in metal-associated neurotoxicities.  Human & Experimental Toxicology 2007, 26(3):221-229.
13. Schumann K, Elsenhans B: The impact of food contaminants on the bioavailability of trace metals.  J Trace Elem 

Med Biol 2002, 16(3):139-44.
14. Brzoska MM, Moniuszko-Jakoniuk J: Interactions between cadmium and zinc in the organism.  Food Chem Toxicol 

2001, 39(10):967-80.
15. Choi AL, Budtz-Jorgensen E, Jorgensen PJ, Steuerwald U, Debes F, Weihe P, Grandjean P: Selenium as a potential 

protective factor against mercury developmental neurotoxicity.  Environ Res 2008, 107:45-52.
16. Vahter ME: Interactions between arsenic-induced toxicity and nutrition in early life.  Journal of Nutrition 2007, 

137(12):2798-2804.
17. Ilback NG, Frisk P, Tallkvist J, Gadhasson IL, Blomberg J, Friman G: Gastrointestinal uptake of trace elements are 

changed during the course of a common human viral (Coxsackievirus B3) infection in mice.  J Trace Elem Med Biol 
2008, 22(2):120-30.

18. Nordberg GF: Biomarkers of exposure, effects and susceptibility in humans and their application in studies of 
interactions among metals in China.  Toxicol Lett 2009, 192:45-49.

19. Satarug S, Ujjin P, Vanavanitkun Y, Nishijo M, Baker JR, Moore MR: Effects of cigarette smoking and exposure to 
cadmium and lead on phenotypic variability of hepatic CYP2A6 and renal function biomarkers in men.  
Toxicology 2004, 204(2-3):161-73.

20. Lee SK, Hamer D, Bedwell CL, Lohitnavy M, Yang RSH: Effect of PCBs on the lactational transfer of methyl mercury 
in mice: PBPK modeling.  Environmental Toxicology and Pharmacology 2009, 27:75-83.

21. Nordberg M, Nordberg GF: Toxicological aspects of metallothionein.  Cell Mol Biol (Noisy-le-grand) 2000, 
46(2):451-63.

22. O'Flaherty EJ: Physiologically based models of metal kinetics.  Crit Rev Toxicol 1998, 28(3):271-317.
23. Barbier O, Jacquillet G, Tauc M, Cougnon M, Poujeol P: Effect of heavy metals on, and handling by, the kidney.  

Nephron Physiol 2005, 99(4):p105-10.
24. Reddy MB, Yang RSH, Clewell HJ, Andersen ME: Physiologically based pharmacokinetic modeling: science and 

applications.  Edited by: Hoboken NJ. Wiley-Interscience; 2005. 
25. Froment GF, Bischoff KB: Chemical reactor analysis and design.  2nd edition. Wiley series in chemical engineering, 

New York: Wiley; 1990. 
26. Easterling MR, Evans MV, Kenyon EM: Comparative analysis of software for physiologically based pharmacokinetic 

modeling: Simulation, optimization, and sensitivity analysis.  Toxicology Methods 2000, 10(3):203-229.
27. Price PS, Conolly RB, Chaisson CF, Gross EA, Young JS, Mathis ET, Tedder DR: Modeling interindividual variation in 

physiological factors used in PBPK models of humans.  Crit Rev Toxicol 2003, 33(5):469-503.
28. Thompson CM, Johns DO, Sonawane B, Barton HA, Hattis D, Tardif R, Krishnan K: Database for physiologically based 

pharmacokinetic (PBPK) modeling: physiological data for healthy and health-impaired elderly.  J Toxicol Environ 
Health B Crit Rev 2009, 12:1-24.

29. Willmann S, Hohn K, Edginton A, Sevestre M, Solodenko J, Weiss W, Lippert J, Schmitt W: Development of a 
Physiology-Based Whole-Body Population Model for Assessing the Influence of Individual Variability on the 
Pharmacokinetics of Drugs.  J Pharmacokinet Pharmacodyn 2007, 34:401-431.

30. Young JF, Luecke RH, Pearce BA, Lee T, Ahn H, Baek S, Moon H, Dye DW, Davis TM, Taylor SJ: Human organ/tissue 
growth algorithms that include obese individuals and black/white population organ weight similarities from 
autopsy data.  J Toxicol Environ Health A 2009, 72(8):527-40.

31. Nordberg GF: Cadmium and health in the 21st Century - historical remarks and trends for the future.  Biometals 
2004, 17(5):485-489.

32. Satarug S, Nishijo M, Lasker JM, Edwards RJ, Moore MR: Kidney dysfunction and hypertension: role for cadmium, 
p450 and heme oxygenases?  Tohoku J Exp Med 2006, 208(3):179-202.

33. Kjellstrom T, Nordberg GF: A kinetic model of cadmium metabolism in the human being.  Environ Res 1978, 16(1-
3):248-69.

34. Choudhury H, Harvey T, Thayer WC, Lockwood TF, Stiteler WM, Goodrum PE, Hassett JM, Diamond GL: Urinary 
cadmium elimination as a biomarker of exposure for evaluating a cadmium dietary exposure--biokinetics 
model.  Journal of Toxicology and Environmental Health-Part A 2001, 63(5):321-50.

35. Diamond GL, Thayer WC, Choudhury H: Pharmacokinetics/pharmacodynamics (PK/PD) modeling of risks of 
kidney toxicity from exposure to cadmium: estimates of dietary risks in the U.S. population.  J Toxicol Environ 
Health A 2003, 66(22):2141-64.

36. Friis L, Petersson L, Edling C: Reduced cadmium levels in human kidney cortex in sweden.  Environ Health Perspect 
1998, 106(4):175-8.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12634130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17428153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18325558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9240918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15041065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15845419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15688861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12437148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17854796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18029502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18565424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19540908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15388242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20046988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10774933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9631283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15722646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19117207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17431751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19267313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15688851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16498227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=679914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11471865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14710597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9485480


Sasso et al. Theoretical Biology and Medical Modelling 2010, 7:17
http://www.tbiomed.com/content/7/1/17

Page 16 of 17
37. Lyon TD, Aughey E, Scott R, Fell GS: Cadmium concentrations in human kidney in the UK: 1978-1993.  J Environ 
Monit 1999, 1(3):227-31.

38. Benedetti JL, Samuel O, Dewailly E, Gingras S, Lefebvre MA: Levels of cadmium in kidney and liver tissues among a 
Canadian population (province of Quebec).  J Toxicol Environ Health A 1999, 56(3):145-63.

39. CDC: NHANES National Health and Nutrition Examination Survey.  2005 [http://www.cdc.gov/nchs/nhanes.htm].
40. Thomas DJ, Waters SB, Styblo M: Elucidating the pathway for arsenic methylation.  Toxicol Appl Pharmacol 2004, 

198(3):319-26.
41. El-Masri HA, Kenyon EM: Development of a human physiologically based pharmacokinetic (PBPK) model for 

inorganic arsenic and its mono- and di-methylated metabolites.  J Pharmacokinet Pharmacodyn 2007, 35:31-68.
42. Lee E: A physiologically based pharmacokinetic model for the ingestion of arsenic in humans.  In PhD thesis 

University of California Irvine, Irvine, CA; 1999. 
43. Buchet JP, Lauwerys R, Roels H: Urinary excretion of inorganic arsenic and its metabolites after repeated 

ingestion of sodium metaarsenite by volunteers.  Int Arch Occup Environ Health 1981, 48(2):111-8.
44. ATSDR: Toxicological Profile for Lead.  Tech. rep., US Department of Health and Human Services, Atlanta,GA; 1999. 
45. O'Flaherty EJ: Modeling normal aging bone loss, with consideration of bone loss in osteoporosis.  Toxicol Sci 2000, 

55:171-88.
46. Rabinowitz MB, Wetherill GW, Kopple JD: Kinetic analysis of lead metabolism in healthy humans.  J Clin Invest 1976, 

58(2):260-70.
47. O'Flaherty EJ: Physiologically based models for bone-seeking elements. IV. Kinetics of lead disposition in 

humans.  Toxicol Appl Pharmacol 1993, 118:16-29.
48. O'Flaherty EJ: Physiologically based models for bone-seeking elements. V. Lead absorption and disposition in 

childhood.  Toxicol Appl Pharmacol 1995, 131(2):297-308.
49. Bornschein RL, Hammond PB, Dietrich KN, Succop P, Krafft K, Clark S, Berger O, Pearson D, Que Hee S: The Cincinnati 

prospective study of low-level lead exposure and its effects on child development: protocol and status report.  
Environ Res 1985, 38:4-18.

50. ATSDR: Interaction profile for arsenic, cadmium, chromium, and lead.  Tech rep, US Department of Health and 
Human Services 2004.

51. Sugden KD, Rigby KM, Martin BD: Oxidative activation of the human carcinogen chromate by arsenite: a model 
for synergistic metal activation leading to oxidative DNA damage.  Toxicol In Vitro 2004, 18(6):741-8.

52. Scharf B, Trombetta LD: Toxicity and bioaccumulation of the wood preservative copper 
dimethyldithiocarbamate in tissues of Long-Evans rats.  J Toxicol Environ Health A 2008, 71(19):1300-6.

53. Kerger BD, Paustenbach DJ, Corbett GE, Finley BL: Absorption and elimination of trivalent and hexavalent 
chromium in humans following ingestion of a bolus dose in drinking water.  Toxicol Appl Pharmacol 1996, 
141:145-58.

54. O'Flaherty EJ, Kerger BD, Hays SM, Paustenbach DJ: A physiologically based model for the ingestion of 
chromium(III) and chromium(VI) by humans.  Toxicol Sci 2001, 60(2):196-213.

55. Carrington CD, Bolger MP: An exposure assessment for methylmercury from seafood for consumers in the United 
States.  Risk Anal 2002, 22(4):689-99.

56. Clewell HJ, Gearhart JM, Gentry PR, Covington TR, VanLandingham CB, Crump KS, Shipp AM: Evaluation of the 
uncertainty in an oral reference dose for methylmercury due to interindividual variability in pharmacokinetics.  
Risk Anal 1999, 19(4):547-58.

57. Hislop JT, Collier T, White G,  DK,  EF: The use of keratinized tissues to monitor the detailed exposure of man to 
methyl mercury from fish.  In Chemical Toxicology and Clinical Chemistry of Metals Edited by: S B, J S. London: IUPAC; 
1983:145-148. 

58. Amin-Zaki L, Elhassani S, Majeed MA, Clarkson TW, Doherty RA, Greenwood MR, Giovanoli-Jakubczak T: Perinatal 
methylmercury poisoning in Iraq.  Am J Dis Child 1976, 130(10):1070-6.

59. Shipp AM, Gentry PR, Lawrence G, Van Landingham C, Covington T, Clewell HJ, Gribben K, Crump K: Determination 
of a site-specific reference dose for methylmercury for fish-eating populations.  Toxicol Ind Health 2000, 16(9-
10):335-438.

60. Haddad S, Restieri C, Krishnan K: Characterization of age-related changes in body weight and organ weights from 
birth to adolescence in humans.  J Toxicol Environ Health A 2001, 64(6):453-64.

61. Georgopoulos P, Lioy P: From Theoretical Aspects of Human Exposure and Dose Assessment to Computational 
Model Implementation: The MOdeling ENvironment for TOtal Risk Studies (MENTOR).  Journal of Toxicology and 
Environmental Health - Part B, Critical Reviews 2006, 9(6):457-483.

62. Nong A, Taylor MD, Clewell r HJ, Dorman DC, Andersen ME: Manganese tissue dosimetry in rats and monkeys: 
accounting for dietary and inhaled Mn with physiologically based pharmacokinetic modeling.  Toxicol Sci 2009, 
108:22-34.

63. Satarug S, Nishijo M, Ujjin P, Vanavanitkun Y, Baker JR, Moore MR: Evidence for concurrent effects of exposure to 
environmental cadmium and lead on hepatic CYP2A6 phenotype and renal function biomarkers in 
nonsmokers.  Environ Health Perspect 2004, 112(15):1512-8.

64. Degawa M, Arai H, Kubota M, Hashimoto Y: Ionic lead, a unique metal ion as an inhibitor for cytochrome P450IA2 
(CYP1A2) expression in the rat liver.  Biochem Biophys Res Commun 1994, 200(2):1086-92.

65. Seubert JM, Sinal CJ, Bend JR: Acute sodium arsenite administration induces pulmonary CYP1A1 mRNA, protein 
and activity in the rat.  J Biochem Mol Toxicol 2002, 16(2):84-95.

66. Albores A, Sinal CJ, Cherian MG, Bend JR: Selective increase of rat lung cytochrome P450 1A1 dependent 
monooxygenase activity after acute sodium arsenite administration.  Can J Physiol Pharmacol 1995, 73:153-8.

67. Vakharia DD, Liu N, Pause R, Fasco M, Bessette E, Zhang QY, Kaminsky LS: Polycyclic aromatic hydrocarbon/metal 
mixtures: effect on PAH induction of CYP1A1 in human HEPG2 cells.  Drug Metab Dispos 2001, 29(7):999-1006.

68. Maier A, Dalton TP, Puga A: Disruption of dioxin-inducible phase I and phase II gene expression patterns by 
cadmium, chromium, and arsenic.  Mol Carcinog 2000, 28(4):225-35.

69. Cascorbi I: Genetic basis of toxic reactions to drugs and chemicals.  Toxicol Lett 2006, 162:16-28.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11529107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9973001
http://www.cdc.gov/nchs/nhanes.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15276411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17943421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6894910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10788572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=783195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8430422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7716770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4076110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15465638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18686200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8917687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11248132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12224743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10765421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=973609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11762928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11732696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17090483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19098275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15531436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8179586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11979425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7600446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11408366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10972992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16310984


Sasso et al. Theoretical Biology and Medical Modelling 2010, 7:17
http://www.tbiomed.com/content/7/1/17

Page 17 of 17
70. Hodgson E: In vitro human phase I metabolism of xenobiotics I: Pesticides and related compounds used in 
agriculture and public health, May 2003.  Journal of Biochemical and Molecular Toxicology 2003, 17(4):201-206.

71. Safe SH: Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and 
implications for risk assessment.  Crit Rev Toxicol 1994, 24(2):87-149.

doi: 10.1186/1742-4682-7-17
Cite this article as: Sasso et al., A generalized physiologically-based toxicokinetic modeling system for chemical mix-
tures containing metals Theoretical Biology and Medical Modelling 2010, 7:17

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12898643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8037844

	Abstract
	Background:
	Methods:
	Conclusions:

	Background
	Toxicological interactions among metals
	Toxicological interactions among metals and nonmetals

	Methods
	General model structure
	Mathematical formulation
	Equations for metabolism
	Computational implementation

	Results
	Cadmium
	Arsenic
	Lead
	Chromium
	Mercury
	Application of the GTMM to a mixture of metals and non-metals

	Discussion and Conclusions
	Additional material
	Competing interests
	Authors' contributions
	Acknowledgements
	Author Details
	References

