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Abstract

Background: While many pandemic preparedness plans have promoted disease
control effort to lower and delay an epidemic peak, analytical methods for
determining the required control effort and making statistical inferences have yet to
be sought. As a first step to address this issue, we present a theoretical basis on
which to assess the impact of an early intervention on the epidemic peak,
employing a simple epidemic model.

Methods: We focus on estimating the impact of an early control effort (e.g.
unsuccessful containment), assuming that the transmission rate abruptly increases
when control is discontinued. We provide analytical expressions for magnitude and
time of the epidemic peak, employing approximate logistic and logarithmic-form
solutions for the latter. Empirical influenza data (H1N1-2009) in Japan are analyzed to
estimate the effect of the summer holiday period in lowering and delaying the peak
in 2009.

Results: Our model estimates that the epidemic peak of the 2009 pandemic was
delayed for 21 days due to summer holiday. Decline in peak appears to be a
nonlinear function of control-associated reduction in the reproduction number. Peak
delay is shown to critically depend on the fraction of initially immune individuals.

Conclusions: The proposed modeling approaches offer methodological avenues to
assess empirical data and to objectively estimate required control effort to lower and
delay an epidemic peak. Analytical findings support a critical need to conduct
population-wide serological survey as a prior requirement for estimating the time of
peak.

Background
The influenza A (H1N1-2009) pandemic began in early 2009, and rapidly spread

worldwide. Mathematical epidemiologists characterized the epidemic and provided key

insights into its dynamics from the earliest stages of the pandemic [1]. The transmis-

sion potential was quantified shortly after the declaration of emergence [2-6], while

statistical estimation and relevant discussion of epidemiological determinants were

underway before substantial numbers of cases were reported in many countries [1].

Prior to the pandemic, many countries issued the original pandemic preparedness

plans and guidelines, aiming to instruct the public and to advocate community mitiga-

tion. The goals of the mitigation have been threefold; (a) to delay epidemic peak, (b) to
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reduce peak burden on hospitals and infrastructure (by lowering the height of peak)

and (c) to diminish overall morbidity impacts [7]. To assess these aspects under differ-

ent intervention scenarios, various modeling studies have been conducted (e.g. [8-10]),

most notably, by simulating the detailed influenza transmission dynamics.

Although simulations have aided our understanding of expected dynamics in realistic

situations and in different scenarios, analytical methods that objectively determine the

required control effort and that make statistical inference (e.g. evaluation of empirically

observed delay) have yet to be developed. Focus on epidemic peak (relating to mitiga-

tion goals (a) and (b) above) has been particularly understudied. Goal (c), on the other

hand, is readily formulated in terms of the so-called final epidemic size. The time

delay of a major epidemic (such as that resulting from international border control)

has been explored using simplistic modeling approaches [11,12]; however, the height

and time of an epidemic peak involve nonlinear dynamics, rendering analytical

approaches difficult. Despite the mathematical complexity, goals (a) and (b) can be

more readily understood from empirical data during early epidemic phase than can

goal (c), because an explicit understanding of goal (c) in the presence of interventions

requires knowledge of the full epidemiological dynamics over the entire epidemic

period.

In the present study, we present a theoretical basis from which the impact of an

early intervention on the height and time of epidemic peak may be assessed. As a spe-

cial case, we consider a scenario in which intervention is implemented only briefly dur-

ing the early epidemic phase (e.g. unsuccessful containment). We employ a

parsimonious epidemic model with homogeneously mixing assumption, because non-

linear epidemic dynamics involve a number of analytical complexities. As a first step

towards understanding epidemiological factors that influence the epidemic peak, lead-

ing to the eventual statistical inference of relevant effects, we seek fundamental analyti-

cal strategies to evaluate the impact of short-lasting control on epidemic peak using

the simplest epidemic model [13]. For our model to become fully applicable and to

more closely match empirical data, a number of extensions are required. We discuss

ways by which these extensions can be practically realized.

Methods
Study motivation

We first present our study motivation. During the early epidemic phase of the 2009

pandemic, many countries initially enforced strict countermeasures to locally contain

the epidemic. Early intervention includes, but is not limited to, quarantine, isolation,

contact tracing and school closure. Nevertheless, once it was realized that a major epi-

demic was unavoidable, regions and countries across the world were compelled to

downgrade control policy from containment to mitigation. Although mitigation also

involves various countermeasures (and indeed, mitigation originally intends to achieve

the above mentioned goals (a)-(c)), one desires to know the effectiveness of the unsuc-

cessful containment effort. Among its many outcomes, the present study focuses on

the height and time of epidemic peak.

The applicability of our theoretical arguments is not restricted to the switch of con-

trol policy. In many Northern hemisphere countries, the start of the major epidemic of

H1N1-2009 (which may or may not have been preceded by early stochastic phase)
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corresponds to the summer school holiday period. Adults also take vacation over a

part of this period. In addition to strategic school closure as an early countermeasure

against influenza [14,15], school holiday is known to suppress the transmission of

influenza [16], mainly because transmission tends to be maintained by school-age chil-

dren [2,17-19]. Following this trend, a decline in instantaneous reproduction number

has been empirically observed during the summer holiday period of the 2009 pandemic

[20]. Transmission resumes once a new semester starts. The effectiveness of the sum-

mer holiday period in lowering and delaying the epidemic peak is, therefore, a matter

of great interest.

Both questions are addressed by considering time-dependent increase in the transmis-

sion rate. Let b be the transmission rate per unit time in the absence of an intervention

of interest (or during the mitigation phase in the case of our first question). Due to inter-

vention (or school holiday) in the early epidemic phase, b is initially reduced by a factor

a (0 ≤ a ≤ 1) until time t1 (Figure 1A). Though transmission rate abruptly increases at

time t1 when the control policy is eased or when the new school semester starts, we

observe a reduced height of, and a time delay in, the epidemic peak compared to the

hypothetical situation in which no intervention takes place (Figure 1B). More realistic

situations may be envisaged (e.g. a more complex step function or seasonality of trans-

mission), but we restrict ourselves to the simplest scenario in the present study.

Epidemic model

Here we consider the simplest form of Kermack and McKendrick epidemic model [13],

formulated in terms of ordinary differential equations. The following assumptions are

made: (i) the population is homogeneously mixing, (ii) the epidemic occurs in a popu-

lation in which the majority of individuals are susceptible, (iii) the time scale of the

epidemic is sufficiently shorter than the average life expectancy at birth of the host,

Figure 1 A scenario for time-dependent increase in the transmission potential. A. Time dependent
increase in the transmission rate. In the absence of intervention (baseline scenario), the transmission rate is
assumed to be constant b over time. In the presence of early intervention, the transmission rate is reduced
by a factor a (0 ≤ a ≤ 1) over time interval 0 to t1. We assume that the product ab ileads to super-critical
level (i.e. aR(0) >1 where R(0) is the reproduction number at time 0), and t1 occurs before the time at
which peak prevalence of infectious individuals in the absence of intervention is observed. B. A
comparison between two representative epidemic curves (the number of infectious individuals) in a
hypothetical population of 100,000 individuals. R(0) = 1.5, a = 0.90 and t1 = 50 days. The epidemic peak in
the presence of short-lasting control is delayed, and the height of epidemic curve is slightly reduced,
relative to the case in which control measures are absent.
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and we ignore the background demographic dynamics, (iv) the epidemic occurs in a

closed constant population without immigration and emigration again justified based

on time scale, and (v) once an infected individual recovers, he/she becomes completely

and permanently immune against further infections. Let the numbers of susceptible,

infectious and recovered individuals at calendar time t be S(t), I(t) and U(t), respec-

tively. We use the notation U(t) for recovered individuals to avoid confusion with the

instantaneous reproduction number at calendar time t, R(t). The population size N

remains constant over time (N = S(t) + I(t) + U(t)). The so-called SIR (susceptible-

infected-recovered) model is written as

dS t

dt
R t I t

dI t

dt
R t I t I t

dU t

dt
I t

( )
= − ( ) ( )

( )
= ( ) ( ) − ( )

( )
= ( )



 



,

,

,

(1)

where R(t) is the instantaneous reproduction number (i.e., the average number of

secondary cases generated by a single primary case at calendar time t) and g is the rate

of recovery. Given time-dependent transmission rate b(t) and susceptible population

size S(t) at time t, R(t) is assumed to be given by

R t
t S t( ) =

( ) ( )


. (2)

Although b(t) will be dealt with as a simple step function in the following analysis,

we use the general notation to motivate future analysis of more complex time-depen-

dent dynamics. We assume that an epidemic starts at time 0 with an initial condition

(S(0), I(0), U(0)) = (S0, I0,U0) where I0 = 1 and U0/N ≈ 0, i.e. an epidemic occurs in a

population in which the majority of individuals are susceptible at t = 0. Under this

initial condition, we consider two different scenarios for R(t). First, a hypothetical sce-

nario in which no intervention takes place, i.e.

R t
S t( ) =

( )


, (3)

which is hereafter referred to as the baseline scenario. Second, we consider an

observed scenario in which an intervention takes place during the early stage of the

epidemic. Let t1 and tm,0 be calendar times at which the intervention terminates, and

at which a peak prevalence of infectious individuals is observed in the absence of inter-

vention, respectively. As mentioned above, we assume that the intervention reduces the

reproduction number by a factor a (0 ≤ a ≤ 1) for 0 ≤ t < t1. For t ≥ t1, we assume

that the transmission rate is recovered to b as in (3).

R t

S t
t t

S t
t t
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⎧

⎨
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⎩
⎪
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for 0
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1

1

,

.

(4)

We assume t1 <tm,0, i.e. we consider a scenario in which transmission rate recovers

before the time at which peak prevalence is observed in baseline scenario. We further
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assume that R(t) >1 for t < t1. That is, the efficacy a of an intervention effort (or sum-

mer holiday) is by itself not sufficient to contain the epidemic.

To illustrate our modeling approaches, we consider the transmission dynamics of

pandemic influenza (H1N1-2009), ignoring the detailed epidemiological characteristics

(e.g. pre-existing immunity, realistic distribution of generation time and the presence

of asymptomatic infection). The initial reproduction number in the absence of inter-

ventions R(0) is assumed to be 1.4 [2]. Given that expected values of empirically esti-

mated serial interval ranged from 1.9 to 3.6 days [2,5,21-23], the mean generation time

1/g is assumed to be 3 days [24,25].

Our study questions are twofold. First, we aim to quantify the decline in peak preva-

lence (I(t)/N) due to a short-lasting intervention. The peak prevalence of the interven-

tion scenario is always smaller than that of baseline scenario (see below), and we show

that this difference can be analytically expressed. Second, we are interested in the time

delay in observing peak prevalence in the presence of intervention. We develop an

approximate strategy to quantify the difference in times of peak between baseline and

intervention scenarios.

Difference in peak prevalence

We move on to consider estimates of peak prevalence in two scenarios. For mathema-

tical convenience, we use the prevalence of infectious individuals (I(t)/N) to consider

the epidemic peak. The peak prevalence of infectious individuals is preceded by peak

incidence (gR(t)I(t)/N) by approximately the mean infectious period of 1/g days. As was
realized elsewhere [26], analysis of prevalence is easier than that of incidence. Begin-

ning with two sub-equations of system (1), we have

dI t

dS t R t

( )
( ) = − + ( )1

1
. (5)

Note that R(t) is a function of S(t). Integrating (5) in baseline scenario, we obtain

[27]

I t I S S t
S t

S
( ) = + − ( ) +

( )
0 0

0



ln . (6)

A theoretical condition for the observation of peak prevalence at time tm,0 is dI(tm,0)/

dt = 0, or equivalently, R(tm,0) = 1. As evident from equation (2), this condition satis-

fies S(tm,0) = g/b. The peak prevalence I(tm,0)/N is then given by [28]

I t

N

I S

N N

S

S

R N
R

m, ln

ln .
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0

1

1
0

1 0

( )
= + − +⎛

⎝
⎜

⎞
⎠
⎟

≈ − ( ) + ( )( )







(7)

Note that S0/R(0)N represents the proportion yet to be infected and S0 ln R(0)/R(0)N

is the proportion removed at time tm,0. Equation (7) indicates that the peak prevalence

of SIR model is determined by the initial condition and the transmission potential R

(0). It should be noted that S0/R(0) can be replaced by g/b, and thus, I(tm,0) is indepen-

dent of initial condition for U0 = 0 (a special case).
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In the intervention scenario, equation (6) with replacement of b by ab applies for

t < t1.

I t S t I S
S t

S1 1 0 0
1

0
( ) + ( ) = + + ( )


ln , (8)

which provides another initial condition at time t = t1 for t ≥ t1. That is, we can also

employ (6) to compute peak prevalence for t ≥ t1 with initial condition (S(t1), I(t1),U

(t1)). Again, a condition to observe peak prevalence at time tm,1 is R(tm,1) = 1, which

gives S(tm,1) = g/b. The peak prevalence I(tm,1)/N of the intervention scenario is given

by
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Note that R(0) in the above equation refers to bS0/g (i.e. we use R(0) in our baseline

scenario to permit an explicit comparison between the two scenarios). Inserting right-

hand side of (8) into (9), we obtain
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Consequently, relative reduction in peak prevalence due to intervention within time

t1 is εa = (I(tm,0) - I(tm,1))/N, which can be parameterized as

 
= − −⎛

⎝⎜
⎞
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0
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Equation (11) indicates that the difference of peak prevalence between the two sce-

narios is determined by four different factors; the relative reduction in reproduction

number a due to the intervention, initial condition at time 0, transmission potential R

(0), and fraction of susceptible individuals at time t1 under the intervention. If the

initial condition, the transmission dynamics in the absence of interventions (i.e. R(0), b
and g) and t1 are known, an estimate of a gives S(t1), yielding an estimate of εa.

Delay in epidemic peak

The time to observe peak prevalence is analytically more challenging than the height of

peak prevalence, because even an approximate estimate requires an analytical solution

to the model (1). We propose a parsimonious approximation strategy which leads to

more convenient solutions than those discussed in past studies (e.g. [29]). Substituting

I(t) in the first sub-equation of (1) by (1/g )(dU(t)/dt), we have

1
S t

dS t

dt

t dU t

dt( )
( )

= −
( ) ( )


. (12)
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For the baseline scenario (i.e. b(t) = b), integrating (12) from time 0 to t,

ln .
S t

S
U t U

( )
( ) = − ( ) − ( )( )
0

0



(13)

Because U(0)/N ≈ 0,
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⎝
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Subsequently, the third sub-equation of (1) is rewritten as
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Here we impose another key approximation. Because the quantity bU(t)/g (≈ R(0)U

(t)/N) for influenza (e.g. R(0) = 1.4) tends to be smaller than 1 (especially, before

observing epidemic peak), we use a Taylor series expansion, i.e.,
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If the quadratic approximation is inadequate for large R(0), a higher order Taylor

polynomial function can be used. Inserting the quadratic approximation into (15), and

imposing a further approximation (i.e. S0 ≈ N), we obtain
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which appears to be a logistic equation. We use this logistic-form solution instead of

the more commonly employed hyperbolic-form solution [29,30], to illustrate a simpler

approximate solution and to demonstrate the problem underlying both solutions.

Later, we use a more formal solution (of logarithmic-form) in the intervention sce-

nario, which is numerically identical to the classical hyperbolic-form solution (see

below). Assuming that U(0) = U0 >0, the analytical solution of (17) is
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The derivative of (18) is dU(t)/dt = gI(t). It follows that
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Further differentiation of (19) gives dI(t)/dt, and letting dI(t)/dt = 0, the time to

observe peak prevalence is analytically derived. For the logistic equation, the corre-

sponding time has been referred to as the inflection point of the cumulative curve in

equation (18) [31]. The inflection point tm,0 to observe peak prevalence is

t
R

S R

U R
m, ln ,0

0

0
2

1

0 1

2 0 1

0
1=

( ) −( )
( ) −( )
( )

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(20)

which depends on initial condition and transmission characteristics. In the interven-

tion scenario (in which intervention is short-lasting), an identical approach can be

taken for t < t1, replacing b by ab (or by replacing R(0) by aR(0)). Subsequently, the
epidemic peak occurs at tm,1 (> t1). We take a similar approach to that used in (15)

with a computed initial condition (S(t1), I(t1), U(t1)) using (18) and (19). For t ≥ t1,

dU t
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Now we apply an approximation
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It should be noted that, in the above approximation, we include the term exp(bU(t1)/
g), because U(t) - U(t1) better satisfies the Taylor series approximation than expanding

U(t) alone. Let constants A, B and C be
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Given these constants, we consider

dV z

dz
A BV z CV z

( )
= + ( ) − ( )2 , (24)

where z = t - t1 and V (z) = U(z + t1) for t ≥ t1. The initial condition V (0) is V0 = U

(t1). Writing (24) in integral form, we have [30]

1
2

00 A BV CV
dV dz

z

V

V

+ −
= ∫∫ . (25)

Past studies have typically assumed hyperbolic-form functions for the analytical solu-

tion of (25) [29,30]. However, we express the solution in logarithmic-form [31,32],

because logarithmic functions are compatible with spreadsheet programs. The logarith-

mic-form solution reads

V z
X B Y X B Xz

C Y Xz
( ) = +( ) − −( ) −( )

+ −( )( )
exp

exp
,

2 1
(26)
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where

X B AC= +2 4 . (27)

Also,

Y
X B CV

X B CV
= + −

− +
2
2

0

0

. (28)

Differentiating (26) with respect to z and taking dV (z)/dz = 0, we find the inflection

point zm,1 to be

z
X

Ym, ln .1
1= (29)

Replacing z by t, we obtain

t t
B AC

X B CU t

X B CU tm, ln ,1 1 2
1

1

1

4

2

2
= +

+

+ − ( )
− + ( ) (30)

as an approximate solution of the epidemic peak in intervention scenario. The time

delay of this peak, imposed by the intervention in the early epidemic phase, τa is subse-

quently calculated as

 = −t tm m, , ,1 0 (31)

using (20) and (30) for the right-hand side. The delay depends on initial condition

U0, the length of intervention t1 (both of which are apparent from (20) and (30)) and

on the efficacy of intervention a (since this quantity influences the initial condition U

(t1) in (30)).

Application and illustration

Empirical analysis of influenza A (H1N1-2009)

Here, we apply the above described theory to empirical influenza A (H1N1-2009) data.

Figure 2 shows the estimated number of influenza cases based on national sentinel sur-

veillance in Japan from week 31 (week ending 2 August) 2009 to week 13 (week ending

28 March) 2010. The estimates follow an extrapolation of the notified number of cases

from a total of 4800 randomly sampled sentinel hospitals to the actual total number of

medical facilities in Japan. The cases represent patients who sought medical attendance

and who have met the following criteria, (a) acute course of illness (sudden onset), (b)

fever greater than 38.0°C, (c) cough, sputum or breathlessness (symptoms of upper

respiratory tract infection) and (d) general fatigue, or who were strongly suspected of

the disease undertaking laboratory diagnosis (e.g. rapid diagnostic testing). Although

the estimates of sentinel surveillance data involve various epidemiological biases and

errors, we ignore these issues in the present study. Prior to week 31, the number of

cases was small and the dynamics in the early stochastic phase have been examined

elsewhere [17]. We arbitrarily assume that the major epidemic starts in week 31.

It is interesting to observe that the period A in Figure 2 corresponds to that of sum-

mer school holiday. Due to reporting delay of approximately 1 week [17], we assume

Omori and Nishiura Theoretical Biology and Medical Modelling 2011, 8:2
http://www.tbiomed.com/content/8/1/2

Page 9 of 21



that weeks 31 to 36 inclusive (the latter of which ends on 6 September) reflect the

transmission dynamics during the summer school holiday. Subsequently, school opens

in September with an epidemic peak in late November (period B), followed by abrupt

decline during the winter holiday (period C) and start of winter semester (period D).

Among these periods, we focus on the impact of summer holiday (period A), relative

to period B, in lowering epidemic peak and delaying the time to observe the peak.

More specifically, we estimate the reproduction number R(0) and its reduction a from

the data set encompassing weeks 31 to 42. To permit an explicit estimation, we

assume that linear approximation holds, as was similarly assumed elsewhere [15]. We

assume that the reproduction number is reduced by a factor a from week 31 to 36

due to summer holiday, while the reproduction number recovers to R(0) from week

37 to 42.

Let r0 be the exponential growth rate of cases per day in the absence of summer

holiday. Because our SIR model approximates the generation time by an exponential

distribution with mean 1/g days, the estimator of R(0) is [33,34]

R r(̂ ) ˆ / .0 1 0= +  (32)

Throughout the summer holiday, we assume that the reproduction number is

reduced to RA = aR(0). That is, the growth rate during the summer holiday, r1, is

defined by

r r1 0 1= + −( )   . (33)

Figure 2 Estimated weekly incidence of influenza cases in Japan from 2009-10. The estimates are
based on nationwide sentinel surveillance, covering the period from week 31 in 2009 to week 13 in 2010.
The estimate follows an extrapolation of the notified number of cases from a total of 4800 randomly
sampled sentinel hospitals to the total number of medical facilities in Japan. The case refers to influenza-
like illness cases with medical attendance, possibly involving other diseases, but with influenza A (H1N1-
2009) dominant among the isolated influenza viruses during the period of interest. Period A corresponds
to summer school holiday, followed by autumn semester (period B). Period C covers winter holiday and
period D corresponds to winter semester.
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Let the weekly incidence be Jk in week k. During summer holiday period, the condi-

tionally expected value of Jk+1 given Jk is

E J J r t J

r t J

k k k

k

+( ) = Δ( )
= + −( )( ) Δ⎡⎣ ⎤⎦

1 1

0 1

; exp ,

exp ,  
(34)

where Δt is the length of reporting (i.e. 7 days). In week 37, the conditional expecta-

tion is

E J J
r r t

r

r t

r t
J

r

k k k+( ) =
Δ( ) Δ( ) −

Δ( ) −

=
+ −

1
1 1

0

0

1

0

1

1

1

;
exp exp

exp
,

  (( ) ) + −( )( ) Δ⎡⎣ ⎤⎦( Δ( ) −

+ −( )( ) Δ⎡⎣

exp exp

exp

  

  

r t

r

r t

r t

0

0

0

0

1 1

1 ⎤⎤⎦ −1
J k ,

(35)

because, with an initial incidence ik in week k, we have

E J i r t dt
i

r
r tk k

k
t

( ) = ( ) = Δ( ) −( )
Δ

∫ exp exp ,1
10

1 1 (36)

and

E J i r t r t dt
i r t

r
r tk k

k
t

+

Δ
( ) = Δ( ) ( ) =

Δ( ) Δ( ) −∫1 1 0
1

00
0 1exp exp

exp
exp(( ) . (37)

See [35] for more details regarding the derivation of (35), which has been applied to

influenza A (H1N1-2009) in other settings [36]. From week 38 to 42, E(Jk+1; Jk) simpli-

fies to

E exp1( ; ) ( ) .J J r t Jk k k+ = 0Δ (38)

Although adding the information of test negative individuals could potentially yield a

less biased estimate of r0 [37], we do not have access to this data and so we disregard

this issue for now. Assuming that the observed counts of cases are Poisson distributed

within each period, the likelihood function to estimate r0 and a is

L r
J J J J

J
k k

J
k k

kk

k

0
1 1

32

42

, ;
; exp ;

!
 J( ) =

( ) − ( )( )− −

=
∏ E E

(39)

The maximum likelihood estimates of r0 and a are obtained by minimizing the nega-

tive logarithm of (39), and the 95% confidence intervals (CI) are computed by profile

likelihood. From the maximum likelihood estimates, we compute the differences in

peak prevalence and times to observe the peak between baseline and second scenarios

using the SIR model (1). For simplicity, we adopt (S0, I0, U0) = (99998, 1, 1) for the

numerical computation and t1 is assumed to be 50 days (roughly corresponding to the

length of period A plus 8 days).

Although our model (1) adopts exponentially distributed generation time, we can

partially address the uncertainty of r0 and a in the parametric assumption of the gen-

eration time. That is, we adopt constant generation time (i.e. delta function) as an

alternative assumption, which is known to yield a theoretical maximum reproduction
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number, given identical r0 and mean generation time [34]. Given r0, the estimator of R

(0) with constant generation time of 1/g days reads

R
r

(̂ ) exp
ˆ

.0 0= ⎛
⎝
⎜

⎞
⎠
⎟

(40)

As mentioned above, the reproduction number during summer holiday reduces to

RA = aR(0). Accordingly, the growth rate during the summer holiday, r1 is written as

r r1 0= +  ln . (41)

Using the above mentioned likelihood (39) and replacing r1 of exponential assump-

tion by (41), we estimate r0 and a. It should be noted that the difference between (33)

and (41) indicates that the estimates of both r0 and a depend on the realistic distribu-

tion of the generation time [25].

Sensitivity analysis

In addition to the analysis of empirical data, we also examine sensitivity of the height

and time of peak prevalence to different values of a and t1 by numerical simulation.

As mentioned above, influenza is our case study, and the default value of R(0) of base-

line scenario is 1.4, but we also consider R(0) of 1.2 and 1.6. These ranges are adopted,

additionally, because we impose an approximation (16). When obtaining the numerical

solutions, initial condition is fixed at (S0, I0, U0) = (99998, 1, 1) for clarity. U0 = 1 is

adopted to prevent U0 = 0 in (18) and in later equations, and also to select a positive

integer value closest to 0 such that U0/N ≈ 0.

Results
Influenza A (H1N1-2009)

Figure 3A compares observed and predicted numbers of influenza cases in Japan from

week 31 to 42. Grey bars represent conditionally expected values during summer holi-

day, and white bars represent the expected values during autumn semester. The esti-

mated growth rate in the absence of summer holiday, r0 is 0.048 (95% CI: 0.029, 0.066)

per day. Thus, the estimated reproduction number R(0) is 1.14 (95% CI: 1.09, 1.20)

which is likely an underestimate (see below).

The estimated relative proportion of the reproduction number under mitigation con-

ditions a is 0.948 (95% CI: 0.842, 1.053). Although the confidence limits of a include

1, our argument adopts linear dynamics for longer than 10 weeks (note that the largest

number of notifications is seen in week 48), and thus, the reproduction number is con-

servatively estimated (i.e. over the time period that we examine, the transmission

dynamics may become nonlinear); therefore, R(0) is likely underestimated due to the

linear approximation adopted in our quantitative illustration). Thus, we believe it is

appropriate to regard the reduction in the reproduction number during summer holi-

day as marginally significant. The estimated reproduction number during school holi-

day is 1.08.

Even adopting constant generation time of 3 days, r0 is of a similar order, i.e. 0.048

(95% CI: 0.029, 0.066) per day. The reproduction number R(0), however, is slightly

greater (1.15 (95% CI: 1.09, 1.22)) due to its estimator, exp(r0/g). a is estimated at

0.942 (95% CI: 0.832, 1.061).
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Figure 3B illustrates the number of infectious individuals in a hypothetical population

with 100,000 individuals using the estimated a and R(0). In the absence of summer

holiday, the epidemic peak would have been observed at Day 171 with I(tm,0) = 822

cases. In the presence of summer holiday from time 0 to t1, the peak is delayed to Day

192 with I(tm,1) = 820 cases. Thus, the estimated a and R(0) do not significantly alter

the height of peak prevalence when the effects of summer holiday are included (a dif-

ference between the two scenarios of only 2 cases), but the delay effect between the

scenarios is as long as 21 days. We do not use our approximate formula for the esti-

mation of time delay in this empirical case study (for reasons explained below).

Because R(0) = 1.14 in the absence of intervention, a major epidemic can occur when

the initial condition U0/N is smaller than 1 - 1/a R(0) = 7.4% of the population.

Assuming a fixed I0 = 1, and varying S0 and U0 from N - 1 to 0.926N and from 0 to

0.074N, respectively, only slight variations in the reduction of peak prevalence (not

greater than 1 case) are observed, but the time delay varies greatly; under a scenario

with aR(0) ≈ 1 or with S0 = 0.926N and U0 = 0.074N, a possible maximum delay of

t1 = 50 days can be readily envisaged.

Differential peak prevalence

Figure 4A examines the sensitivity of relative peak prevalence to a (i.e. reduction in R

(0)) for assumed R(0) of 1.2, 1.4 and 1.6. Because aR(0) <1 prevents major epidemic

during the early epidemic phase, possible ranges of a satisfying aR(0) ≥ 1 vary with R

(0). It is worth noting that the relative reduction in peak prevalence is a nonlinear

function of a. Largest reduction occurs when a lies within the range 0.90 to 0.95,

rather than when a is minimum. Figure 4B examines the sensitivity of relative reduc-

tion in the peak prevalence as a function of the time length of intervention t1 (e.g. the

time required to switch control policy from containment to mitigation). Again, to

Figure 3 The impact of summer holiday on the transmission dynamics of influenza A (H1N1-2009).
A. Comparison of the observed and predicted weekly counts of the estimated number of influenza cases
in Japan from week 31 to 42. Grey bars are conditionally expected values during the summer school
holiday, while white bars are the conditionally expected values during autumn semester. B. Numerical
solutions of the number of infectious individuals in a hypothetical population of 100,000 individuals with
initial condition (S0, I0, U0) = (99998, 1, 1). Baseline scenario is compared against intervention scenario
under a short-lasting intervention. For both scenarios, assumed R(0) and mean generation time are 1.14
and 3 days, respectively. In the second scenario, the transmission rate is reduced by a factor a = 0.948 due
to summer school holiday from time 0 to t1 (=50 days). Although heights of peak prevalence do not
greatly differ from each other, the time to observe the peak is clearly delayed in the second scenario.
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satisfy t1 <tm,0, possible ranges of t1 vary with R(0). The interpretation of Figure 4B is

more straightforward than that of Figure 4A. Essentially, the longer the time period of

intervention, the larger the potential reduction of prevalence.

The nonlinear relationship observed in Figure 4A can be explored by combining (11)

with approximate solutions. First, because S(t1) ≈ S(0) exp (-a R(0)U(t1)/S0) in the pre-

sence of intervention, equation (11) can be expressed in the form

 = −( ) ( )
1 1U t

N
. (42)

Second, using an approximate solution of U(t1) based on logistic equation (18),



  




 

≈
−( ) ( ) −( )( )(

+
( )( )
( ) −( )

1 0 1

0
2 0 1

0 1

0
2

0

U R t

N
U R N
S R

exp

exp RR t0 1 11( ) −( )( ) −⎡⎣ ⎤⎦

, (43)

which is a nonlinear function of a. Although the calculation is not shown here due

to its mathematical complexity and lack of practical interpretation, the derivative of

(43) with respect to a reveals an optimal a yielding the longest delay in Figure 4A.

Delay in epidemic peak

Figure 5A compares epidemic curves of infectious individuals in the absence of interven-

tion between explicit numerical and approximate solutions (i.e. solutions to (1) and (19),

respectively). The height of epidemic peak is approximated well for smaller R(0), reflect-

ing the fact that Taylor series expansion is a good approximation to the exponential

function. The relationship between R(0) and approximation of epidemic peak height is

also analytically expressed. Inserting (20) into (19), the approximate peak prevalence is

I t
S R

Rapprox m, .0
0

2
0 1

2 0
( ) =

( ) −( )
( )

(44)

Figure 4 Sensitivity analysis of peak prevalence to the efficacy and length of intervention. A.
Sensitivity of relative peak prevalence of infectious individuals to reduction in the reproduction number, a.
The vertical axis represents I(tm,1)/I(tm,0), where I(tm,0) and I(tm,1) represent the peak prevalence in the
absence and presence of intervention, respectively. The time length of intervention, t1 is fixed at Day 50. B.
Sensitivity of relative peak prevalence of infectious individuals to the time length of the intervention, t1. a
is fixed at 0.90. For both panels, the lines are truncated to satisfy aR(0) ≥ 1 and t1 <tm,0 where tm,0 is the
time to observe peak prevalence in the absence of intervention.
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It should be noted that S0/R(0) can be replaced by g/b, and thus, the peak prevalence

in the approximated logistic form is independent of the initial condition (indeed, the

derivative of a logistic equation is known not to depend on initial condition but rather

on the carrying capacity [31]). On the other hand, an explicit solution can depend on

initial condition for U(0) >0, i.e.,

I t N U Rm, ln .0 0 1 0( ) = −( ) − + ( )( )


(45)

These two quantities are identical for R(0) = 1, N ≈ S0 and U0/N ≈ 0. Otherwise,

numerical observation shows that I(tm,0) > Iapprox(tm,0) for R(0) >1 and U0/N ≈ 0.

Thus, the smaller the R(0), the better the approximate height of epidemic curve.

While interpretation of the height of peak prevalence is overall straightforward, the

time to observe peak prevalence is better captured for larger R(0) (Figure 5A). Clearly,

the logistic equation applied to R(0) = 1.2 yields a considerably biased (delayed) time

to observation of epidemic peak (with bias longer than 20 days), and thus, we did not

apply our approximate solution to the above mentioned case study of influenza A

(H1N1-2009). It must be noted that the relationship between R(0) and approximation

of epidemic peak in Figure 5A is regulated not only by R(0) but also by the initial con-

dition U0 in (20); that is, the good agreement of the time of peak between two solu-

tions for R(0) = 1.6 is not only due to R(0) but also to U0 = 1 in our simulation

setting. For suitable values of U0, good approximations to the time of peak are

obtained even for R(0) = 1.2 or smaller (results not shown).

Figure 5B compares the estimated time delay in epidemic peak, induced by an early

intervention, between explicit numerical and approximate solutions. For all three R(0)

that we investigate, approximation methods result in underestimation of the delay (31).

For R(0) = 1.6, the approximate estimate of delay is crudely realized, and its sensitivity

to a is close to that of the explicit numerical solution. The approximation is worst for

R(0) = 1.2, for which a negative result was yielded for large a. These findings are in

Figure 5 Assessing approximation of time to observe epidemic peak. A. Comparison of epidemic
curves in the absence of intervention between explicit numerical and approximate solutions. The
population size is assumed to be 100,000 with initial condition (S0, I0, U0) = (99998, 1, 1). The generation
time is exponentially distributed with mean 1/g = 3 days. B. Comparison of estimated delay in epidemic
peak (imposed by a short-lasting intervention) between explicit numerical and approximate solutions. The
assumed length of intervention t1 is 50 days.
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concordance with Figure 5A. It should be remembered that approximation of time of

epidemic peak can vary with initial condition U0, indicating that the estimation

requires knowledge of U0 in addition to R(0) and a (also, as we have seen, good

approximation depends on judicious choice of R(0) and U0).

Discussion
In the present study, we have presented fundamental ideas to assess the impact of a

short-lasting intervention of an infectious disease on the epidemic peak. As a first

step towards explicit evaluation of control effort in lowering and delaying the epi-

demic peak, we comprehensively described analytical expressions for the difference

in the height of, and the time delay in, the epidemic peak gained by intervention,

employing a parsimonious homogenous mixing epidemic model. We restricted our

focus to a simple step function (Figure 1A) which adequately illustrated the role of

summer holiday in lowering and delaying epidemic peak during the influenza

(H1N1-2009) pandemic. Our methods show that both the height and the time of

epidemic peak can be readily controlled by varying initial conditions at a given point

of time at which transmission rate abruptly changes. The proposed method can be

extended in future to encompass more realistic multiple steps for the transmission

rate. Analytical solution of the simplest form of Kermack and McKendrick model

has been undertaken multiple times, and is documented in many key references

[27,29-32,38,39] including the original study in 1927 [13]. However, to our knowl-

edge, the present study is the first to offer a theoretical basis on which to assess the

impact of an early countermeasure on the epidemic peak employing logistic and

logarithmic-form solutions, with a goal to making statistical inferences in the future.

In addition, our analytical expressions not only promote epidemiological understand-

ing of epidemic peak traits, but can be worked backwards to determine required

control effort to achieve desired goals of height and delay of the epidemic peak.

Although manual adjustment of the efficacy of intervention is not practically feasible,

our demonstration of a nonlinear relationship between a and decline in the height of

epidemic peak should be considered a key issue for optimal intervention manage-

ment during an early epidemic phase.

Although public health guidelines have tended to advocate control policy switches

from containment to mitigation at some point in time, the likely impact of unsuccess-

ful containment to epidemic dynamics has been seldom discussed. Indeed, common

illustration of mitigation (embodied in the three distinct goals (a)-(c) described in the

Background section) do not account for the time-dependent transmission rate (rather,

a guideline illustrates only differential peaks with various reproduction numbers R(0)

[7]). Statistical modeling studies tend to focus only on time-dependent decreases in

transmission potential, with a focus on the instantaneous reproduction number R(t) <1

to demonstrate successful control of an infectious disease (e.g. [40-42]). Motivated by

these problems, we considered the impact of upward change in the transmission rate

during the course of an epidemic. In our case study of influenza H1N1-2009, it was

shown that summer vacation did not appreciably lower the height of an epidemic

peak, but imposed a substantial time delay. Although our approximate estimation of

the delay in epidemic peak was biased towards certain choices of R(0) and the initial

number of immune individuals U0, this does not imply failure of the model. Rather, by
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means of approximate analytical computation, we have shown in (20) and (30) that the

time of epidemic peak critically depends on the fraction of initially immune individuals

prior to an epidemic. Although a preceding study instead emphasized the dependence

of the time of peak on initial number of infectious individuals [32], other studies with

hyperbolic-form solutions emphasize dependency of the time of peak on U0 [27,31].

We believe that U0 is more easily quantified than the initial number of infectious indi-

viduals I0 in practical settings. The critical importance of the initial number of immune

individuals U0 is especially highlighted in the influenza A (H1N1-2009) pandemic

because of pre-existing immunity [43-46]. Our analytical undertakings indicate that

statistical inference of the time delay gained by early control effort will greatly benefit

from population-wide seroepidemiological survey. Depending on the quality of approx-

imation for a given combination of R(0) and U0, one can then decide whether the esti-

mation of delay should be based on analytical or numerical solution.

Despite our motivation to eventually offer a method to estimate the impact of an

early intervention, it should be noted that the present study does not account for

uncertainty (e.g. confidence interval). Our arguments are based solely on deterministic

models, whereas an explicit derivation of the confidence interval requires use of a sto-

chastic Markov jump process [47]. Moreover, potential model extensions are numer-

ous. Relevant factors include, but are not limited to, mobility of host, spatial dynamics,

class-age structure (e.g. infection-age dependency), chronological age-structure, social

contact patterns, seasonality, strain specificity and immunological dynamics. All of

these features would increase the realism, but would greatly complicate analytical

inspection, of the model. To illustrate the way forward, we discuss the simplest exam-

ple of a class-age structured model in the Appendix.

Despite many future tasks to be completed, and our realization that the epidemic

peak is vulnerable to heterogeneous patterns of transmission, relevant statistical assess-

ment (including the estimation of R(0), generation time, and incubation period) always

starts with a homogeneous modeling assumption [11,21,23,33,34,48,49]. This is particu-

larly true during the early epidemic phase of a pandemic. In this sense, we believe that

the present study has successfully offered a methodological avenue to statistically

assess empirical data and to assess required control effort to lower and delay epidemic

peak.

Conclusions
This study has presented a theoretical basis on which to assess the impact of short-

lasting intervention on the epidemic peak of an infectious disease. Employing a homo-

geneously mixing epidemic model, we derived analytical expressions for the decline in

the height of epidemic peak and for the time delay of the peak. Empirical influenza A

(H1N1-2009) data were analyzed using a simplistic but practically accessible model,

which estimated that the epidemic peak was delayed for 21 days by the summer holi-

day period in 2009. Approximate logarithmic form solution of the time of epidemic

peak appeared to critically depend on initial condition of immune individuals, support-

ing a need to conduct population-wide serological survey. Despite obvious needs to

address various types of heterogeneity, our framework offers a successful methodologi-

cal avenue to assess relevant empirical data and to advocate required control effort to

lower and delay epidemic peak.
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Appendix: A way forward
In realistic situations, there is a time delay for newly infected individuals to acquire

infectiousness, known as the latent period. This delay is captured by employing the so-

called SEIR (susceptible-exposed-infected-recovered) model. In addition to S(t), I(t)

and U(t), we consider infected but non-infectious individuals E(t). Assuming that the

mean latent period is 1/δ days, the model is written as

dS t

dt
S t I t

dE t

dt
S t I t E t

dI t

dt
E t

( )
= − ( ) ( )

( )
= ( ) ( ) − ( )

( )
= ( ) −



 

 

,

,

II t

dU t

dt
I t

( )

( )
= ( )

,

.

(46)

In considering the height of epidemic peak of this system, an equation similar to (6)

is derived by employing a Lyapunov function, W(S, E, I) [50]. A different derivation is

given elsewhere [51].

W S E I S S E I, , exp .( ) = + +( )
−⎛

⎝
⎜

⎞
⎠
⎟


 (47)

The Lyapunov function is known to yield a constant solution (for any t), thus,

dW/dt = 0. This is confirmed by

dW S E I

dt

W

S

dS

dt

W

E

dE

dt

W

I

dI

dt

, ,
.

( )
= ∂

∂
+ ∂

∂
+ ∂

∂
= 0 (48)

At an epidemic peak at time tm (where we have dE/dt = dI/dt = 0), two obvious con-

ditions apply,

S tm( ) = 

, (49)

E t I tm m( ) = ( )


. (50)

Using Lyapunov function in (47), we have

W S t E t I t W S E Im m m( ) ( ) ( )( ) = ( ) ( ) ( )( ), , , , .0 0 0 (51)

Writing both sides of (51) in terms of (47), and taking logarithm of both sides, we obtain

− ( ) + ( ) + ( ) + ( ) = − ( ) + ( ) + ( ) + ( )





ln ln .S t S t E t I t S S E Im m m m 0 0 0 0 (52)

Rearranging (52) leads us to

1 0 0 0 1 0+⎛
⎝⎜

⎞
⎠⎟

( ) = ( ) + ( ) + ( ) − + ( )( )





I t S E I Rm ln , (53)
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which is very close to (6). By varying initial conditions at each time point when a

change in transmission rate occurs, equation (53) permits us to measure the impact of

public health intervention on the epidemic peak, under the SEIR assumption. Regard-

ing the time of epidemic peak, a straightforward extension of (15) applies, although the

analytical solution may be rather complex or may not exist. We have

dU t

dt
N S t E t U t

( )
= − ( ) − ( ) − ( )( ) . (54)

S(t) can be replaced as for (14). Expressing E(t) as a function of U(t) requires strong

mathematical supports. The problem may be addressed in different ways, but we first

consider an analytical solution of dE/dt, i.e.,

E t E t t S d
t

( ) exp( ) exp( ) exp( )( ( )) ,= ( ) − + − −∫0
0

     (55)

where S( ) in the right-hand side is equivalent to dS/ds for which the derivative of

approximation (15) can be used. We have yet to derive a simple analytical solution of

the time of epidemic peak from (54), but the above discussion demonstrates that it is

at least possible to compute the height of epidemic peak with more E compartments

(as was discussed in [52]), using our proposed Lyapunov approach. Nevertheless, it

should be remembered that the presence of infection-age dependency in the infectious-

ness profile is likely to complicate the computation of epidemic peak [53]. The incor-

poration of other realistic features, however, is greatly aided by the Lyapunov

approach. In further studies, we will address epidemic peak with seasonality and age-

dependent heterogeneity and in a multi-strain system.
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