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Abstract

Background: It was recently shown that the treatment effect of an antibody can be
described by a consolidated parameter which includes the reaction rates of the
receptor-toxin-antibody kinetics and the relative concentration of reacting species. As
a result, any given value of this parameter determines an associated range of
antibody kinetic properties and its relative concentration in order to achieve a
desirable therapeutic effect. In the current study we generalize the existing kinetic
model by explicitly taking into account the diffusion fluxes of the species.

Results: A refined model of receptor-toxin-antibody (RTA) interaction is studied
numerically. The protective properties of an antibody against a given toxin are
evaluated for a spherical cell placed into a toxin-antibody solution. The selection of
parameters for numerical simulation approximately corresponds to the practically
relevant values reported in the literature with the significant ranges in variation to
allow demonstration of different regimes of intracellular transport.

Conclusions: The proposed refinement of the RTA model may become important
for the consistent evaluation of protective potential of an antibody and for the
estimation of the time period during which the application of this antibody becomes
the most effective. It can be a useful tool for in vitro selection of potential protective
antibodies for progression to in vivo evaluation.

1. Background
The successful bio-medical application of antibodies is well-documented (see [1,2] and

references therein) and there is an ever-increasing interest in the application of antibo-

dies for a mitigation of the effect of toxins associated with various biological threats

(epidemic outbreaks or malicious releases) [3-5]. With the recent progress in bio-

engineering, many antibodies with different affinity parameters have been generated. For

a long time the main target of antibody design has been the antibody affinity. However,

according to recent results [6], affinity, on its own, is a poor predictor of protective or

therapeutic potential of an antibody. In fact, the treatment effect of an antibody can be

described by a consolidated parameter which includes the reaction rates of the receptor-

toxin-antibody kinetics and the relative concentration of reacting species [6]. As a result,

any given value of this parameter determines an associated range of antibody kinetic

properties and its relative concentration in order to achieve a desirable therapeutic

effect. Analytical models, similar to those reported in [6], can be a useful tool for in vitro

selection of potentially protective antibodies for progression to in vivo evaluation. They
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can significantly reduce the cost of research and development programs by optimizing

associated experimental efforts. From this perspective, extension and validation of such

models becomes an important goal for biomedical modelling which is partially addressed

in the current study.

There are a number of ways of refining the simple kinetic model for the Receptor-

Toxin-Antibody (RTA) system proposed in [6]. The possibilities include incorporating a

mechanism of receptor recycling, complex pathways for toxin internalization or multiple

receptor population [7]. The focus of our study is on incorporation of the diffusion

effects in the theoretical framework of RTA, i.e. enhancement of the reaction RTA

model [6] with the capability to account for the diffusion fluxes of reacting species [7].

Such enhancement not only enables the application of the RTA model in more realistic

setting (i.e. instead of the simplified “well-mixed” approximation [6] the reaction-diffu-

sive RTA model can describe propagation of toxin into a single cell or into a system of

cells), but also provides a high fidelity estimation of the limiting uptake rate of toxin by

a cell (especially when it is limited by diffusion). More importantly, the refined model

allows consistent simulation of the so-called ‘window of opportunity’ (period of time

after exposure to toxin when the application of an antibody is the most effective). We

believe the two latter parameters (the limiting uptake rate and the ‘window of opportu-

nity’) can become the key parameters in the optimization study for the future antibody

design.

The incorporation of diffusion fluxes into the RTA model can be implemented based

on a generalization of the well-known analytical framework for ligand-receptor binding

[6-10]. From a mathematical point of view, the inclusion of diffusion terms into the

RTA kinetic model leads to significant complications (system of nonlinear PDEs instead

of system of ODEs), which usually prevent any analytical progress and implies numerical

solutions. This was the main motivation for our approach to tackle the refined RTA

model. The aim of this study is to numerically evaluate the protective properties of an

antibody against a given toxin in the model of a spherical cell placed into a toxin-

antibody solution. We consider the problem of the RTA interaction in the most general

setting, when relative concentrations of species are arbitrary and all diffusive fluxes are

taken into account (toxin, antibody and associated complexes). We calculate the anti-

body treatment efficiency parameter under various scenarios and identify the causes of

time variation of this parameter.

We also study the RTA interaction in the ‘Well-Mixed Solution’ (WMS) model, i.e.

when the solution of a toxin, antibody, and toxin-antibody complex is assumed to be

uniformly mixed and homogeneously distributed in an extracellular space. In this case

all diffusion fluxes disappear and the model can be described by Ordinary Differential

Equations (ODE). It is worth noting that, since in such approach receptors are still

confined to the single cell surface, our model is different from the “well-mixed” model

proposed in [6] where all species are homogeneously distributed over the whole space.

But in the case of a low internalization rate (i.e. low toxin inflow into a cell) the

governing equations of these models are of the same type.

The paper is organized as follows. In Section 3 we introduce the reaction-diffusion

model for RTA. The WMS model is presented in Section 4. The results are presented

in Section 5. Conclusions and summarising remarks are presented in Section 6.
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2. Notation
Ω - the extracellular domain, i.e. the problem domain where species diffuse and react

(i.e. toxin, antibody, and toxin-antibody complex),

Se - the external surface of Ω,

Sc - the cell surface (inner surface of Ω),

r0 - the concentration of receptors on the cell surface,

θ(t, x) - the the fraction of bounded receptors,

r0θ - the concentration of the toxin-bound receptors (confined to Sc),

r0(1 - θ) - the concentration of free receptors,

uT, uA, and uC - the concentrations of toxin, antibody, and toxin-antibody complex,

u0T , u
0
A, u

0
C- the initial concentrations,

�T, �A, and �C - the diffusivities of the toxin, antibody, and toxin-antibody complex,

k1, k-1 - the forward and reverse constants of toxin-antibody reaction rate,

k2 and k-2 - the forward and reverse constants of toxin and receptor binding rate,

k3 - the rate constant of toxin internalization,

∂n - the outward normal derivative on Se or Sc,

∂t = ∂/∂t,

Δ - the Laplace operator,

ψ(t) - the antibody protection factor (a relative reduction of toxin inside a cell due to

application of antibody).

3. Reaction-Diffusion Model for RTA Interaction
The reaction-diffusion system for the RTA interaction can be derived based on well-

known results of the receptor-ligand system (law of mass action and diffusion). By

including antibody into the system we arrive at the following equations⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tuT = −k1uTuA + k−1uC + κT�uT , x ∈ �, t > 0,

uT |Se = u0T , t > 0,

∂nuT =
r0
κT

(−k2(1 − θ)uT + k−2θ), x ∈ Sc, t > 0,

uT |t=0 = u0T , x ∈ �,

(1)

{
∂tθ = k2(1 − θ)uT − k−2θ − k3θ , x ∈ Sc, t > 0,

θ |t=0 = 0, x ∈ Sc,
(2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tuA = −k1uTuA + k−1uC + κA�uA, x ∈ �, t > 0,

uA|Se = u0A, t > 0,

∂nuA|Sc = 0, t > 0,

uA|t=0 = u0A, x ∈ �,

(3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tuC = k1uTuA − k−1uC + κC�uC, x ∈ �, t > 0,

uC|Se = 0, t > 0,

∂nuC|Sc = 0, t > 0,

uC|t=0 = 0, x ∈ �.

(4)
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We disregard any excretion mechanism since we assume that it is nonsignificant

over the time scales of interest (i.e. internalization time, time of toxin depletion etc).

The boundary conditions at the system above correspond to a case where initially the

toxin and antibody are distributed homogeneously in the extracellular domain Ω. The

boundary conditions on the outer boundary of the domain are assumed to be the con-

stant concentrations of toxin and antibody and zero concentration of toxin-antibody

complex. It is worth noting that in this case the gradients of uT, uA, uC are nonzero at

the outer surface of the domain and they provide a time-dependent influx of species

into Ω (with implication no conservation law for uT, uA, uC). Indeed, in such an

approach we disregard any depletion of toxin and antibody within Ω (the depletion

will be taken into account in the WNS model, see below). In a practical experiment

this setup can correspond to a single cell embedded into a large volume (compart-

ment) of toxin-antibody solution, so toxin and antibody are in excess. In this context it

is also worth noting that in the real biomedical scenarios the concentration of toxin is

usually very low with respect to the concentration of receptor due to the high concen-

tration of receptors on the surface of living cells and the high toxicological effect

(lethal dose) of the most toxins of interest. This implies that the condition of the

excess of antibody over toxin is practically relevant and are very easy to achieve (e.g.

see experimental results of [11], where the concentration of ricin was about a thousand

times less than the concentration of antibody), while the condition of the excess of

toxin over receptor seems to be infeasible for any in vivo situation (but the latter con-

dition still can be used in lab experiments for the model validation).

It is worth mentioning that models similar to (1)-(4) have been extensively studied in

application to biouptake of pollutants by micro-organisms, cellular nutrition, heteroge-

neous catalysis and analytical instrumental measurements (for comprehensive review of

these studies see [12-17], and references therein). Equations (1)-(4) can be presented in

non-dimensional form by using scales of τ* (time), l (length), and u
*
(concentration). By

substituting new variables, x = lx̄, t = τ∗ t̄, r0 = lu∗r̄0, uT = u∗ūT, uA = u∗ūA, uC = u∗ūC,
uA0 = u∗ū0A, uA0 = u∗ū0A, k̄1 = τ∗u∗k1, k̄2 = τ∗u∗k2, k̄−1 = τ∗k−1, k̄−2 = τ∗k−2, k̄3 = τ∗k3,

κ̄A = τ∗κAl−2, κ̄A = τ∗κAl−2, κ̄C = τ∗κCl−2 into (1)-(4) we can deduce the same system,

but only in non-dimensional variables. Therefore, for simplicity in what follows, we

treat system (1)-(4) as non-dimensional.

The main parameter of interest is the antibody protection factor (a relative reduction

of toxin attached to a cell due to application of antibody). This parameter can be

defined by the following expression [6]

ψ(t) =

∫
Sc

θ |u0A>0dS∫
Sc

θ |u0A=0dS
. (5)

By definition 0 ≤ ψ ≤ 1 with the lower values of ψ corresponding to the more

profound therapeutic effect of antibody treatment.

By employing (5) it is possible to derive a simple estimation for the saturation value

of parameter ψ (i.e. for the limit t ® ∞). Indeed, from (1)-(4) for the steady-state limit

we can write

θ = θ sat =
k2usatT

k2usatT + k−2 + k3
=

usatT

usatT + K2 + b
, (6)
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where usatT is the saturation concentration of toxin, K2 = k-2/k2, b = k3/k2. Then (5)

leads to ψ1 = ψsat where

ψ sat =
θ sat|u0A>0

θ sat|u0A=0
. (7)

So that ψ1 can be expressed in terms of only one ‘bulk’ variable usatT ≥ 0. Indeed, the

value of ψsat can be appreciably affected by the diffusivities of species, since �T, �A, �C
determine the saturation value usatT by virtue of Eqs. (1)-(4).

4. WMS Model for RTA Interaction
The WMS model corresponds to an assumption that all species (toxin, antibody, and

toxin-antibody complex) are distributed uniformly within the domain Ω. This implies

no spatial gradients of concentrations, so all diffusivity terms disappear from system

(1)-(4). Contrary to (1)-(4) we also assume that there are no fluxes of species across Se,

so we account for depletion of species in the cell compartment Ω (a simple yet consis-

tent approach that accounts for the depletion effect was proposed in [17]). The process

of toxin internalization (i.e. flux of toxin through the cell surface) can be modelled in

this case as a given rate of toxin removal from the whole system [9]. Then the WMS

model can be translated to a system of ODEs:{ ·
uT = −k1uTuA + k−1uC − k4r0(k2(1 − θ)uT − k−2θ), t > 0,

uT|t=0 = u0T ,
(8)

{
θ̇ = k2(1 − θ)uT − k−2θ − k3θ , t > 0,

θ |t=0 = 0,
(9)

{ ·
uA = −k1uTuA + k−1uC, t > 0,

uA|t=0 = u0A,
(10)

{ ·
uC = k1uTuA − k−1uC, t > 0,

uC|t=0 = 0.
(11)

Here a dot is placed over the variables to represent a time derivative; k4 = Sc/VΩ,

where Sc and VΩ are the area of cell and the extracellular volume. For instance, for a

spherical cell of radius rc, VΩ is a domain between the cell and a concentric sphere of

radius re >rc, V� =
4
3

π(ρ3
e − ρ3

c ), Sc = 4πρ2
c , and k4 = 3ρ2

c

/
(ρ3

e − ρ3
c ). For a simple

model of cell culture (a uniformly distributed system of cells) the average density of

cell distribution, n, is approximately equal to 3/(4πρ3
e ), so we can treat the ‘external’

scale re as the size of a compartment occupied by an individual cell in the culture.

From this perspective, the dependence of ψ(re) presented below can provide insight

into the dependence of ψ on the cell packing density in the culture since re ≈

[3/(4πn)]1/3 (see below).

The WMS model (8)-(11) is worth comparing with the model of the RTA interaction

proposed in [6] (a kinetic model of uniformly distributed chemical species and cells).

Despite these models being essentially different in their geometrical setting (in our
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case the receptors are still confined to a surface of a single cell), their governing equa-

tions become similar in the case when toxin inflow into a cell can be neglected (i.e.

low internalization rate); the latter case seems to be very typical for many practical

situations [7]. The WMS model (8)-(11) being a system of ODEs is much easier to

analyze and solve numerically than the full RTA model (1)-(4) but indeed the WMS

model cannot be used for estimating the effect of diffusivity of species on the protec-

tive properties of antibody (since it contains no diffusivity parameters).

With toxin internalization taken into account, the WMS model has only one conser-

vation law uC + uA = u0A (internalization implies that toxin is gradually taken away from

the system). However, in the case of the low internalization rate we can set k3 = 0 and

also deduce an “approximate” conservation law for toxin, viz., uT + uC + k4r0θ = u0T,

which is similar to one used in [6]. These conservation laws significantly simplify an

analytical treatment of the WMS model. For instance, from Eqs. (7) and (8)-(11) it is

possible to derive an approximate analytical expression for the saturation value of pro-

tection factor ψsat. Actually, for the steady-state solution of system (8)-(11) without

internalization rate (k3 = 0) it is straightforward to derive the following closed equation

(1 − θ)(u0T − R0θ − εu0Aθ

1 + (ε − 1)θ
) = K2θ , (12)

where ε = K2/K1, K1 = k -1/k1, K2 = k -2/k2, R0 = r0k4 (the same equation is given in

[6] for the “well mixed” model). Then the solution of this equation enables the calcula-

tion of protection factor ψ2 = ψsat by means of Eq. (7).

We solve Eq. (12) numerically and compare the numerical results with the approxi-

mate analytical predictions deduced from the asymptotic solutions of Eq. (12). Some

asymptotic analysis of Eq. (12) is presented in [6]. Our range of parameters corre-

sponds to the case R0/(εu0A) � 1 and this enables derivation of the approximate

formula

ψ sat ≈ ψ3 =
F(u0A, u

0
T)

F(0, u0T)
, (13)

where F(x, y) = (q1 −
√
q21 − 4q2y)/(2q2), q1 = K2 + εx - (ε - 2)y and q2 = q1 - (εK2 + y).

In order to verify our estimation of ψ near the saturation limit, we also solved non-

steady system (8)-(11) numerically for large time and then by employing formula (7)

determined function ψ4 = ψsat. Table 1 shows that for the practically important cases

the expressions for ψ2, ψ3, and ψ4 are in the very good agreement. Table 1 also demon-

strates ψsat for the case where internalization rate is taken into account.

Table 1 Comparison of saturation values of ψ for WMS model: ψsat = ψ2 (12) and (7),
ψsat = ψ3 (13), and ψsat = ψ4, where ψ4 is estimated from the solution of (8)-(11) and (7)
at t = 10 000 s

k1 k2 ψ2 ψ3 ψ4

k3 = 0 k3 = 0.000033

0.013 0.0125 0.215524 0.215524 0.216026 0.206474

0.013 0.025 0.345686 0.345708 0.345903 0.332632

0.013 0.05 0.508760 0.508754 0.508767 0.493704

0.13 0.0125 0.027219 0.027220 0.027426 0.025913
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5. Numerical Results
We treated system (1)-(4) numerically for the spherically symmetric domain r Î [rc,
re] and t > 0 with an implicit finite-difference scheme [18]. These settings constitute

the standard spherical cellular model [8-10,15]. Our selection of the values of para-

meters for the model (1)-(4) was motivated by the values available in the literature

[11,19-22] with the extended range to allow exploration and illustration of the various

transport regimes that are possible in the RTA system. If for some parameters (i.e. dif-

fusivity) data were not available, then we used values from similar models [7-9] and

added some ranges to cater for data uncertainty and to provide sensitivity analysis.

The following values were used in most calculations [7]: u* = 6.02 · 1013 cm-3, τ* = 1 s,

r0 = 1.6 · 104/Sc, where 1.6 · 104 is the total number of receptors of the cell, l = 10-2

cm, Sc = 4πρ2
c = 4π · 10−6 cm2, r̄0 = 2.115 · 10−3. The values of the other parameters

are given in Table 2. If values of k1, k2, �A, and �T differ from those given in Table 2,

they are specified in the legends of plots. We expect that the chosen values of para-

meters were representative enough to illustrate a rich variety of possible scenarios of

the evolution of the RTA system and provide a reasonable estimate of timescales of

the associated dynamics. The consistent match of the numerical predictions with the

specific experimental results (i.e. on the ricin-neutralising antibodies [11,19-21]) would

involve some additional assumptions about the relationship between the concentration

of species and observable parameters (e.g. cellular viability) and was outside of the

scope of the current paper.

The results of the numerical solutions are presented in Figures 1, 2, 3, 4, 5, 6, 7 and

Tables 1, 3. As we indicated in the Background, the main purpose of our study was to

estimate the effect of diffusive parameters of the species on the protective properties of

an antibody. As such, most plots are presented below to illustrate this effect.

To provide insight into the relation between the diffusion transport and the protec-

tive properties of an antibody in the spherical cellular model, it is convenient to

employ the theoretical framework that is well-established in ecology and electrochem-

istry (toxin uptake by microorganisms and performance of microelectrodes) (e.g., see

Table 2 Values of parameters used in calculations

Parameter Dimensional value Non-dimensional value

k1 1.3 ·105 M-1 s-1 1.3 · 10-2

k2 1.25 ·105 M-1 s-1 1.25 · 10-2

k-1 1.4 ·10-4 s-1 1.4 · 10-4

k-2 5.2 ·10-4 s-1 5.2 · 10-4

k3 3.3 ·10-5 s-1 3.3 · 10-5

�T 10-6 cm2 s-1 10-2

�A 10-6 cm2 s-1 10-2

�C 10-6 cm2 s-1 10-2

rc 10-3 cm 10-1

re 2 · 10-3, 5 · 10-3 cm 2, 5

u0A 6.02 · 10-13 cm-3 1

u0T 3.01 · 10-13, 6.02 · 10 -14 cm-3 0.5, 0.1
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[15-17] and references therein). According to [15], the steady-state flux of toxin

towards a spherical cell can be estimated from the following expression

J(t) = �−1uT(t), � =
(

1
k3K∗

+
ρc

κ∗

)
, (14)

where Λ is the conductance of the system (flux-concentration ratio), uT(t) is the con-

centration of toxin on the outer boundary of Ω, viz. uT(t) = u0T for the boundary con-

dition of constant concentration or uT(t) = u0Texp(−t/τd) for the no-flux boundary

condition, �* is the effective diffusion of the toxin, τd is the depletion time of toxin in

the bulk, K* = R0/(R0 + K1) [6]. It can be seen that the parameter �* and depletion

time τd (if the depletion of toxin is significant) become two ‘aggregated’ parameters

Figure 1 Effect of variation of the scale of cell compartment and toxin diffusivity on protection
factor. External radius of the cell compartment re = 2 (1) and re = 5 (2), �T = 10-2 (solid line), �T = 10-3

(dashed line), �T = 10-4 (symbols) and u0T = 0.5.

Figure 2 Effect of variation of the scale of cell compartment and toxin diffusivity on protection
factor. External radius of the cell compartment re = 2 (1) and re = 5 (2), �T = 10-2 (solid line), �T = 10-3

(dashed line), �T = 10-4 (symbols) and u0T = 0.3.
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that can be used to comprehensively characterize the influence of an antibody on toxin

transport in the model of spherical cell.

The term �* /rc in Eq. (14) represents the diffusive conductance and the term K*k3
represents the internalization conductance [15]. The ratio of the two terms is

L = K∗k3ρc/κ∗, (15)

which is called bioavalability number [15] and can be used to characterized the

regime of toxin uptake by the cell [15,16]. If L ≪ 1 the uptake flux is fully controlled

by the internalization process, while in the opposite case L ≫1 it is controlled by diffu-

sion. Note that for the case of ricin competitive binding to cell receptors and the

mono-clonal antibody 2B11 the value of parameter L ≈ 10-2, i.e. flux is mostly con-

trolled by internalization process. Importantly, even in the case of diffusion dominated

Figure 3 Effect of variation of the scale of cell compartment and toxin diffusivity on protection
factor. External radius of the cell compartment re = 2 (1) and re = 5 (2), �T = 10-2 (solid line), �T = 10-3

(dashed line), �T = 10-4 (symbols) and u0T = 0.1.

Figure 4 Effect of the antibody diffusivity on the antibody protection factor. Antibody diffusivity �A
= 10-1 (1), �A = 10-2 (2), �A = 10-3 (3). Horizontal lines correspond to values of ψsat given by Eq. (7) for
curves 1 and 2.
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flux the transport of toxin can be characterized by a rich variety of regimes that are

parameterized based on the so-called degree of lability, so these regimes correspond to

the different asymptotical values of parameters �*, τd [15-17].

A detailed analysis of various regimes of diffusion controlled transport emerging in

the spherical cellular model is outside the scope of the current paper, so we briefly

present here only some key points that are relevant to the understanding of our

numerical simulations (for details we refer the reader to [15-17]). It can be shown that

the ratio p = �* /�T is always within the range 1 ≤ p ≤ ∞ with the minimal value p = 1

corresponding to the diffusion transport of toxin without presence of antibody (i.e. �*
= �T ). The latter condition together with Eqs. (14) leads to a simple estimate for the

long-time asymptote of the protection factor of antibody (5)

ψ(t) ≈ ψ∗exp(γ t), ψ∗ =
1 + L0
1 + L0/p

, (16)

Figure 5 Effect of toxin diffusivity on antibody protection factor. Toxin diffusivity �T = 10-2 (1), �T = 5 ·
10-3 (2), �T = 10-3 (3), �T = 10-4 (4). Horizontal line corresponds to value of ψsat given by Eq. (7) for curve 3.

Figure 6 Behavior of antibody protection function determined by WMS model for large time. Plots
demonstrate convergence of ψ to saturation limit for different values of parameters k1 and k2 at re = 2; k1 =
1.3 · 10-2, k2 : 1.25 · 10

-2 (1), 2.5 · 10-2 (2), 5 · 10-2 (3). Horizontal lines correspond to values of ψsat given by (13).
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where γ = 1/τd − 1/τ 0
d , τ

0
d is the depletion time of toxin without antibody, L0 = K*

k3rc/�T.
Equation (16) is an analogue of expression (13) that accounts for diffusion effects

and toxin depletion. We observe that, depending on a value of the parameter g, the
asymptotical behavior of the protection factor can be either zero (g < 0), infinity (g >

0) or non-zero constant (g = 0). For the diffusion controlled flux, L0 ≫ 1 and ψ* = p

while for the kinetically controlled regime L0 ≪ 1 and ψ* = 1. This implies that by

changing the diffusivity of the reacting species (i.e. by introducing an antibody) it is

possible (at least in theory) to control the behavior of the protection factor ψ(t). The

case of the constant toxin influx (i.e. no depletion) simply corresponds to g = 0. We

observed most of these scenarios in our numerical simulations (see below).

An interesting (and not intuitively obvious) result of expression (16) is the general

inequity ψ* ≥ 1 (more precisely 1 ≤ ψ* ≤ 1 + L0). This means that for the diffusion-con-

trolled scenario and for the case when toxin depletion is not significant (e.g. for gT ≪
1), the introduction of an antibody can only increase the flux of toxin towards the cell.

This result is a clear manifestation of a possible contribution of the antibody-toxin com-

plex to the total toxin flux, described in [15-17]. Importantly, that for a case of the fast

kinetics (situation when the reaction of antibody-toxin complexation is much faster than

Figure 7 Behavior of antibody protection function determined by WMS model for large time. Plots
demonstrate convergence of ψ to saturation limit for different values of parameters k1 and k2 at re = 2; k1 =
1.3 · 10-2, k2 = 1.25 · 10-2 (1), k1 = 1.3 · 10-2, k2 = 2.5 · 10-2 (2), k1 = 1.3 · 10-1, k2 = 1.25 · 10-2 (3). Horizontal lines
correspond to values of ψsat given by (13).

Table 3 Comparison of saturation values of ψ for model (1)-(4): ψsat = ψ1 and ψsat = ψ5,
where ψ1 is determined by (6) and (7) with usatT estimated by (1)-(4) at t = 1000 s, while
ψ5 is determined by (7) with θsat estimated by (1)-(4) at t = 10 000 s

�T (�A = 10-2) ψ1 ψ5 �A (�T = 10-3) ψ1 ψ5

10-2 0.9339 0.9339 10-1 0.1342 0.1345

5 · 10-3 0.8433 0.8433 10-2 0.1480 0.1483

10-3 0.1480 0.1483 10-3 0.3729 0.3726

10-4 0.0047 0.0034 10-4 0.9801 0.9801
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diffusion time of reacting species) the effective diffusivity �* is reduced to the mean dif-

fusivity [16,17]

κ∗ =
uTκT + uCκC

uT + uC
, (17)

that can be significantly different from the diffusivity of a toxin uT. It is worth noting

that antibody diffusivity does not appear in this expression. The “limit of mean diffu-

sivity” for �* given by (17) occurs only for the system with �T ≠ �C [16,17] (which is

usually the case because of a difference in molecular weights).

Some analytical models for the calculation of the toxin depletion times τ 0
d , τd have

been proposed [16]. They are quite involved, and for details, we refer the reader to the

original publications. The results [16] clearly demonstrate that the parameter

γ = 1/τd − 1/τ 0
d in (16) can depend on the ‘external’ scale re (i.e. size of the cell ‘com-

partment’) in a quite convoluted way. As was mentioned above, the scale re can be

approximately related to the packing density of cells in a culture (re ≈ [3/(4πn)]1/3), so

plots ψ(re) can be also interpreted as a simple qualitative illustration of the effect of

variation in packing density n.

The plots ψ(re) in Figures 1, 2, 3 depict the dependence of the antibody protection

factor ψ on the radius of external surface re (i.e. a size of the cell compartment) and

on toxin diffusivity �T. We calculated ψ for two values of re (re = 2 and re = 5), for

two values of �T (�T = 10-2 and �T = 10-3), and three values u0T (u0T = 0.5 Figure 1,

u0T = 0.3 Figure 2, u0T = 0.1 Figure 3).

We believe that the analytical results (16) discussed above and the numerical examples

similar to those presented in Figures 1, 2, 3 may be important for either the planning of

experiments (especially in cell culture) or for the correct interpretation of experimental

data, since they provide a simple estimation for the amplitude of the observable effect

(protection factor) and for the timescale during which this effect can occur (~ 1/g).
The results depicted in Figures 1, 2, 3 also provide an illustrative example of the

main finding of our study: the time evolution of the protection factor ψ(t) may switch

from monotonic to markedly non-monotonic behavior with a variation of diffusion

parameters of the RTA model. This phenomenon is in line with the theoretical frame-

work proposed in [15-17]) and was observed frequently in our simulations.

Following the well-established application of the concept of lability to the spherical

cell model [15-17], an incorporation of diffusion effects into our model enabled the

simulation of a new phenomenology, which may occur in the RTA system. For

instance, with system (1)-(4) we were able to model competitive behavior of the reac-

tion and diffusion fluxes. As was mentioned above, the latter often manifests itself in

rather convoluted (non-monotonic) dependence of concentration of species and their

diffusion coefficients, see Figures 4 and 5. The plots in Figures 4 and 5 depict a variety

of scenarios for time evolution of ψ for the different diffusivity of toxin and antibody

(other parameters were the same). We can clearly see a switch from monotonic to

non-monotonic behavior as we decrease diffusivity of toxin �T (Figure 5). The cases of

non-monotonic behavior with a profound minimum of ψ(t) provide revealing examples

of the practically important concept of a ‘window of opportunity’ discussed in the

Background. Once the function ψ(t) moves far away from its minimal value, the ‘block-

ing’ effect of an antibody markedly decreases. We observe that the ‘window of
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opportunity’ is very scenario-dependent and it can be easily estimated from the plots

similar to those presented in Figure 5.

The plots presented in Figures 1, 2, 3, 4, 5 illustrate detailed insights into the trans-

port process associated with the different behavior of the protective function ψ(t)

owing to the introduction of antibody into the RTA system. From these results we can

see that the non-monotonic behavior is caused by the non-monotonic supply (trans-

port) of toxin across the compartment to the cell surface; this transport can be affected

by changing the diffusivity of species. The main conclusion from our numerical results

is that the relative diffusivity of species can be used to control the effect of antibody

treatment during a short time after the exposure to a toxin (usually a few minutes).

The plots presented in Figures 6 and 7 show the dependence of ψ on k1 and k2 for

the WMS model and demonstrate a possible switch of ψ from monotonic to non-

monotonic behavior as k2 grows. Calculations show that ψ(t) depends very weakly on

re and this an indication that the reactions in the surface layers around the cell (diffu-

sive and reaction) provide the dominant contribution to the transport properties of the

system. This result is depicted in Figures 6 and 7 where all curves are given for re = 2

and re = 5. As time increases, function ψ(t) tends to the diffusivity-dependent asymp-

tote ψsat = ψ1 for system (1)-(4) and to the reaction-dependent asymptote ψsat = ψ3 for

the WMS model irrespective of its short-time behavior (which is indeed controlled by

(16)). The diffusive dependency of the saturation limit of the system (1)-(4) becomes

evident if we recall that at the steady state, the flux of internalized toxin (i.e. flux

across Sc) should be compensated by the diffusion influx across the outer surface Se. In

order to validate this asymptotic behavior we computed a rich set of scenarios. These

results are presented in Figures 4, 5, 6, 7 and in Tables 1 and 3. In Table 3 we com-

pare ψ1 and ψ5 where ψ1 is determined by (6) and (7) with usatT estimated by (1)-(4) at

t = 1000 s, while ψ5 is determined by (7) with θsat estimated (1)-(4) at t = 10 000 s.

We observe that function ψ(t) converges to an asymptotic value, but this convergence

can be rather slow.

As was suggested by one of the anonymous referees, the observable strongly non-

monotonic behavior of parameter ψ(t) in some of our modeling scenarios can possibly

be explained by applying the concept of dynamic speciation to the formation of a toxin-

antibody complex [15-17]). In the diffusion-controlled regime the dynamic speciation

(i.e. the fast toxin-antibody kinetics over diffusion time) can lead to the significant con-

tribution to the toxin flux towards the cell and (under condition �C <�T) can even cause

a ‘retardation’ effect [15]. After some estimations we found this hypothesis quite reason-

able. For a cell size of rc ≈ 10-5 m the diffusion time is τ� ≈ 0.2 s for � ≈ 1 · 10-9 m2s-1.

The estimation for equilibration time τe was derived from the rigorous theoretical frame-

work proposed in [23] for competitive binding system (application of this framework to

the toxin-receptor and toxin-antibody binding can be found in [6]). Indeed the equilibra-

tion time τe is a strong function of the toxin concentration; it rapidly decreases as the

toxin concentration increases (reacting species can faster find each other to form a com-

plex). If as a reference point we assume that the value of parameters correspond to the

scenario of binding of ricin to receptor and to the antibody then for the toxin concentra-

tion T = 10 pM the reaction time is of order of 10 s. By further increasing the toxin con-

centration (five times in our simulations) it appears that we approach the transition

threshold from the ‘inert’ to the ‘dynamic’ complex, so the toxin-antibody complex starts
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contributing to the diffusion flux. A more challenging task was to identify the scenarios

where this additional contribution can be appreciable, since the total flux is mainly inter-

nalization-controlled. Nevertheless, if we recall that diffusivities and concentration of

species are varied by an order of hundreds, then reaching the diffusion-controlled

regime in some of our simulations looks quite feasible. A more detailed interpretation of

our numerical results with the concept of dynamic speciation would require additional

numerical calculations (careful estimations of equilibration time of complex for each

scenario) and is outside of the scope of the current study.

6. Concluding Remarks
In summary, we have refined the RTA model developed in [6] by incorporating diffusion

of reacting species in the extracellular space. By solving numerically the system of non-

linear PDEs of the model we managed to simulate a rich variety of reaction-diffusion

processes that may occur in the RTA system. For various combinations of parameters

(rates of reactions, diffusivity and initial concentrations) we estimated the effect of anti-

body on the toxin penetration into a cell and expressed the effect of the antibody treat-

ment in terms of a non-dimensional protection factor (relative reduction of toxin

concentration within a cell). We demonstrated that this factor can be a significantly

non-monotonic function of time and its behavior depends on an interplay between diffu-

sive and reaction processes in the RTA model. We also examined the time evolution of

the protection factor and found that it eventually tends to a diffusivity-dependent

asymptotic limit, but the convergence to this asymptote may take significant time. From

this perspective, the refinement of the RTA model proposed in the present study

becomes important for the consistent evaluation of protective potential of an antibody

and for the estimation of the time period during which the application of this antibody

becomes the most effective.

The selection of the rate constants for numerical simulations was motivated by data

reported in the literature [11,19-22], with the significant ranges of variability to provide a

simple sensitivity analysis for the system under consideration. The values for other con-

stants (i.e. diffusivity) were selected based on similarity with other models [8-10]. The cho-

sen values of parameters enable an illustrative demonstration of a rich variety of regimes

of the evolution that could occur in the RTA system. These regimes are similar to ones

occurring in electrochemistry and ecological studies (performance of microelectrodes and

toxin uptake by microorganisms). Further validation of the proposed model with a parti-

cular set of experimental data on toxin-neutralising antibodies (e.g. [11,21]) would require

a separate study. Such a study would include an application of a data fitting algorithm that

accounts for the experimental data uncertainty as well as some additional assumptions

about relationships of the model predictions (concentration of species, protection factor)

with the observable quantities (i.e. cellular viability). The latter assumptions may signifi-

cantly affect the experimental data fit and the evaluation of predictive skills of the pro-

posed model. We will report on such study in a separate publication.
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