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Abstract

Background: Bioelectric gradients among all cells, not just within excitable nerve and
muscle, play instructive roles in developmental and regenerative pattern formation.
Plasma membrane resting potential gradients regulate cell behaviors by regulating
downstream transcriptional and epigenetic events. Unlike neurons, which fire rapidly
and typically return to the same polarized state, developmental bioelectric signaling
involves many cell types stably maintaining various levels of resting potential during
morphogenetic events. It is important to begin to quantitatively model the stability of
bioelectric states in cells, to understand computation and pattern maintenance during
regeneration and remodeling.

Method: To facilitate the analysis of endogenous bioelectric signaling and the
exploitation of voltage-based cellular controls in synthetic bioengineering applications,
we sought to understand the conditions under which somatic cells can stably maintain
distinct resting potential values (a type of state memory). Using the Channelpedia ion
channel database, we generated an array of amphibian oocyte and mammalian
membrane models for voltage evolution. These models were analyzed and searched,
by simulation, for a simple dynamical property, multistability, which forms a type of
voltage memory.

Results: We find that typical mammalian models and amphibian oocyte models
exhibit bistability when expressing different ion channel subsets, with either persistent
sodium or inward-rectifying potassium, respectively, playing a facilitative role in bistable
memory formation. We illustrate this difference using fast sodium channel dynamics for
which a comprehensive theory exists, where the same model exhibits bistability under
mammalian conditions but not amphibian conditions. In amphibians, potassium
channels from the Kv1.x and Kv2.x families tend to disrupt this bistable memory
formation. We also identify some common principles under which physiological
memory emerges, which suggest specific strategies for implementing memories in
bioengineering contexts.

Conclusion: Our results reveal conditions under which cells can stably maintain one of
several resting voltage potential values. These models suggest testable predictions for
experiments in developmental bioelectricity, and illustrate how cells can be used as
versatile physiological memory elements in synthetic biology, and unconventional
computation contexts.
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Introduction
Overview

It is well appreciated that the nervous system implements memory and information

processing via electrical communication among its cells. However, bioelectric signaling

is not restricted to excitable cells [1, 2]. It has long been known that all kinds of cells

both generate and are sensitive to ion currents and electric fields [3–7], using some of

the same ion channels and electrical synapses exploited by the CNS, but functioning on

a much slower timescale. Recent data have shown that cellular resting potentials

control cell behaviors such as proliferation, differentiation, and migration [8–13].

Moreover, spatio-temporal gradients of resting potential (Vmem) are instructive,

endogenous regulators of pattern formation in vivo, involved in oogenesis [14, 15],

craniofacial patterning [16], left-right asymmetry [17–19], brain development [20],

control of innervation [21], eye formation [22, 23], carcinogenesis/metastasis [24–26],

regenerative polarity [27], and size control [28]. Manipulation of stable bioelectric

states has enabled control of stem cell function [29–31], induction of large-scale

regenerative repair [32, 33], and organ-level reprogramming in vivo [23].

Bioelectric gradients control morphogenetic events, regulating cell behavior via

changes in downstream gene expression and chromatin state [34, 35]. This occurs via

several known transducer mechanisms that convert changes in resting potential to

second messenger and ultimately transcriptional responses. The voltage gradients

themselves are regulated by two upstream pathways [36]. One is the variable expression

of ion channels within cells. However, there is another way for gradients to be

established, which does not require pre-existing transcriptional drivers.

Significant spatio-temporal changes in cell voltage distributions can occur without

changes in ion channel protein or mRNA levels. This is because ion channels are gated

post-translationally: existing channels can open or close due to various physiological

signals, even when the transcriptome and proteome had not changed. While this is an

unexpected situation in a developmental or cell biology context, it is commonplace in

neuroscience, since neural networks conduct spiking dynamics purely based on the

physics of ion channel activity. Action potentials do not require regulation of channel

expression and networks can conduct complex electrical behavior purely at a physio-

logical level invisible to analysis of protein or mRNA levels. Much as occurs in the

brain, non-neural cells can regulate their voltage potentials by post-translational gating

of channels. The gating is driven by a range of physiological events, of which perhaps

the most fascinating is cell membrane potential itself. Because channels are both gated

by, and determine, resting potential, this situation opens the possibility of complex

regulatory feedback loops with non-obvious behavior.

Understanding such bioelectric dynamics would facilitate the construction of

comprehensive models of developmental patterning [37–39], the improvement of

bioelectrical interventions for regenerative medicine applications [40–42], and the

design of artificial constructs for synthetic bioengineering applications [36, 43, 44].

Despite a wealth of information on the electrical properties of neurons, developmental

bioelectricity is poorly understood at a quantitative level.

A key property of developmental bioelectricity is the ability of key cells to maintain

specific levels of resting potential over time, changing them in response to physiological

or genetic signals that trigger new phases of patterning [42, 45, 46]. Unlike most
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neurons, somatic cells can occupy many different stable levels of Vmem [47]; what

features enable a given cell to maintain a specific Vmem range over time (stability) and

to switch to a different discrete voltage level when suitably perturbed (lability)? Being

able to write and re-write voltage states into cells is a key component of memory

elements (e.g., flip-flops) in modern information-processing circuits, and underlies a

basic mechanism of bioelectric signaling that could be widely exploited by evolution.

Thus, a quantitative analysis of this kind of multi-stability is an important first step

toward rational design of circuits with desired bioelectric behavior, and a key compo-

nent to the formulation of quantitative, predictive models of morphogenetic events that

include both physiological and transcriptional dynamics. To this end, here we present

analyses designed to understand the voltage memory properties exhibited by two

common model systems (mammalian cells and frog oocytes).

Conductance models

Membrane potentials evolve in time due to currents that flow across the membrane

through populations of ion channels, and these channel populations themselves activate

or inactivate at rates that often depend on the membrane potential. Conductance

models are systems of ordinary differential equations that allow one to simulate and

interpret these interdependent processes. The elementary theory is due essentially

to Hodgkin and Huxley [48], and recapitulated in some detail in Additional file 1:

Section 1. The standard form for this system is in terms of current:

−C
dV
dt

¼ Iext þ
X

i

gi⋅ V−Eið Þ ð1Þ

where i indexes the ion channels, C is the membrane capacitance, V the membrane

potential, Iext a source of external current (e.g. a voltage clamp), and E the reversal

potential of an ion channel. Each channel conductance gi takes the form

g ¼ �gmahb ð2Þ

where a and b are natural numbers and �g is the maximal conductance for that channel.

The functions m(V, t) and h(V, t) are themselves governed by the differential equations:

τm
dm
dt

¼ m∞−m ð3Þ

τh
dh
dt

¼ h∞−h ð4Þ

and the functions x∞(V) and τx(V) are experimentally determined (typically by voltage

clamping; [49]). The steady-state activity x∞ is typically fit to a sigmoid function ranging

the interval [0,1], and the relaxation time τx is usually approximately Gaussian (e.g.

[50]). Together, these two functions describe the voltage-dependence of channel

kinetics.

Definition of bistability

A fixed point in voltage is a point at which dV
dt ¼ 0, and such a point is called asymptot-

ically stable (or an attractor) if, given a nearby initial voltage and time derivative

thereof, the system always evolves toward that voltage value. When assessing stability
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by simulation, we will adopt a looser convention, saying a conductance model is

bistable, or has two memories, if for all chosen initial voltages in the physiological

range, the dynamics evolve toward one of two final voltages. Mono- and multistability

are defined similarly.

Timescales and phase portrait analysis

Some channel models are tractable to analytic methods that can guarantee multistability.

To wit, the membrane timescale is τmembrane ¼ �g�leak
C , corresponding to the relaxation time

of a simple RC circuit with the leak channel as resistor and membrane as capacitor;

so-called fast channel variables with τx < < τmembrane are amenable to a reduction of

variables x(V, t) ≈ x∞(V) [50]. When all channel variables are fast, the system can be

expressed one-dimensionally as dV
dt ¼ f Vð Þ , and the dynamics are qualitatively captured

by the phase portrait method illustrated in Fig. 2. One may verify by visual inspection

that such systems have memories: those roots of f(V) where the slope d
dV f Vð Þ is

negative.

Methods
Importing channel data

The Channelpedia database [51] contains a large number of models of voltage-gated

ion channels derived from measurements in a variety of cell types and animals. Such a

model typically consists of (at least) the constants a, b and the functions τx, x∞ as well

as the temperature T at which the experiments to determine these were performed. We

retrieved 45 of these ion channel models in ChannelML format; 17 of these channels

were suitable for our purposes [52–65]; see also Additional file 1: Section 2.3). It was

necessary to make several corrections to database temperature values (Additional file 1:

Section 2.1). We imported the channel data using the myokit toolbox [66], which also

serves as a Python interface to simulations using the CVODE library [67].

Construction of membrane models from ion channel models

Temperature and reversal potential

The ion channel models were recalibrated to one of two sets of mock experimental

conditions, the first of these matching an amphibian oocyte preparation at 23°C and

the second matching a standard mammalian preparation at 36°C. Ion concentrations

and reversal potentials are given in Tables 1 and 2, respectively. We rescaled τx for each

channel to reflect the model temperature using the standard temperature coefficient

Q10 = 3 (see Additional file 1: Section 2.2).

Table 1 Chemical gradients and reversal potentials for amphibian oocyte models

Ion Intracellular (mM) Extracellular (mM) Reversal potential (mV)

Na+ 21 10 −19

K+ 90 0.2 −156

Cl− 60 10.4 45

Ca++ 0.5 0.2 −12

Na + K (for HCN channels) −78
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Membrane constants and channel timescales

We let the membrane capacitance C = 1 μF/cm2 and the leak conductance �g leak
¼ 200μS=cm2 , corresponding to a linear membrane time constant τmembrane = 5 ms. Time-

scale ranges were computed for the transition region of all channel variables in the following

way: the voltages at which x∞ = 0.05 and x∞ = 0.95 were computed, and τx was then evalu-

ated at these voltages to obtain an effective timescale range for membrane variables. We

classified as fast all variables whose effective timescale range fell below the membrane time

constant (Table 3) non-leak channels had maximum conductance set to �g i ¼ 2mS=cm2: ten

times the leak conductance.

Combinatorial model construction and simulation

We generated models in the form of Equations (1) through (4) for a number of

combinations of ion channels. We adopt a summative notation to refer to models

and model classes: for instance, one arbitrary channel coexpressed with a leak

channel would be X + leak and pairs of arbitrary channels coexpressed with a leak

channel and an inward rectifying potassium channel would be X + Y + Kir2.1 + leak.

For each channel combination, we first simulated one continuous 30-s period

Table 2 Chemical gradients and reversal potentials for mammalian cell models

Ion Intracellular (mM) Extracellular (mM) Reversal potential (mV)

Na+ 15 145 60

K+ 145 5 −89

Cl− 10 125 −67

Na+ + K+ (for HCN channels) −15

Table 3 Simulated ion channels

Channel Remarks Reference

Cav2.1 Fast, Persistent [57]

Cav2.2 [55]

Cav2.3 [57]

Cav3.3 [63]

HCN1 Persistent [58]

HCN2 Persistent [58]

HCN3 Persistent [58]

HCN4 Persistent [58]

Kir2.1 Fast activation [56]

Kv1.1 [52]

Kv1.2 [61]

Kv1.4 [62]

Kv1.6 [54]

Kv2.1 [64]

Kv2.2 [59]

Nav1.3 Fast activation [53]

Nav1.6 Fast, Persistent [60]

See text for definition of fast variables and persistent channels
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divided into one–second epochs. Each epoch consisted of a 50ms strongly-clamped

(modeled at 1000 mS/cm2) voltage followed by a relaxation period of 950ms.

Voltages were clamped in the interval [−140 mV, 150 mV], descending with epoch,

with a 10mV difference between consecutive epochs. Channel combinations forming

finite-state memories were then tabulated based on visual inspection of the simulation

results.

Comparison of Xenopus oocyte and mammalian cell models

We examined two basic model systems: mammalian cells and Xenopus oocytes, which

are distinct due to quite different concentrations of ions inside the cells and in their

respective culture media. The mammalian case will be most useful for human tissue

bioengineering applications, as well as studies of channelopathy-induced birth defects

[68–70] and regenerative medicine approaches. The Xenopus model is particularly

well-suited for mechanistic investigations into biophysical controls of pattern formation

[20, 21, 40, 71, 72], and frog oocytes are also an attractive substrate for unconventional

computing or synthetic biology applications.

The channel models considered included four major families: HCN channels as well as

voltage-gated sodium, potassium, and calcium channels. While the Xenopus embryo has

abundant intracellular calcium, the internal calcium concentration in mammalian cells is

typically low enough that depletion effects could introduce additional nonlinearities into

the system’s behavior [73, 74]. However, calcium is not itself usually a voltage modifier

because calcium channel expression is typically quite low compared to other channels. In

fact, the classic squid giant axon model of Hodgkin and Huxley ignores calcium entirely

and fits the data quite well. Unless calcium channels are overexpressed, changes in

calcium concentration act as one of the many responses to Vmem state, alongside trans-

duction mechanisms that include voltage-directed movement of serotonin and butyrate,

activity of voltage-sensitive phosphatases, clustering of certain membrane proteins, etc.

We therefore did not consider calcium channels in the mammalian models. HCN

channels, while permeable to all cations, have conductances that were reported to vary

with the type of transmitted ion [75]. Calcium conductance, in particular, was reported

by these authors to be significantly lower than sodium or potassium conductance. We

assume here that they conduct no calcium at all, but we note that simulations (not

shown) suggested that HCN channels are more conducive to bistability with increased

calcium conductance, at least in amphibian models.

Results
Nav1.6 + leak is bistable in mammalian models

We first investigated in some detail the known bistability in the mammalian Nav1.6 + leak

model (cf. the Na,p + leak model so-called in [50]), both by simulation and through the

phase portrait method. After the fast channel reduction, the model is:

−C
dV
dt

¼ �gNa

1þ e−0:1565⋅ Vþ17ð Þ ⋅ V−ENað Þ þ �g leak ⋅ V−Eleakð Þ þ Iext ð5Þ

where ENa = 60 mV and Eleak = − 67 mV. Transmembrane currents near one equilibrium

are visualized directly in Fig. 1b, c and voltage evolution near clamp release is shown in

Fig. 1d. The former illustrates one part of the simple underlying mechanism: at the
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high-voltage memory, the Na channels are largely open and overwhelm the leak

channel current so that the voltage approaches the sodium reversal potential. At

the low-voltage memory, the Na channels are closed, and the voltage approaches

an equilibrium near the leak reversal. This system’s dynamics are further elucidated

in the phase portrait in Fig. 2a, where the voltage evolves in the direction of dV
dt

(black arrowheads). Two memory voltages may be ascertained from this diagram,

and simulations from 30 clamped initial conditions (Fig. 2b) confirmed that voltages

evolve toward one of these two equilibria. Thus, in mammals, if Nav1.6 and leak

channels are the ion channels predominantly expressed in a cell, and if the sodium

channels are overexpressed relative to the leak channels, one might expect two

stable memory states: one near the sodium reversal and one near the leak reversal.

Fig. 1 Modeling of voltage stability for ion channel combinations. Our approach for retrieving, calibrating,
and simulating is diagrammed in (a). Currents (suppresing a factor of 2) for an arbitrary ion channel are
schematized geometrically in (b); inward or outward currents are represented by wedge areas inside or
outside the circle, respectively (c) Currents diagrammed using the method illustrated in b at three voltages
above (top), below (bottom) and at (middle) a stable equilibrium for the Nav1.6 + leak model system, in
mammals, with a 10:1 ratio of maximal conductances between Nav1.6 and leak channels. Arrows indicate the
direction of voltage evolution. Note that in these diagrams, V and E have been shifted by +150 mV to be
strictly positive. d Simulations of voltage evolution in the mammalian Nav1.6 + leak model after a 50ms initial
voltage-clamping period, with corresponding currents as indicated in c
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Nav1.6 + leak is monostable in amphibian oocyte models

We then examined the same model using amphibian oocyte reversal potentials ENa =

−19 mV and Eleak = 45 mV. Simulations at a number of initial conditions demonstrated

the existence of only one stable fixed point, confirmed by the fact that Equation (1) has

only one root with these reversal values (Fig. 2c, d). We conclude here that, unlike

typical mammalian cells, amphibian oocytes will not exhibit bistability when Nav1.6

Fig. 2 Phase-space diagrams and simulations demonstrate Nav1.6 + leak is bistable for mammalian cells
but not for amphibian oocytes. We compared the phase spaces and membrane voltage dynamics for the
Nav1.6 + leak model (with 10:1 maximal conductance ratio) under mammalian and amphibian oocyte
conditions. a Phase plane for the timescale-reduced Nav1.6 + leak model for mammals and b corresponding
simulations of voltage evolution. c Phase plane of the same ion channels expressed in amphibian oocyte
models with corresponding simulation in (d). Black arrows in (a) and (c) indicate the direction of voltage
evolution. Red curves indicate dV/dt as a function of V for the combined system, while blue (resp. green)
indicates dV/dt supposing the Nav1.6 channel (resp. leak channel) were expressed alone. In the simulations,
30 initial voltages were chosen ranging from −140 to 150mV and clamped for 50ms before release. The
model is bistable in the mammalian case, but monostable in the amphibian case
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channels are overexpressed relative to leak channels, but rather will always evolve

toward one fixed potential slightly above the sodium reversal.

Mammalian models exhibiting bistability

We then searched for other ion channel combinations that would lead to multistable

memories under mammalian ionic conditions by simulating all X + leak and X + Y +

leak models. In the X + leak scenario, the only channel combination leading to bistabil-

ity was the Nav1.6 + leak model above. Bistable channel sets in X + Y + leak models are

shown in Table 4. Inclusion of Nav1.6 was necessary, but not sufficient, for bistability

of all of these models: introducing certain potassium channels (n.b. we considered only

those from the Kv1.x and Kv2.x families; see Section 2.3 in the Additional file 1) tended

to disrupt bistability. Combinations X + Y + Nav1.6 + leak and X + Y + Z +Nav1.6 + leak

did not lead to multistability with more than two memories. Bistability was preserved

after introducing more channels in many cases, for instance in Kv1.1 + Nav1.6 + leak

(Fig. 3a). Note that the convergence rate is slow in this case owing to the slow dynamics

of the Kv1.1 channel. These simulations suggest that bistability may be experimentally

realized in mammalian cells simply by increasing the expression of Nav1.6 channels.

Amphibian models exhibiting bistability

We repeated the simulations from the previous section under amphibian oocyte condi-

tions (Table 5). Kir2.1 in the amphibian case plays a very similar role to Nav1.6 in the

mammalian case. Inward rectifying potassium channels formed memories when com-

bined with a leak channel (Kir2.1 + leak; Fig. 4a). Among the channel pairs (X + Y +

leak) we considered, the presence of inward-rectifying potassium channels was neces-

sary, but again insufficient, for bistability. Here, the presence of other potassium chan-

nels had a strong tendency to disrupt bistability. Again, attempts to construct higher-

order memories using 3-tuples of these channels with Kir2.1 (up to X + Y + Z + Kir2.1

+ leak) did not yield any n-state memory with n > 2. Consideration of timescales

pointed to a correspondence between fast channels and memory location in the am-

phibian case. When memory-forming pairs included a fast channel (indicated with an

Table 4 Channel sets forming bistable memories in mammalian cell models and corresponding
memory loci

X + Nav1.6 + leak Memory loci (mV)

- −67,48

HCN1 −60,48

HCN2 −65,48

HCN3 −60,48

HCN4 −60,48

Nav1.3 −67,48

Kv1.1 −70,48

Kv1.4 −71,48

Kv2.1 −67,48

Kv2.2 −67,48

Kir2.1 −83,48
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superscript ‘a’ in Table 5), one memory was found near the reversal potential of

that channel’s corresponding ion (e.g. the Cav2.1 + Kir2.1 + leak model in Fig. 4b).

Slow variables may lead to overshooting of nearby attractors

Importantly, the initial conditions that lead to particular equilibria do not always form

connected regions in voltage space - in other words, after release, a clamped system

need not evolve to the nearest voltage memory but instead may deterministically

overshoot a nearby attractor due to the presence of slow variables (Figs. 3b, 4a, 6c). If

these models were reproduced to reasonable accuracy, driving a system toward a low

voltage (for instance by opening a strongly expressed light-sensitive potassium channel

population; see, e.g. [76]) should cause the system to jump to a high-voltage memory,

rather than the nearby low-voltage memory, after cessation of the driving current.

Fig. 3 Simulations demonstrating bistability in two mammalian models. We searched for voltage bistability
in X + Y + leak mammalian models (10:10:1 maximal conductance ratio) by simulation. Two such channel
combinations uncovered by this search were the a Kv1.1 + Nav1.6 + leak and b HCN1 + Nav1.6 + leak
models. As before, simulations were initialized at 30 voltages ranging from −140 to 150mV and clamped
for 50ms before release. In both of these models, voltages initialized in the physiological range converge
on one of two locally stable voltages
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Channel combinations not exhibiting multistability

For completeness, we remark on some channel combinations where multistability did

not occur, or where convergence was not observed or inferable within a 10 s timeframe.

A majority of these were monostable, e.g. the system in Fig. 5a, where slow channel

activation and inactivation led to a transient depolarization but eventual convergence

on equilibrium. Other models, however, did not appear to converge on any particular

asymptotically stable equilibrium, a phenomenon that often occurred in the presence of

Kv channels in amphibian models (see e.g. Fig. 5b). Indeed, with the exception of Kv1.4,

Kv channels always disrupted bistability in amphibian models and often disrupted

bistability in mammalian models as well. This points to a heuristic where suppression

of Kv channels should in general aid in the experimental realization of membrane

potential multistability.

Reversible switching between memory loci

Finally, we illustrate controlled switching between stable memories, as might be experi-

mentally realized by sequences of applied transient currents. Here, we simulated one

continuous 3.5 s period divided into 700ms epochs. In each epoch, the voltage was

clamped for 200 milliseconds and released for 500 milliseconds, with the following

sequence of clamped voltages chosen, in mV: −140, −70, 0, −100, −30. As above, the

membrane potential rapidly evolves to stable fixed points after the clamp is released

(Fig. 6), demonstrating that it is possible to reversibly drive the voltage from one

attractor to the other, implementing a true memory element.

Discussion
Bistability has been described previously [50, 77–82], although data have been focused

on neurons. Our findings extend prior knowledge not only by examining a much larger

array of ion channels, but also by comparing the contributions of these channels to

bistability in both amphibian oocytes and mammalian systems beyond neurons. In so

doing, we highlight a major difference in voltage dynamics between these classes arising

Table 5 Channel sets forming bistable memories in amphibian oocyte models and corresponding
memory loci

X + Kir + leak Memory Loci (mV)

- −117,39

Cav2.1a −117,−9

Cav2.2 −117,39

Cav2.3 −117,39

Cav3.3 −117,39

HCN1 −93,39

HCN2 −96,39

HCN3 −94,39

HCN4 −96,39

Kv1.4 −117,39

Nav1.3 −117,39

Nav1.6a −117,–16
aIndicates a fast channel
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Fig. 4 Simulations demonstrating bistability in three amphibian models. We searched for voltage bistability
in X + Y + leak amphibian oocyte models (10:10:1 maximal conductance ratio) by simulation. Simulations
were initialized at 30 voltages ranging from −140 to 150 mV and clamped for 50 ms before release. Three
such channel combinations were the a Kir2.1 + leak, b Cav2.1 + Kir2.1 + leak, and c Cav2.2 + Kir2.1 + leak
models. Note that Cav2.1 is a fast channel, and that A and C have effectively identical memory loci. In all of
these models, voltages initialized in the physiological range converge on one of two locally stable voltages.
The basins of attraction for these stable voltages are however, disconnected (in V), as initial hyperpolarization
to –140mV resulted in evolution to the higher-voltage memory
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due to differences in reversal potential loci. The work we have presented here may also

be seen as a rough guide for the synthesis of cells capable of bistable voltage patterning

through appropriate choices of ion channel expression.

Although our models assert a specific 2 mS/cm2 maximal conductance for its non-

leak ion channels and a 10:1 nonleak to leak conductance ratio, our results are likely

to hold approximately when either Nav1.6 or Kir2.1 channels are overexpressed

relative to a cell’s other ion channels, although the values of Vmem may differ. We

furthermore expect that small differences in reversal potentials should not make a

major difference in stability properties (e.g. in Fig. 2, changing a reversal potential

by a few millivolts will not affect the number of roots); the profound difference seen

between amphibian oocyte and mammalian models is not due to minute differences

in reversal potentials; the reversal potentials for mammals and frog oocytes are not

even in the same order.

Interestingly, the specific channels we identified are already implicated in examples of

bioelectric control of patterning. For example, Kir2.1 is known to regulate muscle cell

differentiation [83–86] and craniofacial patterning (being responsible for Andersen

Tawil Syndrome and its craniofacial deformities [87–89]). Likewise, the NaV1.6 channel

is implicated in neural development [90–92].

Fig. 5 Examples of simulations not exhibiting bistability. We examined instances of models generating
non-bistable behavior in the X + Y + leak amphibian case (10:10:1 maximal conductance ratio). Simulations
were initialized at 30 voltages ranging from −140 to 150mV and clamped for 50ms before release. a The
Kv1.2 + Kir2.1 + leak model exhibits a hyperpolarization-evoked transient caused by clamping at –140mV.
b The Cav2.2 + Kv2.2 + leak model does not appear to be asymptotically stable
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The ion channels we have simulated, of course, do not represent channels in total-

ity, and our work highlights the need for further contributions to databases such as

Channelpedia; Nav1.2 and Nav1.5, for instance, are also strongly implicated in pattern-

ing [33] and cellular controls [93–95] but not found in this database. More complete

repositories of channel models should facilitate further discoveries based on combinator-

ial approaches such as this one. However, given the set we have simulated, the relative

rarity of channels capable of generating bistable voltage patterns raises the possibility

that three- and higher-fold stability is not possible for uncoupled cells in uniform bath

conditions without the aid of regulatory processes or modulators that alter the level of

ion channel expression or efficacy. This hypothesis would be falsified if a combination of

fast ion channels could be found such that the Equation (1) has 5 or more zero crossings

with derivatives of alternating sign. If membrane voltage multistability indeed represents

Fig. 6 Switching between stable voltages. We simulated a sequence of voltage clamps at the following
values: −140mV, −70mV, 0mV, −100mV, −30mV, for several models: a mammalian Kir2.1 + Nav1.3 + leak,
b mammalian Nav1.3 + Nav1.6 + leak, c amphibian oocyte Kir2.1 + Nav1.3 + leak, and d amphibian oocyte
Nav1.3 + Nav1.6 + leak. Clamping periods are in yellow and phase-space diagrams are overlaid, with the grey
line indicating dV/dt = 0 (see also Fig. 2). In the bistable models (b and c) the current introduced by the
voltage clamp may be seen to act as a switch between stable equilibria, while in the monostable models
(a and d), releasing the clamp always leads to the same equilibrium point
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a switch affecting cell metabolism, then a deeper search for higher-fold stability would

certainly be worthwhile. This, however, may depend on the relative expression levels

of different ion channel populations. Maximizing the number of memories for an

arbitrary set of fast ion channel models is equivalent to the following optimization

problem: argmax
�g

r f V�gð Þð Þj j , where f is the right hand side of equation (1), �g is a

vector of maximal conductances, and |r(⋅)| counts the real roots of a function.

However, it is not necessary that individual cells shoulder all the burden for

multistability. Given that evidence indicates many locally stable voltages existing

concurrently in frog embryos, it is likely that gap-junction coupling plays a much larger

role in vivo than in the relatively simple ion channel dynamics we have depicted here.

Moreover, the memories we have approached here are fixed points: zero-dimensional

subspaces of the phase space. There is certainly no reason that higher-dimensional

attractors - stable voltage oscillations, for instance - should not also be considered as

candidates for functional memories, although the means of transduction between

membrane potential oscillations and cell metabolic processes is less obvious. Finally, it

should be noted that in vivo, some cells are able to regulate both internal and external

ion levels as well as the complement of ion channels, allowing them to fine-tune the

stability points of any voltage memories. Future studies must examine the constraints

and capabilities of such self-tuning electric networks in the context of multicellular

tissues.

Our analysis has specified some conditions under which stable voltage memories can

exist. We have also identified specific ion channels that can form the elements of a

synthetic biology toolbox for implementing rewritable bioelectric memories. Moreover,

our analyses have yielded a number of surprising findings that should be kept in mind

when formulating models of developmental bioelectric patterns or exploiting voltage

states in bioelectricity. Foremost is the difference found between ion channel roles in

amphibian oocytes and mammalian cells, an interesting standalone result from the

perspective of comparative physiology; it may also be a useful guide for future

bioengineering and regenerative medicine studies that develop bioelectric strategies in

Xenopus embryos and work to move them towards mammalian applications. Following

this is the intriguing finding of hyperpolarization-evoked evolution to depolarized

memories, which underscores the need for quantitative modeling: it cannot be assumed

that induced expression of a normally hyperpolarizing channel will necessarily lead to

stable hyperpolarization. A third interesting finding is the ability of Kv channels to

disturb bistability, although this was not entirely consistent across the models assessed

here.

Our work here was restricted to ion channels with first-order kinetic models for their

activation and inactivation variables; further research might include channels like

Kv1.5, which cannot be modeled effectively in this way [96]. Additional factors that

influence Vmem, to be incorporated into future models, could include additional

conductances (leak channels, pumps, gap junctions, calcium stores), modulators of lipid

bilayer capacitance, and physical regulators of channel activity such as pressure/tension,

temperature, and chemical ligands. It is also crucial to extend this analysis to the study

of multicellular bioelectric networks – cells coupled with gap junctions (electrical

synapses [97–99]), which will doubtlessly have even more interesting and complex

properties than single cell models. Likewise, it will be important to understand the
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dynamics of interacting membrane domains within individual cells [100, 101], which

arise from diverse ion channel protein cargo on lipid rafts as well as from ion sequestra-

tion caused by complex cell geometries. Although reagents for functionally addressing

such subcellular domains are currently limiting, the development of optogenetics and

other high-resolution techniques will soon make it essential to test hypotheses of informa-

tion coding by distinct voltage states on the surface of single cells (as occurs in the more

familiar and linearly-extended neurons).

Conclusions
In general, bioelectric state is an important instructive, tractable regulator in cancer,

embryonic patterning, regeneration, and stem cell regulation [9, 12, 36, 42, 45, 102].

Our main points are the following. 1) Bistable switches may be constructed by overex-

pressing Kir2.1 in amphibian oocytes and Nav1.6 in mammalian cells, and by limiting

expression of many of the non-inward-rectifying forms of voltage-gated potassium

channels. 2) Cells with strongly expressed fast channels will tend to have memory loci

near the reversal potentials for those channels. 3) Memory elements may still be

constructed using slow channels, but these should not be expected to have contiguous

basins of attraction. These basic principles suggest a number of predictions that will be

tested in vivo in developmental bioelectricity experiments to understand endogenous

patterning and also serve as guidelines for bioengineering applications. Under the right

conditions, many types of somatic cells should be able to operate as physiological

memory elements. Thus, the quantitative, predictive understanding of bioelectric

dynamics in single cells and multicellular circuits outside of the central nervous system

will be an enabling step for new pattern control applications in regenerative biomedi-

cine and synthetic bioengineering.
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