
REVIEW Open Access

Numerical simulations of multicomponent
ecological models with adaptive methods
Kolade M. Owolabi* and Kailash C. Patidar

* Correspondence:
mkowolax@yahoo.com
Department of Mathematics and
Applied Mathematics, University of
the Western Cape, Bellville 7535
Cape Town, South Africa

Abstract

Background: The study of dynamic relationship between a multi-species models
has gained a huge amount of scientific interest over the years and will continue
to maintain its dominance in both ecology and mathematical ecology in the
years to come due to its practical relevance and universal existence. Some of its
emergence phenomena include spatiotemporal patterns, oscillating solutions,
multiple steady states and spatial pattern formation.

Methods: Many time-dependent partial differential equations are found combining
low-order nonlinear with higher-order linear terms. In attempt to obtain a reliable
results of such problems, it is desirable to use higher-order methods in both space and
time. Most computations heretofore are restricted to second order in time due to some
difficulties introduced by the combination of stiffness and nonlinearity. Hence, the
dynamics of a reaction-diffusion models considered in this paper permit the use of two
classic mathematical ideas. As a result, we introduce higher order finite difference
approximation for the spatial discretization, and advance the resulting system of ODE
with a family of exponential time differencing schemes. We present the stability
properties of these methods along with the extensive numerical simulations for a
number of multi-species models.

Results: When the diffusivity is small many of the models considered in this paper are
found to exhibit a form of localized spatiotemporal patterns. Such patterns are correctly
captured in the local analysis of the model equations. An extended 2D results that are
in agreement with Turing typical patterns such as stripes and spots, as well as irregular
snakelike structures are presented. We finally show that the designed schemes are
dynamically consistent.

Conclusion: The dynamic complexities of some ecological models are studied by
considering their linear stability analysis. Based on the choices of parameters in
transforming the system into a dimensionless form, we were able to obtain a well-
balanced system that is biologically meaningful. The accuracy and reliability of the
schemes are justified via the computational results presented for each of the diffusive
multi-species models.
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Background
The study of reaction-diffusion problems in ecological context have gained a huge

amount of scientific interest, due to their practical relevance and emergence of some

interesting phenomena such as spatial patterns, oscillating solutions, phase planes, cha-

otic behaviours and multiple steady states to mention a few. The most popular and

well-known predator-prey model is named after the two scientists, Alfred Lotka (1880–

1949) and Vito Volterra (1860–1940). Lotka and Volterra in their earlier research work

apply the model to address the interacting population systems called predator–prey.

Our numerical study in this paper is aimed at reflecting the types of interactions which

we describe as predation (a process where one species of organisms called predator

depends solely on the other known as the prey, for survival), competition (a situation

whereby two or more different species of organisms struggle for the available resources;

definitely, we expect the growth rate of each population to decrease) and lastly, the

mutualism or symbiosis (organisms coexist without negatively affecting each other and

hence, species growth rate is increased) [2, 11, 12, 23, 32, 33, 37, 39, 43, 48, 49].

A lot of research attention has been devoted to the study of population dynamics

with regards to ecological interactions over the past few decades. Such studies include

the predator-prey system that describes the situation in which the existence of the spe-

cies called the predator depends solely on the other species called the prey. The

predator-prey system has received tremendous attraction over the years but has been

represented mainly in terms of ordinary differential equations, which modelled the spe-

cies distribution. The Dynamics of the Lotka-Volterra predator-prey model are quite

interesting. However, this model is structurally unstable since a small perturbation of

the equations often results to a drastic change in the dynamical system. For this reason,

the presence of diffusion mechanism takes place though it changes the behavior of the

whole model to coupled partial differential equations, called reaction-diffusion system.

With the introduction of diffusion, the analysis of the whole system remain tactical in

the literature [46, 47], and therefore, numerical approximations are quite often used to

simulate these types of models.

Predator-prey systems have been studied by many researchers in various forms. For

instance, in bacteria ecology, computer simulations of complex spatiotemporal patterns

[4, 11] of Bacillus subtilis based on stochastic models [22] and deterministic models

[29], Allee effect of patchy invasion on predator-prey dynamics [1, 3, 5, 7, 13, 39]. The

diffusive predator-prey systems have also been studied extensively, see, [11, 17, 26, 27,

31, 38, 43]. Moreover, Wang et al. [46] investigated the spatial pattern formation of a

predator-prey system with prey-dependent functional response of Ivlev type and

reaction-diffusion whereas the analysis of predator-prey systems showing the Holling

type II functional response is examined in Garvie and Trenchea [12].

Another type of inter-species interaction is given by the competition. Competitive

species models or community models further describe a situation where consumers

share some resources that can affect their rate of production. Many ecologist, however,

put greater weight on competition which was thought to play a predominant role over

the years in structuring ecological communities. Notwithstanding, there is a classical

model of competition due to Lotka [24, 25] and Volterra [44, 45]. The Lotka-Volterra

competition model is an interference model where two species are assumed to diminish

each other's per capita growth rate by direct interference. It is usually assumed in this

Owolabi and Patidar Theoretical Biology and Medical Modelling  (2016) 13:1 Page 2 of 25



model that each species has a different population of different sizes that grow logistic-

ally in absence of each other and that each has a per capita growth rate that decreased

linearly with the population size with their own intrinsic growth rate and carrying cap-

acity. Mathematically, the simplest and instructive case is described by a system of two

coupled-reaction diffusion equations. The system of two competing species in just one-

dimensional space has attracted a lot of attentions, see [10, 14, 48] for details. Some of

the evolution processes here are characterized owing to the fact that certain moments

of time they experience a sudden change of state. To this end, we additionally consider

a general case of $n$ competing species that is less investigated and still poorly under-

stood for case n ≥ 2. Among the few works done when n > 2 include [37, 40, 43].

In mutualistic systems, organisms are found to evolve together. The existence of one

has no negative effect on the other, each is part of the other's environment and co-

exist, and they make use of each other in such a way that both organisms are benefited.

Mutualism has not been given as much attention as predation and competition.

Readers are referred to [20, 23] for a thorough review of the natural history of mutual-

ism. Community invasion models have an issue of significant importance in the

contemporary study of biological and ecological systems which have drawn the atten-

tion of both theorists and ecologists since the foundation work of Holt [18]. Despite a

considerable achievements recorded in the field of population dynamics modeling the

interaction of a multi-species community, so many challenging and open problems that

are of great ecological importance are yet to be addressed.

Mathematical analysis of the main equations

In this work, our major attention is on the two-variable reaction-diffusion systems. We

shall adapt linear stability analysis method to discuss the general two species dynamics.

Let u and v be the variables representing the two species of the Lotka-Volterra predator-

prey type. In the convention here, v is the predator, while u represents the prey.

The most relevant and general two-species reaction-diffusion system is formulated as

∂u
∂t

¼ Du
∂2u
∂x2

þ f u; vð Þ;

∂v
∂t

¼ Dv
∂2v
∂x2

þ g u; vð Þ;

)
ð1Þ

subject to zero-flux boundary conditions on a closed interval, say [0, L]

∂u
∂x

0; tð Þ ¼ ∂u
∂x

L; tð Þ ¼ 0;

∂v
∂x

0; tð Þ ¼ ∂v
∂x

L; tð Þ ¼ 0:

)
ð2Þ

We assume that the point û; v̂ð Þ is stable equilibrium state of the homogeneous

system

du
dt

¼ f u; vð Þ; du
dt

¼ g u; vð Þ; ð3Þ

that is f û; v̂ð Þ ¼ 0; g û; v̂ð Þ ¼ 0 . Stability of the steady states for general two-variable

system can be represented by the Jacobian
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J ¼ J11 J12
J21 J22

� �
¼

∂F
∂u

��� û;v̂ð Þ
∂F
∂v

��� û;v̂ð Þ

∂G
∂u

��� û;v̂ð Þ
∂G
∂v

��� û;v̂ð Þ

0
BBB@

1
CCCA ð4Þ

Which leads to characteristic equation of the form λ2 − trJλ + det J = 0, where

trJ ¼ J11 þ J22 < 0; detJ ¼ J11J22−J12J21 > 0: ð5Þ

To examine the stability of the uniform steady state û xð Þ; v̂ xð Þð Þ ¼ ûv̂ð Þ, we carry

out the linear stability analysis in the spirit of Allen [2], Mendez et al. [28] and

Murray [32, 33], we obtain

u x; tð Þû þ u0 cos kxð Þeλk t ;
v x; tð Þv̂ þ v0 cos kxð Þeλk t ;

)
ð6Þ

where λk, the growth rates and the modes cos(kx) are the roots of polynomial

det J−D−Inλkð Þ ¼ J11−Duk
2−λk J12

J21 J22−Dvk
2−λk

!
¼ 0;

 

ð7Þ

which corresponds to a polynomial

λ2k þΦ1λk þΦ2 ð8Þ

representing the dispersion relation, with

Φ1 ¼ Du þ Dvð Þk2−trJ ;
Φ2 ¼ J11−Duk

2� �
J22−Dvk

2� �
−J12J21 ¼ DuDvk

4− DvJ11 þ DuJ22ð Þk2 þ detJ :

Known from the stability conditions in (5) that trJ < 0, thus

Φ1 ¼ Du þ Dvð Þk2−trJ < 0; ∀k:

Which shows that the uniform steady state of (1) cannot undergo an oscillatory in-

stability (or wave bifurcation) to a standing wave pattern.

A Turing instability corresponds to λktrJ ¼ 0 for ktrJ ≠ 0. That is, with Φ2 = 0, results

to (J11 −Duk
2)(J22 −Dvk

2) − J12J21 = 0 or

k4−
J11
Du

þ J22
Dv

� �
k2 þ detJ

DuDv
¼ 0 ð9Þ

For the roots of (9) to be positive,

DvJ11 þ DuJ22 > 0 ð10Þ

is a necessary but not sufficient condition for the Turing instability to occur. With ref-

erence to conditions in (5), Turing instability can occur if the diffusion coefficient Du ≠
Dv and if the matrix elements J11 and J22 have opposite sign. So, Turing instabilities

occur only in either pure or cross activator-inhibitor dynamical system.

The system (3) is of the pure Lotka-Volterra type if the Jacobian agrees with the

structure of the form
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J ¼ þ −
þ −

� �
; for J11 > 0; J22 < 0; J12 < 0; J21 > 0 ð11Þ

Again, it is of the cross Lotka-Volterra type if the Jacobian has the structure

J ¼ þ þ
− −

� �
; for J11 > 0; J22 < 0; J12 > 0; J21 < 0 ð12Þ

Clearly from systems (11) or (12), we have J11 > 0, J22 < 0 which together with DvJ11 +

DuJ22 > 0 indicates that Turing instability can occur only if |J22| > J11 since trJ < 0 and

J12J21 < 0 for det J > 0. If we let ΘD =Dv/Du be the diffusion coefficients ratio, we can

easily obtain from (10) that ΘD > J22/J11 > 1. The indication here is that, for Turing in-

stability to take place, the inhibitor must diffuse faster than the activator.

By rewriting (9) in the form

k4 þ Ψ 1k
2 þ Ψ 2 ¼ 0;

where

Ψ 1 ¼ −
J11
Du

þ J22
Dv

� �
; Ψ 2 ¼ detJ

DuDv
;

we have the roots of equation (9) given by

k21;2 ¼ −
Ψ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ 2

1−4Ψ 2

q
2

;

provided Ψ1 < 0 and condition (10) is satisfied. So, Turing instability occurs for (10) to

have a double root, that is, if Ψ1
2 − 4Ψ2 = 0.

In conclusion, the uniform steady state of the reaction-diffusion system (1),

û xð Þ; v̂ xð Þð Þ ¼ ûv̂ð Þ , that satisfy the stability conditions in (5) will be unstable in the

presence of diffusion (called diffusion driven-instability) if Ψ1 < 0, that is, DvJ11 +DuJ22 >

0, and Ψ1
2 − 4Ψ2 > 0, that is, (DvJ11 +DuJ22)

2 > 4DuDv det J, with the band of unstable

modes

−Ψ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ 2

1−4Ψ 2

q
2

0
@

1
A < k2 <

−Ψ 1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ 2

1−4Ψ 2

q
2

0
@

1
A:

A good research focus has to be given to the numerical simulation of multi-species

dynamics in more than one dimensional space which has received little attention in the

literature. We simulated a class of biological systems that lead to the evolution of

traveling waves and formation of chaotic and spatiotemporal patterns arising in the

context of mathematical ecology. Though, simulations that are based on the use of

conventional methods in two-dimensions are found to be time consuming. As a result,

consideration is given to the design and method of implementing a viable numerical

scheme that can handle a class of multi-component reaction-diffusion problems

efficiently.

Numerical methods

Many systems of nonlinear time dependent reaction-diffusion problems of partial

differential equations that are of physical interest are written in the compact form
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∂w
∂t

¼ D∇2wþ N w; tð Þ ð13Þ

where D > 0 is the diffusion coefficient, ∇2w = (∂2w/∂x2 + ∂2w/∂y2) is the two-

dimensional Laplacian operator that represents the linear term, and N is nonlinear

function of w and t. By following [34–36], we discretize the spatial domain by mesh

(xi, yj) = (T1 + i × hx,T1 + j × hy) where hx = (T2 − T1)/(Nx + 1), hy = (T2 − T1)/(Ny + 1), for

0 ≤ i ≤Nx + 1, 0 ≤ j ≤Ny + 1. We approximate the second-order derivatives by the

fourth-order central difference operators

∂2w
∂x2

¼ −wi−2;j þ 16wi−1;j−30wi;j þ 16wiþ1;j−wiþ2;j

12h2x
¼ L1;

∂2w
∂y2

¼ −wi;j−2 þ 16wi;j−1−30wi;j þ 16wi;jþ1−wi;jþ2

12h2y
¼ L2;

and

w ¼
wi;j wi;jþ1 ⋯ wi;Nyþ1

wiþ1;j wiþ1;jþ1 ⋯ wiþ1;Nyþ1

⋮ ⋮ ⋮ ⋮
wNx;j wNx;jþ1 ⋯ wNx;Nyþ1

0
BB@

1
CCA

Nn�Nyþ1

for i = 1, 2,…,Nx and j = 1, 2,…,Ny + 1. The discretized form of (13) lead to a coupled

system ordinary differential equations (ODEs)

dw
dt

¼ D L1 þ L2ð Þwþ N w; tð Þ ð14Þ

where L1, L2 ∈ L and w = w(u, v).

Exponential integrators separate the linear term involving L, which is solved exactly

by a matrix exponential, from the nonlinear term. The theory of numerical methods for

the time integration of semi-linear problems has been proposed by the application of

the exponential methods. Cox and Matthews [6] presented derivation of exponential

time differencing (ETD) methods. Few years later, a modification of the ETD Runge-

Kutta methods of Cox and Matthews was made by Kassam and Trefethen [21], and it

is from their paper that we present some details of the scheme. A new algorithm for

the implementation of the exponential methods has been discussed in [9], that the al-

gorithm evaluates the operator by the exponential methods with a quadrature formula

that converges. Hochbruck and Ostermann [15] discussed further on the class of expli-

cit multistep exponential and explicit exponential Runge-Kutta methods. In this paper,

we use both the fourth-order exponential time differencing Runge-Kutta method

[6, 21] and the fourth-order exponential multistep method of Adams-type [6, 16].

Exponential time differencing method

We present a brief introduction to the derivation of exponential time differencing

Runge-Kutta and multistep methods of Adams-type along with their stability regions.

Details of their derivations can be found in [6, 16] and the references therein. The ex-

ponential time differencing idea, applied here for the u component, involves the use of

the integrating factor, e− L t. We multiply equation (14) by this factor and then integrate

it over a time-step to obtain
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w tnþ1ð Þ ¼ w tnð ÞeLΔt þ eLΔt
ZΔt
0

e−LτN w tn þ τð Þ; tn þ τð Þdτ ð15Þ

This equation is known to be exact [6, 21]. Various ETD schemes come from how

one approximates the integral on the right hand side in the above equation. The article

by Cox and Matthews [6] contains various approximations to the integral. They first

presented the sequence of recurrence formulae that give higher-order approximations

of a multistep method of Adams-type. In their work, a general ETD scheme of order-s

was proposed as

wnþ1 ¼ wne
LΔt þ Δt

Xs−1
j¼0

gj
Xj
k¼0

−1ð Þk j
k

� �
Nn−k : ð16Þ

The coefficients gj are obtained by the recurrence relation

LΔtg0 ¼ eLΔt−1;

LΔtgjþ1 þ 1 ¼ gj þ
1
2
gj−1 þ

1
3
gj−2 þ⋯þ 1

jþ 1
g0 ¼

Xj
k¼0

1
jþ 1−k

gk :
ð17Þ

By setting s = 4 in the explicit integrating formula (16), we obtain the fourth-order

ETD scheme of Adams-type

wnþ1 ¼ wne
LΔt þ Θ1Nn−Θ2Nn−1 þ Θ3Nn−2−Θ4Nn−3ð Þ= 6L2Δt3

� �
; ð18Þ

where

Θ1 ¼ 6L3Δt3 þ 11L2Δt2 þ 12LΔt þ 6
� �

eLΔt−24L3Δt3−26L2Δt2−18LΔt−6;
Θ2 ¼ 18L2Δt2 þ 30LΔt þ 18

� �
eLΔt−36L3Δt3−57L2Δt2−48LΔt−18;

Θ3 ¼ 6L2Δt2 þ 24LΔt þ 18
� �

eLΔt−24L3Δt3−42L2Δt2−42LΔt−18;
Θ4 ¼ 2L2Δt2 þ 6LΔt þ 6

� �
eLΔt−6L3Δt3−11L2Δt2−12LΔt−6;

denoted in this paper as ETDADAMS4.

Similarly, Cox and Matthews derived a set of ETD schemes that are based on Runge-

Kutta time-stepping, which they call ETDRK schemes. We only use the fourth-order

scheme which we denoted as ETDRK4 in this paper. On setting s = 4 again in (16), we

have the ETDRK4 formula

wnþ1 ¼ wneLΔt þ Nn −4−LΔt þ eLΔt 4−3LΔt þ L2Δt2
� �� 	

þ2 N an; tn þ Δt=2ð Þ þ N bn; tn þ Δt=2ð Þð Þ 2þ LΔt þ eLΔt −2þ LΔtð Þ� 	
þ N cn; tn þ Δtð Þ −4−3LΔt−L2Δt2 þ eLΔt 4−LΔtð Þ� 	

=L3Δt2;

ð19Þ
where

an ¼ wneLΔt=2 þ eLΔt=2−I
� �

Nn=L;
bn ¼ wneLΔt=2 þ eLΔt=2−I

� �
N an; tn þ Δt=2ð Þ=L;

cn ¼ wneLΔt=2 þ eLΔt=2−I
� �

2N bn; tn þ Δt=2ð Þ−Nnð Þ=L:

To circumvent the pronounced vulnerability of error cancelations in the higher-

order ETDADAMS4 and ETDRK4 schemes [21], and to generalize the ETD

schemes to non-diagonal problems, modified schemes are proposed with the aid of

complex contour integral
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φ Lð Þ ¼ 1
2πi

Z
Γ
φ tð Þ tI−Lð Þ−1dt; ð20Þ

to evaluate the coefficients of these schemes. Further details on derivations and applica-

tions of ETD Adams-type and ETD Runge-Kutta methods can be found in [6, 21, 41].

Stability analysis

We investigate the stability of the fourth-order ETDADAMS4 (18) and ETDRK4 (19)

schemes by linearizing the nonlinear autonomous system [8, 19]

dw tð Þ
dt

¼ Lw tð Þ þ N w tð Þð Þ; ð21Þ

with N(w(t)) the nonlinear part. We suppose that there exists a fixed point w0 such that

Lw0 + N(w0) = 0. Linearizing about this fixed point, we obtain

dw tð Þ
dt

¼ Lw tð Þ þ λw tð Þ; ð22Þ

where w(t) is now the perturbation of u0 and λ =N′(w0) is a diagonal or a block diag-

onal matrix containing the eigenvalue of N. In an attempt to keep the fixed point u0

stable, we require that Re(L + λ) < 0, for all λ. It is naturally important for a numerical

method to satisfy this property so as to cover as much dynamics as possible.

When applying ETDADAMS4 (18) to the linearized problem (22), a polynomial

equation of the order-four in r is obtained in the form

w4r
4 þ w3r

3 þ w2r
2 þ w1r þ w0 ¼ 0; ð23Þ

where

w0 ¼ ½ 2y2 þ 6yþ 6ð Þey−6y3−11y2−12y−6x�;
w1 ¼ ½ −9y2−24y−18ð Þey þ 24y3 þ 42y2 þ 42yþ 18x�;
w2 ¼ ½ 18y2 þ 30yþ 12ð Þey−36y3−57y2−48y−18x�;
w3 ¼ −6y6ey þ ½ −6y3−11y2−12y−6ð Þey þ 24y3 þ 26y2−18yþ 6x�;
w4 ¼ 6y4:

In the real (x, y) plane, the right-hand boundary for ETDADAMS4 scheme corre-

sponds to substituting r = 1 in equations (23) is the line x + y = 0. The corresponding

left-hand boundary for substituting r = −1, also in (23), is given by the curve

x ¼ 3y4 ey þ 1ð Þ
3y3 þ 20y2 þ 36yþ 24ð Þey−45y3−68y2−60y−24 ð24Þ

as displayed in Fig. 1.

In a similar fashion, the application of ETDRK4 method (19) to the linearized prob-

lem (22) leads to a recurrence relation

r ¼ wnþ1

wn
¼ L0 þ L1xþ L2x

2 þ L3x
3 þ L4x

4; ð25Þ

where
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L0 ¼ ey

L1 ¼ −
4
y3

þ 8ey=2

y3
−
8e3y=2

y3
þ 4e2y

y3
−
1
y2

þ 4ey=2

y2
−
6ey

y2
þ 4e3y=2

y2
−
e2y

y2

L2 ¼ −
8
y4

þ 16ey=2

y4
−
16e3y=2

y4
þ 8e2y

y4
−
5
y3

þ 12ey=2

y3
−
10ey

y3
þ 4e3y=2

y3

−
e2y

y3
−
1
y2

þ 4ey=2

y2
−
ey=2

y2

L3 ¼ 4
y5

−
16ey=2

y5
þ 16ey

y5
þ 8e3y=2

y5
−
20e2y

y5
þ 8e5y=2

y5
þ 2
y4

−
10ey=2

þ 16ey

y4
−
12e3y=2

y4
þ 6e2y

y4
−
2e5y=2

y4
−
2ey=2

y3
þ 4ey

y3
−
2e3y=2

y3

L4 ¼ 8
y6

−
24ey=2

y6
þ 16ey

y6
þ 16e3y=2

y6
−
24e2y

y6
þ 8e5y=2

y6
þ 6
y5

−
18ey=2

y5

þ 20ey

y5
−
12e3y=2

y5
þ 6e2y

y5
−
2e5y=2

y5
þ 4
y4

−
6ey=2

y4
þ 6ey

y4
−
2e3y=2

y4
;

where x = λh, y = Lh. We can define the amplification factor for ETDRK4, r(x, y)

for y > 0. If y = 0, the amplification factor becomes 1 − x + x2/2 − x3/6 + x4/24.

Hence, we can see that the stability curve of ETDRK4 at y = 0 coincides with that

of the classical fourth-order Runge-Kutta method, Fig. 2(a). We also see that

limx,y→ 0∂xr(x, y) = − 1 and limx,y→ 0∂yr(x, y) = − 1. Hence, the absolute value of the

amplification factor is given as |r(x, y)| ≤ 1.

The boundary of the stability region can be determined by setting r = eiθ, for θ ∈ [0, 2π].
We plot the stability region in the complex x plane and displayed in Fig. 2, where the

horizontal and vertical axes represent the real and imaginary of x, respectively.

Numerical examples and results

In this section, numerical methods we discussed above are now applied to the three

major classes of the Lotka-Volterra two-species models. In addition, comparison with

other adaptive methods are made to justify the effectiveness and accuracy of the

present method. A possible extension to two space dimensions is considered, since it is

in higher dimensions that most of the ideas reported are of serious value.
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Fig. 1 Stability regions of the ETDADAMS4 scheme (18). We plot the region stability of the ETDADAMS4
scheme both in (a) the complex plane x and (b) the real (x, y) plane
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Predator-prey system

It is clear from our introduction that predator-prey models are similar in description to both

parasite and parasitoid models. A typical example of predator-prey model [11, 32] is the

reaction-diffusion system

∂U
∂T

¼ D1
∂2U
∂X2 þ U α 1−

U
K

0
@

1
A−

γV
U þ δ

2
4

3
5;

∂V
∂T

¼ D2
∂2V
∂X2 þ V β 1−

hV
U

0
@

1
A

2
4

3
5;

)
ð26Þ

where U and V are the densities of the prey and predator respectively, D1 > 0 and D2 > 0 are

diffusion coefficients for the prey and predator. α, β, γ, δ, h and K are positive parameters. The

term αU(1−U/K) represents the logistic growth, α is the intrinsic growth rate, and K the

carrying capacity. The term γV is the per-capita prey reduction due to consumption by the

predator, and β describes the intensity of predation.

To reduce the number of parameters in (26), we nondimensionalize the model by

re-scaling the variables as

u tð Þ ¼ U Tð Þ
K

; v tð Þ ¼ hV Tð Þ
K

; t ¼ αT ; μ ¼ γ

hα
; ψ ¼ β

α
; φ ¼ δ

K
; D ¼ D2

D1
ð27Þ

to yield

∂u
∂t

¼ ∂2u
∂x2

þ u 1−uð Þ− μu
uþ φ

v ¼ f u; vð Þ;

∂v
∂t

¼ D
∂2v
∂x2

þ ψv−
ψv2

u
¼ g u; vð Þ:

)
ð28Þ

For the linear stability, we have to analyze the stability criteria of the non-diffusive

system [17, 31, 42]. The spatial model (28) has the corresponding non-diffusive systems
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Fig. 2 Stability region of the ETDRK4 scheme (19). Boundary of stability regions in the complex x plane for
the ETDRK4 scheme at (a) when y = 0, which correspond to the stability regions of the classical fourth-order
Runge-Kutta method, and (b) shows the curve of ETDRK4 at some negative values of y = −15, −10, −5, from
outer to the inner curves. The innermost curve corresponds to the stability region of (a) at y = 0
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du
∂t

¼ u 1−uð Þ− μu
uþ φ

v ¼ f u; vð Þ;

dv
∂t

¼ ψv−
ψv2

u
¼ g u; vð Þ;

)
ð29Þ

with just three parameters μ > 0, ψ> 0 and φ > 0. There are other choices for the change of var-

iables to put the system in dimensionless form, but we opt for the choice that suits our purpose

since the dimensionless groupings used here give relative measures of the effect of dimensional

parameters. For instance, ' now becomes the ratio of the linear growth rate of the predator to

that of the prey, for ψ< 1. We expect the prey to reproduce faster than the predator otherwise

the system will go into extinction.

At equilibrium, f ûv̂ð Þ ¼ g ûv̂ð Þ ¼ 0 , since the steady state populations û and v̂ are

solutions of du/dt = dv/dt = 0. Hence,

û 1−ûð Þ− μû
uþ φ

v̂ ¼ 0;

ψv̂−ψv̂2û ¼ 0:

)
ð30Þ

Naturally, for the dynamical system under consideration to be biologically meaningful, we

should have both u ≥ 0, v ≥ 0 at all times. We observe from (30) that the system (28) has

three positive steady states ûv̂ð Þ , the two trivial states or saddle points are at point (0, 0)

which describes complete extinction of both prey and predator and point (1, 0), which

shows that the predator is absent leading to unbounded logistic growth of the prey species.

The stationary point ûv̂ð Þ corresponding to the existence of predator and prey, bearing in

mind that for the system under consideration to be biologically meaningful, the parameters

must be strictly restricted to the positive quadrants, gives

û ¼ v̂ ¼ 1−μ−φð Þ þ 1−μ−φð Þ2 þ 4φ
� 	1=2

2
: ð31Þ

The stability of the steady or equilibrium states are the singular points in the phase

plane of (28). To determine them, we let

A ¼ û
μû

û þ φð Þ2 −1
2
4

3
5 −μû

û þ φ

ψ −ψ

0
B@

1
CA; ð32Þ

where A is regarded as the community matrix with eigenvalues given by

A−λIj j ¼ 0⇒λ2− trAð Þλþ detA ¼ 0: ð33Þ

For stability, we require that Reλ < 0. Hence, the necessary and sufficient conditions

for linear stability become

trA < 0 ⇒ û
μû− û þ φð Þ2

û þ φð Þ2

2
4

3
5 < ψ

detA > 0 ⇒
û þ φð Þ2 þ μ û þ φð Þ−μû

û þ φð Þ2 > 0:

)
ð34Þ

On substituting û in equation (31) provides the stability conditions in terms of the

positive parameters μ,ψ and φ.
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Results in one-dimension for system (26)

Numerical results of the predator-prey system are shown in one-dimension. The initial

data and parameter values are given in the figure caption. The initial data are chosen as

a result of small perturbations of the steady state solutions û and v̂ of the spatially

homogeneous system. By varying the choice of parameters lead to different spatial pat-

terns, such as oscillatory smooth, intermittent structure and spatiotemporal patterns. It

should be noted that other one-dimensional spatial structures that are not captured

here are possible, depending on the choice of the parameter values and initial data.

Figures 3 and 4 represent the unrealistic and realistic population dynamics of the

predator-prey systems. The system with nonlinear part as described in Garvie [11] is quite

unrealistic due to the choices of parameters used in transforming the system into a

dimensionless form. This shortcoming actually motivates us to choose some appropriate

parameters since it is always helpful to write the system in nondimensional form. Non-

dimensionalisation plays an important role when carefully considered because it reduces

the number of parameters by grouping them in a more meaningful manner. So, the

system described in Fig. 3 is totally unrealistic as it is prone to danger of extinction of the

prey species that would in turn results to total breakdown of the ecosystem since all the

predators will die out in absence of food. In Fig. 4, spatiotemporal oscillations arise and

population oscillations are transient and regular. It should be noted that due to the

formation of spatial pattern, the two species can dynamically coexist.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

po
pu

la
tio

n 
de

ns
ity

(a)
Prey
Predator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Local prey density

Lo
ca

l p
re

da
to

r 
de

ns
ity

(b)

0 100 200 300 400 500
0

0.5

1

1.5

time

po
pu

la
tio

n 
de

ns
ity

(c)
Prey
Predator

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

time

po
pu

la
tio

n 
de

ns
ity

(d)
Prey
Predator

Fig. 3 Unrealistic predator-prey system (26). Plots (a), (c), (d) show various periodic solutions of the prey (u) and predator
(v) populations. Parameter values: μ=0.8, ψ=2, φ=0.4, which give a steady state at û =1.5, v̂ =0.1 for (a) at t=100,
(b) the local phase plane of the system at t=8000, (c) t=500, and (d) spatiotemporal oscillations at t = 8000. We expect
to see that the prey produces faster than the predator but the case here is otherwise. Take note of the amplitudes
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Results in two-dimension for system (26)

We intend to mimic the two-dimensional results obtained for the predator-prey system

in [11, 27], we experiment with the same initial data
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Fig. 4 Realistic predator-prey system (26). Typical phase trajectories (b), (f) and (h) of prey-predator system.
Time series plots (a), (c), (d), (e) and (g) show various periodic (oscillatory behaviour) of the prey u and
predator v populations. Parameter values: μ = 1.5, ψ = 0.08, φ = 0.01, give a steady state at û = 1.5, v̂ = 0.1
for (a) at t = 400, (b) t = 7000, (c) t = 1500, and (d) t = 8000. By taking û = v̂ = 0.35, μ = 1, ψ = 0.05, φ = 0.2,
we obtain (e) for t = 100, (f) for t = 1000 and (g) for t = 300. For (h), μ = 1.025, t = 8000
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u x; y; 0ð Þ ¼ û− 2� 10−7ð Þ x−0:1y−225ð Þ x−0:1y−675ð Þ;
v x; y; 0ð Þ ¼ v̂− 3� 10−5

� �
x−450ð Þ− 1:2� 10−4ð Þ y−150ð Þ



ð35Þ

so as to induce a nontrivial spatiotemporal dynamics of the homogeneous stationary

states û and v̂ . In Fig. 5, numerical simulations was done on a square domain size

[0, 700] × [0, 700], with parameter values D = 0.1, μ = 0.2, ψ = 2, φ = 0.5 at non-

trivial state ûv̂ð Þ =(6/35, 116/245). As simulation time is increased from t = 200 to

t = 500, the spiral patterns in (a, b) are disjointed and spreads out in the domain

to form a stripe-like structures with emergence of some spots underneath. It

should be mentioned that if the simulation time is further increased, say to

t = 1500 and above, there is every tendency of getting a Turing and more compli-

cated spatiotemporal patterns. In addition, we realized that the choice of initial

conditions can influence the type of spatiotemporal dynamics of a reaction-diffusion

problem in ecosystems.

A close look at the first and second columns in Fig. 5 have revealed that both

predator and prey species have a similar distribution. As a result, our pattern forma-

tion analysis is henceforth restricted to only one distribution. We also observe in

our experiments that increase in domain size actually results to increase in

Fig. 5 Two-dimensional results for the predator-prey system (26). The first and second columns represent
the prey and predator distributions at time t = 200 and t = 500 for species u and v respectively
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computational time. Henceforth, we choose to simulate with a smaller square domain

of size [0, 250] × [0, 250].

Competitive system

Competition model describes a situation in which two or more species compete for the

same (sufficient or insufficient) resources like food, territory or in some way inhibit each

other of growth. For simplicity, and by following the approach we used for the predator-

prey model, we consider here the two-species Lotka-Volterra competition model

∂U
∂T

¼ δ1
∂2U
∂X2 þ α1U 1−

U
K 1

−β1
V
K 1

0
@

1
A;

∂V
∂T

¼ δ2
∂2V
∂X2 þ α2V 1−

V
K2

−β2
U
K2

0
@

1
A;

)
ð36Þ

with species U and V having logistic growth in the absence of the other. The parame-

ters α1 and α2 represent their linear birth rates, β1 and β2 measure the competitive

effect of V on U and vice versa, δ1 and δ2 stand for the diffusion coefficients of species

U and V, and K1 and K2 are their respective carrying capacities.

Again, we nondimensionalize (36) by introducing a set of carefully selected dimen-

sionless variables

u tð Þ ¼ U Tð Þ
K 1

; v tð Þ ¼ V Tð Þ
K 2

; t ¼ α1T ; μ ¼ α2
α1

; φ ¼ β2
K 2

K 1
; ψ ¼ β1

K 1

K 2
; δ ¼ δ2

δ1
:

ð37Þ

As suggested by Medvinsky et al. [27] and Garvie [11], the local stability analysis will

always grant a deeper understanding and will provide important information on the

choice of parameters for numerical integration. Like the previous case, we continue

with the local stability analysis in the absence of diffusion. Using (37) in (36), we obtain

∂u
∂t

¼ ∂2u
∂x2

þ u−u2−φuv
� � ¼ f u; vð Þ;

∂v
∂t

¼ δ
∂2v
∂x2

þ μ v−v2−ψuv
� � ¼ g u; vð Þ:

)
ð38Þ

For the linear stability analysis, we consider the case of spatially homogeneous solu-

tions, in which the spatial model (38) is equivalent to the system of ordinary differential

equations

du
∂t

¼ u−u2−φuv
� � ¼ f u; vð Þ;

dv
∂t

¼ μ v−v2−ψuv
� � ¼ g u; vð Þ:

)
ð39Þ

Here, we regard the steady states and phase plane singularities, û and v̂ as the solu-

tions of f(u,v) = g(u, v) = 0. This gives four positive equilibrium states,

û; v̂ð Þ ¼ 0; 0ð Þ; û; v̂ð Þ ¼ 1; 0ð Þ; û; v̂ð Þ ¼ 0; 1ð Þ; û; v̂ð Þ ¼ 1−φ
1−φψ

;
1−ψ
1−φψ

� �
: ð40Þ

The good thing is that, all the four steady states exist in the positive quadrant which

make the whole process meaningful in the biological and ecological contexts.
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The first three stationary states are trivial whereas the last one is non-trivial. The state (0,0)

corresponds to total washout state of the two species, the second state (1,0) stands for the ex-

istence and extinction of species u and v respectively and the third trivial state (0; 1) indicate

that only species v will exist. It is obvious that none of the three trivial states could give a

meaningful interpretation about the competition model, therefore, there is the need to

explore further the nontrivial equilibrium state û; v̂ð Þ. The points (0,0), (1,0) and (0,1) are all

unstable (0,0) is an unstable node, (1,0) and (0,1) are saddle point equilibria. From (39), for

f = g = 0, we have that (u − u2−φuv) = 0, it follows that either u= 0 or 1 − u −−φv = 0 and

also from the second equation, μ(v − v2−φuv) = 0 which implies, μv = 0 and 1− v −−φu= 0.

Now the Jacobian or community matrix for this system evaluated at û; v̂ð Þ is

A ¼ 1−2u−φv −φu
−μψv μ 1−2v−ψuð Þ

� �
û;v̂ð Þ

: ð41Þ

The point (0, 0), is unstable since the eigenvalues λ obtained from

A−λIj j ¼ 1−λ 0
0 μ−λ

����
���� ¼ 0

are λ1,2 = (1, μ). At the point (1, 0), the community matrix A gives

A−λIj j ¼ 1−λ φ
0 μ 1−ψð Þ−λ

����
���� ¼ 0:

Hence, λ1,2 = (−1, μ(1 − ψ)). Therefore, the steady state û; v̂ð Þ ¼ 1; 0ð Þ is stable if ψ > 1

and unstable otherwise. In the same manner, we can see that the steady state (0, 1) has

the community matrix A satisfying

A−λIj j ¼ 1−φð Þ−λ 0
μφ −μ−λ

����
���� ¼ 0:

The corresponding eigenvalues are λ1,2 = (−μ, (1 − φ)). This means that the steady

state û; v̂ð Þ = (0, 1) is stable if φ > 1 and unstable if φ < 1.

For the fourth steady states, we have matrix,

A−λIj j ¼
1−2

1−φ
1−φψ

0
@

1
A−φ

1−ψ
1−φψ

0
@

1
A

2
4

3
5−λ −φ

1−φ
1−φψ

−μ
1−ψ
1−φψ

−μ 1−2
1−ψ
1−φψ

0
@

1
A−ψ

1−φ
1−φψ

0
@

1
A

2
4

3
5−λ

������������

������������
¼ 0:

The eigenvalues in this case are

λ1;2 ¼
φ−1ð Þ þ μ ψ−1ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ−1ð Þ þ μ φ−1ð Þ2� 	

−4μ 1−φψð Þ φ−1ð Þ2
q

2 1−φψð Þ :

Clearly, the stability of the steady state depends on the size of the positive parameters

μ, φ and ψ subject to various cases such as; (φ > 1, ψ > 1), (φ > 1, ψ < 1), (φ < 1, ψ > 1) or

(φ < 1, ψ < 1). A biological interpretation of Fig. 6(b) suggests that because the carrying

capacity of species u is so high, this species is not limited by the resources to the extent

at which species v seems to be. Stable coexistence occurs when the isoclines are

arranged as in Fig. 6 (a) for K1 < K2/ψ and K2 < K1/φ. The populations converge on the
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intersection of the isoclines regardless of the initial population densities. The intersec-

tion point of the two lines gives the positive steady state as in (a) where the point (1.4,

1.4) corresponds to (1/φ, 1/ψ). The locations of the isoclines in (b) dictate that species

u out-competes species v, the point (1/φ, 1/ψ) corresponds to the value (1.6, 0.6)

of species u and v, respectively. Clearly, on rearranging, we can see that ψ < K2/K1

and φ < K1/K2, and these competition coefficients must be made as small as

possible relative to the ratio of its carrying capacity to that of other species. These

conditions must hold for both species simultaneously, and this is possible only if

the carrying capacities of the two species are similar in such a way that their ratio

is close to one. Figure 7 (a) describes the species declining population density asso-

ciated with the competitive system (38), panels (b,c) refer to the time series solu-

tion, and (d) corresponding to the species phase plane diagram.

Two dimensional results for model (38)

We also carry out a two-dimensional numerical simulations of the spatially extended

competitive model (38). We employed the initial conditions (35) and the zero-flux

boundary conditions on a square domain size of [0, 250] × [0, 250] with time-step Δt =

0.005 and grid width Δh = 0.25. Here the parameter values are set as

δ ¼ 0:05; φ ¼ 0:2; ψ ¼ 0:69; μ ¼ 0:01:

In Fig. 8, we show three typical Turing patterns obtained at (a) û; v̂ð Þ =(11/45, 110/

253) for t = 300 and (b) ûv̂ð Þ =(0.05, 0.062) for t = 500. In both panels, we noticed the

formation of Turing spots pattern emanating from the center of the domain, as a result,

we fixed the parameter values as in (b) and increase the simulation time to t = 700. A

pattern containing the mixture of spots and moon-like stripe patterns emerged in (c).

From (a-c) one can observed that irregular patterns prevail in the entire domain.

However, the three patterns are essentially different from one another, because of their

different wavelengths. We believe the possibility of getting other Turing dynamical

structures depending on the choice of initial data and the length of simulation.
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Fig. 6 A Lotka-Volterra graph depicting stable equilibrium between two competing species of system (39).
Stable coexistence occurs when the isoclines are arranged in (a) for K1 < K2/ψ and K2 < K1/φ. The intersection
point of the two lines gives the positive steady state in (a) where the point (1.4, 1.4) corresponds to (1/φ, 1/
ψ). The locations of the isoclines in (b) indicate that species u out-competes species v and the point (1/
φ, 1/ψ) corresponds to the value (1.6, 0.6) of species u and v, respectively
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Mutualism system

This is a type of association in theoretical ecology in which the existence of one species has

no negative influence on the other. This type of model receives little attention and has not

been studied as others, even though its importance is comparable to that of prey-predator

and competition models. To start with, we shall analyze briefly the two-species model

∂U
∂T

¼ σ1
∂2U
∂X2 þ F U ;Vð Þ;

∂V
∂T

¼ σ2
∂2V
∂X2 þ G U ;Vð Þ;

)
ð43Þ

where F(U,V) = α1U(1 −U/K1 + β1V/K1) and G(U,V) = α2U(1 −V/K2 + β2U/K2) are the

nonlinear reaction terms for the two species U and V, respectively. And σ1, σ2, α1, α2, β1,

β2, K1, K2 are all positive parameters. This system looks similar to equation (36), with

exception that β ' s are treated positive in this case. We then nondimensionalize using

the parameters

u tð Þ ¼ U Tð Þ
K 1

; v tð Þ ¼ V Tð Þ
K 2

; t ¼ α1T ; μ ¼ α2
α1

; φ ¼ β2
K2

K1
; ψ ¼ β1

K 1

K 2
; σ ¼ σ2

σ1
;

ð44Þ

which on substitution in (43) yields
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Fig. 7 Behaviour of competitive model (38) around the equilibrium states. Declining population density
associated with the competitive system is demonstrated in panels (a) and (b). As the resources declined,
the two species compete for the limited resources, as evident in panel (b). Parameter values: (a) û = v̂ =1,
μ = φ = ψ = 0.5 at t = 5 and (b) û = v̂ =1, μ = 0.5, φ = 0.15, ψ = 0.15 at t = 40. Other parameters are as in (b)
except at v̂ = 0.8, t = 40 for (c) and t = 20000 for (d)
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∂u
∂t

¼ ∂2u
∂x2

þ u−u2 þ φuv
� � ¼ f u; vð Þ;

∂v
∂t

¼ σ
∂2v
∂x2

þ μ v−v2 þ ψuv
� � ¼ g u; vð Þ:

)
ð45Þ

Again, by following the linear stability analysis, we study the stability criteria for the

non-diffusive system

du
∂t

¼ u−u2 þ φuv
� � ¼ f u; vð Þ;

dv
∂t

¼ μ v−v2 þ ψuv
� � ¼ g u; vð Þ;

)
ð46Þ

It is not difficult to see that the steady states û; v̂ð Þ for this system are

û; v̂ð Þ ¼ 0; 0ð Þ; û; v̂ð Þ ¼ 1; 0ð Þ; û; v̂ð Þ ¼ 0; 1ð Þ; û; v̂ð Þ ¼ 1þ φ

1−φψ
;
1þ ψ

1−φψ

� �
: ð47Þ

The Jacobian or community matrix for this system is

B ¼

∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

0
BBB@

1
CCCA

û;v̂ð Þ

¼ 1−2uþ φv −φu
−μψv μ 1−2vþ ψuð Þ

� �
û;v̂ð Þ

: ð48Þ

Proceeding in a similar manner like those for the previous cases, we can easily show

that the points (0, 0), (1, 0) and (0, 1) are all unstable; the point (0, 0) is unstable node

while (1, 0) and (0, 1) are the saddle point equilibria, whereas the fourth steady state

Fig. 8 Two dimensional results of the competitive model (38). The patterns are obtained with parameters
t = 300, t = 500 and t = 700. Other parameters are as fixed in (42)
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for 1 − φψ > 0 (located in the positive quadrant) is a stable equilibrium. Mutual display

of the species is reflected in Fig. 9, panel (a) shows linear behaviour of species u and v.

Each of the species experienced an unbounded population growth since the existence

of one has no effect on the other and their relationship is linear as in (b).

Two dimensional results for model (45)

Following [34], we take the boundary conditions

∂u
∂t

� �
x;yð Þ

¼ ∂v
∂t

� �
x;yð Þ

¼ 0; ð49Þ

subject to the axi-symmetric initial conditions

u x; y; 0ð Þ ¼ û−0:5e

−ς2

20
;

v x; y; 0ð Þ ¼ v̂e

−ς2

20
;

)
ð50Þ

where ς2 = x2/2 + y2. We perform some numerical simulations of the dynamical model

(45) on the domain size [0, 250] × [0, 250] with time-step Δt = 0.05 and grid width

Δh = 0.5, û; v̂ð Þ =(0.06125, 0.25). We fixed other parameters as in (42) to obtain Fig. 10.

In the simulations at t = 500, the pattern structures start appearing like a cluster of

stripes right from the domain center. It spreads out into irregular stripes as simulation

time increased to t = 1000. Later, with further increase in time, the long stripes break

into spots at t = 1500 as in (c). In panel (d) at t = 2000, spot patterns have covered the

entire domain. Pure Turing spots pattern is achievable if the simulation time is further

increased.

In order to justify the suitability and accuracy of the ETDADAMS4 and ETDRK4

schemes, we carried out numerical experiments on the three dynamical systems consid-

ered in this paper that is, the prey–predator system (28), competitive system (39), and

the mutualism or symbiosis system (45). The performance of ETDRK4 and ETDA-

DAMS4 are investigated and compared with the family of exponential time differencing

multisteps schemes of order four, five and six which we denoted in this paper for

brevity as ETDM4, ETDM5 and ETDM6 respectively.
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Fig. 9 Time series and phase trajectory plane of mutualism system (46). The mutual relationship between
the species is shown in panel (a), and their phase trajectory in (b) indicating linear existence. The parameter
values are: u0 = v0 = 1, μ = 1/2, φ = ψ = 0.15 at t = 5
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It would go beyond the scope of this paper to give a complete classification of exponen-

tial integrators used for comparison. We focus on exponential time differencing method

of Adams-type and exponential time differencing Runge-Kutta method, and we have

mentioned earlier how they can be treated in the common framework of explicit expo-

nential integrators. Details of these schemes are well classified in [16, 41] and references

therein, with historical survey offered by Minchev and Wright [30].

We report the maximum relative errors of the solution defined by

relative error ¼ max1≤j≤N ûj−uj
�� ��

max1≤j≤N ûj

�� �� ð51Þ

where û j is a gold-standard run computed with the schemes at Δt = 1/2048 and uj is

computed values of the solution u at point j, and N is the number of interior points

defined on the collocation interval

x1 ¼ a;…; xi ¼ aþ i−1ð ÞΔx;…; xN ¼ bf g; Δx ¼ b−aj j
N−1

: ð52Þ

Figure 11 (a) shows the performance of the schemes when applied to the prey-

predator system (28) at parameter values t = 1, μ = 0.1, ψ = 0.08, φ = 0.01, δ = 0.01

for N = 200. Panel (b) is obtained with parameters t = 1, μ = 0.5, ψ = 0.15, φ =

0.15, δ = 0.5 and N = 200 for the competitive system (39). The performance of

the schemes when applied to the mutualism system (45) at parameter values t = 1,

Fig. 10 Two dimensional results for the mutualism system (46). The patterns are obtained for panels (a-d)
at t = 500, t = 1000, t = 1500 and t = 2000 respectively
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μ = 0.5, ψ = 0.5, φ = 0.5, δ = 0.1, N = 200 is shown in panel (c). We compute the

relative errors using a gold-standard run obtained with the schemes using Δt = 1/

2048 and compare with various time steps 1/2ρ, ρ = 1,…, 10 [34, 36].

It is obvious from the results presented in Fig. 11 that the ETDRK4 has a better

convergence when compared to other exponential time differencing methods for

each of the problems considered in this paper. Due to the similarity and the choices

of parameters used in the simulations of the competitive and the mutualism

systems, one observes that the schemes have similar behaviour. The difference is

noticeable in their amplitudes. The ETDADAMS4 competes very well with

ETDRK4 when applied to the dynamical systems but the ETDRK4 appears to have

the overall credit.

The following experiment in Table 1 was performed in one-dimension with

predator-prey system (28) in a smaller domain size (0; 100) and the computation was

terminated at final time t = 1,…, 4. The parameter values are: μ = 0.4, ψ = 0.08, φ =

0.05, Δt = 0.25 for N = 200. We use the built-in Matlab tic - toc to check the computa-

tional time of the schemes. Both schemes runs in seconds. Our numerical experi-

ments in one-dimension demonstrate a strong case for abandoning the ETDM4,

ETDM5 and ETDM6 schemes. In obtaining the 2D results in Fig. 5, it was observed

that the ETDRK4 time-stepping scheme performed about two times faster than the

ETDADAMS4 scheme. That is, the computational time required for ETDADAMS4 is

about 48 % more than that of the ETDRK4. As a result, we carried out the 2D experi-

ments with the ETDRK4 scheme.
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Fig. 11 Performance of the schemes (ETDRK4, ETDADAMS4, ETDM4, ETDM5 and ETDM6). Showing
accuracies versus time steps for the predator-prey (28), competitive (39) and mutualism (45) models
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Conclusions
In this paper, firstly, the dynamic complexities of the ecological models consisting of

prey-predator, competitive and mutualism reaction-diffusion dynamics are studied by

considering their linear stability analysis in the absence of diffusion, and secondly by

the numerical approach with the presence of diffusion. We discretized the governing

models in space using a fourth-order central finite difference scheme and integrate the

resulting ODEs with the exponential time differencing schemes whose formulations

were based on the Runge-Kutta and multistep methods of Adams-type. We investigate

the stability of the schemes and plots their stability regions. We present the results in

both one and two dimensions to unveil their pattern formations. The numerical experi-

ments in 2D reveal some of the typical patterns such as stripes and spots, as well as

irregular snakelike patterns. Further, we compared the results obtained with both

ETDADAMS4 and ETDRK4 for each of the dynamics, with their exponential fourth,

fifth and sixth-orders counterparts denoted as ETDM4, ETDM5 and ETDM6, respect-

ively, and observed that the ETDRK4 is most reliable and computationally promising in

terms of efficiency and accuracy when compared to other methods used in this paper.

It worth mentioning that the methodology presented in this work can be extended to

higher dimensional practical problems.
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