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Abstract
Background: The progression of Human Immunodeficiency Virus (HIV) within host
includes typical stages and the Antiretroviral Therapy (ART) is shown to be effective in
slowing down this progression. There are great challenges in describing the entire HIV
disease progression and evaluating comprehensive effects of ART on life expectancy
for HIV infected individuals on ART.

Methods: We develop a novel summative treatment benefit index (TBI), based on an
HIV viral dynamics model and linking the infection and viral production rates to the
Weibull function. This index summarizes the integrated effect of ART on the life
expectancy (LE) of a patient, and more importantly, can be reconstructed from the
individual clinic data.

Results: The proposed model, faithfully mimicking the entire HIV disease progression,
enables us to predict life expectancy and trace back the timing of infection. We fit the
model to the longitudinal data in a cohort study in China to reconstruct the treatment
benefit index, and we describe the dependence of individual life expectancy on key
ART treatment specifics including the timing of ART initiation, timing of emergence of
drug resistant virus variants and ART adherence.

Conclusions: We show that combining model predictions with monitored CD4
counts and viral loads can provide critical information about the disease progression, to
assist the design of ART regimen for maximizing the treatment benefits.

Keywords: Viral dynamic model, HIV, Antiretroviral therapy, Life expectancy,
Treatment benefit index

Background
Human immunodeficiency virus (HIV), the pathogen causing acquired immune defi-
ciency syndrome (AIDS), exhibits highly complex interaction with human immune
system [1, 2]. HIV infection typically results in a vast virus replication during the acute
infection phase that is followed by a chronic phase where the viral load approaches a
much lower quasi-steady state, and then followed by a sharp and sudden rise of viral loads
when the immune system collapses [3–7]. Typical stages of HIV infection are well doc-
umented [6, 8], and the antiretroviral therapy (ART) is shown to be effective in slowing
down the progression to AIDS and improving the life quality of HIV patients [9–11]. Most
existing models however failed to describe the entire HIV disease progression trajectory
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partly, especially they could not model the significant increase of viral loads after the
development of AIDS.
There has been substantial progress in modelling antiretroviral intervention, with par-

ticular success in predicting long-term viral dynamics [12–17]. A challenge in describing
the entire HIV disease progression trajectory arises from the temporal variability of the
infection rate and the viral reproduction rate [13, 16, 18]. One purpose of this study is
to propose a novel viral dynamic model which can describe a typical disease progres-
sion including acute infection, chronic latency and AIDS stage on the basis of the classic
viral dynamic model frame [8, 19–21]. We then show that parametrizing the infection
rate and viral reproduction rate through three key parameters in the Weibull function
[22, 23] permits us to extend the classical viral dynamicsmodel in such a way that accurate
description of the viral dynamics during the entire HIV disease progression within a host
is possible.We also demonstrate, using a longitudinal cohort study in China, how parame-
ters of the relevant Weibul functions can be estimated by fitting the viral dynamics model
prediction to patient data, and how these parameterizedWeibul functions in combination
with the viral dynamics model yields important information about the comprehensive
effects of ART on the life expectancy (LE).
Estimating the LE is important to inform the patients of their prognosis at the individ-

ual level, and to predict the future demographic and socioeconomic impact of HIV/AIDS
at the population level. Several studies have investigated the prolonged LE of patients
due to ART in high-income countries or resource-constrained settings at the population
level [24–28], using observed mortality rates in various cohort studies. There are many
challenges in determining the timing of infection, predicting the LE of HIV infected indi-
viduals and quantifying the comprehensive effects of ART on life expectancy. In the study
here, based on parametrized temporal variability of infection rate and viral reproduction
rate through the Weibul function which are incorporated in the classical viral dynamics
model, our another purpose is to establish a predictive formula at the individual level for
the LE of patients receiving ART, and to simulate how this individual LE is related to ART
treatment specifics such as drug efficacy, sensitivity, adherence, treatment starting time
and the time of emergence of drug resistant virus variants.

Methods
The model Let T(t),T∗(t) and V (t) be the concentrations of uninfected target CD4 T
cells, productively infected cells, and free virus at time, respectively. We adopt the clas-
sic HIV viral dynamics model [19, 21], but include the temporal variability of infection
rate and viral production rate in order to provide a faithful account of the entire disease
progression of within an HIV patient. Namely, we have

⎧
⎪⎪⎨

⎪⎪⎩

dT
dt = s − dT − k(t)VT ,
dT∗
dt = k(t)VT − δT∗,
dV
dt = λ(t)T∗ − cV ,

(1)

where s is the rate of recruitment of uninfected cells, d and δ are the death rates of unin-
fected cells and infected cells respectively, c is the rate of clearance. We propose to link
the temporally varying infection rate k(t) and viral production rate λ(t), in the absence of
ART, to the Weibull function
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W (t,Tm,β ,α) = 1 − exp
[

−
(
Tm − t

β

)α]

, t < Tm, (2)

with respective location parameter (Tm), the shape parameter (α), and the scale param-
eter (β). The Weibull function is characterized by shape, scale and location parameters.
The location parameter determines the maximum life span of the patient since infection.
Using this local parameter, we can define and calculate a summative index, the treatment
benefit index (TBI), as the difference of the LEs of a patient with and without ART, to
measure the overall benefit of ART treatment in terms of the life year gained. Specifically,
we have

k(t) = k
W (Tm,βk ,αk)

= k

1 − exp
[
−

(
Tm−t

βk

)αk] , t < Tm, (3)

and

λ(t) = λ

W (Tm,βλ,αλ)
= λ

1 − exp
[
−

(
Tm−t

βλ

)αλ
] , t < Tm. (4)

with normalized constants k and λ. Definitions of variables and parameters as well as the
baseline parameter values are listed in Table 1. It is interesting to note that the viral loads

Table 1 Definitions of the parameters used in the model

Variables Definitions Initial Reference

T Uninfected CD4+ cell population size 1200 μl−1

T∗ Infected CD4+ helper cell population size 0

VI HIV population size 100 μl−1

τ Prolonged LE interim variable

Parameters baseline values [ranges]

s Rate of supply of CD4+ T cell from precursors 15 μl−1 day−1 [21]

d Death rate of uninfected CD4+ T cells 0.02 day−1 [21]

k(k̄) Infection rate per virion 2.1818 × 10−7 μl−1 day−1(lk) [21]

δ Death rate of infected CD4+ T cells 0.35 day−1[0.2 0.6] [21]

λ(λ̄) Number of free virus produced by lysing a CD4+ T cell 3928.6 μl−1 day−1(lλ) [21]

c Death or clearance rate of free virus 2.4 day−1 [1.5 3.5] [21]

βk(β̄k) Scale parameter of Weibull function 1500(225) [50-2000] see text

βλ(β̄λ) Scale parameter of Weibull function 200(200) [10-500] see text

αk(ᾱk) Shape parameter of Weibull function 1.1(1.1) [0.2-2] see text

αλ(ᾱλ) Shape parameter of Weibull function 0.04(0.04) [0.005-0.2] see text

Tm LE since infection without therapy 11 [5,16]×365 days [34]

η(η̄) Drug efficacy of combination therapy 0.95 [0.5 1] (qη) [21]

τ50(τ̄50) Drug sensitivity of combination therapy 30 [20, 100]×365 days (pτ50) see text

τm Maximum LE after infection (Td − Ts)days –

Td Time of natural death 74×365 days [37]

Ts Time to initiate treatment after infection Determined by BCD4 –

Tr Time of emergence of drug resistant virus Random variable in [ Ts , Te] –

Te LE after infection with treatment In [ Tm , Td] –

T1000 Time to virological failure Determined by viral loads –

BCD4 Baseline CD4 counts to initiate the treatment 350 [100-450]cells/μl –

da Drug adherence rate 90% [50-100%] –

where l, p, q are modification factors related to corresponding parameters with l = 0.935, p = 3, q = 1 as baseline values. And
k̄ = lk, λ̄ = lλ, τ̄50 = pτ50, η̄ = qη. Note that over bar represents the same parameter but with values corresponding to with ART
and/or drug resistance
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within-host behave like the ‘bathtub curve’, which shows three stages over the life time
and hence is very well depicted by the proposed mixed Weibull function.
Once ART is initiated for a patient, the disease progression will be changed with altered

life span. Let function τ(t) denote the treatment benefit, referred as to the TBI in what
follows. This function measures the integrated effects of ART on the patients’ survival so
that the location parameter in the Weibull function becomes Tm + τ(t) with the ART.
Therefore, the infection rate and the viral reproduction rate under ART become

k̄(t) = k̄
W

(
Tm + τ(t), β̄k , ᾱk

) , λ̄(t) = λ̄

W
(
Tm + τ(t), β̄λ, ᾱλ

) t < Te, (5)

where a parameter over-bar indicates the same parameter but now associated with ART,
and Te is the time when the patient under ART will die and this will be further explained
below. In what follows, we will write k̄ = lk and λ̄ = lλ for a positive constant l.
Following the formulation of the Emax model [16, 29, 30], we define TBI as the saturated

function that tracks the LE of the patient at any given time t:

τ(t) =
⎧
⎨

⎩

τmη(t−Ts)
τ50+η(t−Ts)

, Ts ≤ t < Tr ,
τmη̄(t−Ts)

τ̄50+η̄(t−Ts)
+ τTr , t ≥ Tr .

(6)

This function links the TBI to the drug efficacy (η), drug sensitivity (represented by τ50),
ART initiation time (Ts) which is determined by the baseline CD4 T cell counts, time
of emergence of drug-resistant virus variants (Tr) and drug adherence (DA). We refer to
Fig. 1 for various times in the entire disease progression with and without ART, where Tb
is the time of birth, Ti is the time of infection with HIV, T1000 is the time of virological
failure after the initiation of ART, Te is the death time of the HIV infected individual with
ART and Td is the time of natural death of humans given no HIV infection.
Here and in what follows, τm denotes the maximum LE since ART initiating, which can

be as long as the natural LE of an uninfected individual. τ50 is the duration of treatment

Fig. 1 Critical points from time of infection to death. Here we set the time of infection for each patient as
zero, Te − Tm represents the prolonged LE due to ART, T1000 − Ts shows the duration of viral suppression
during which the viral load is maintained below 1000 copies/μl under the first line ART regimens



Xiao et al. Theoretical Biology andMedical Modelling  (2017) 14:1 Page 5 of 20

that induces an effect equivalent to 50% of the maximal LE, quantifying agent-specific
drug susceptibility. The constant τTr in (6) is chosen so that the function τ(t) is continuous
at Tr , i.e.

τTr = τm

[
η(Tr − Ts)

τ50 + η(Tr − Ts)
− η̄(Tr − Ts)

τ̄50 + η̄(Tr − Ts)

]

. (7)

Recall that η̄ and τ̄50 denote the reduced drug efficacy and drug sensitivity due to emer-
gence of drug resistant variants, we have τ50 < τ̄50 and η > η̄. Therefore, if we write
τ̄50 = pτ50 and η̄ = qη, then p ≥ 1 and q ≤ 1. We will address the issue of DA and its
impact on TBI in the following.

Determination of LE with ART It follows that both the infection rate k̄(t) and the
viral production rate λ̄(t) become infinity at time t when the following life termination
equation is satisfied:

Tm + τ(t) − t = 0, Tm < t < τm + Tm. (8)

The smallest root of the above equation is denoted by Te. Note that from the point view
of mathematics the LE of a patient is supposed to be associated with the infinite increases
of viral loads and consequently the infinity of the viral production rate. Then the smallest
root of equation (8) gives the LE with ART. To calculate this smallest root, we consider
the following two cases:

Tm + τmη(t − Ts)

τ50 + η(t − Ts)
− t = 0, Tm < t ≤ Tr (9)

or

Tm + τmη̄(t − Ts)

τ̄50 + η̄(t − Ts)
+ τTr − t = 0, Tr < t < Td. (10)

Denote

B1 = (Tmη + τmη − τ50 + Tsη), B2 = (Tmτ50 − TmTsη − τmTsη),
B̄1 = (T̄mη̄ + τmη̄ − τ̄50 + Tsη̄), B̄2 = (T̄mτ̄50 − T̄mTsη̄ − τmTsη̄),
T̄m = Tm + τTr .

(11)

Thus, solving the Eqs. (9) and (10) yields four roots

t12 =
B1 ±

√

B2
1 + 4ηB2

2η
, t̄12 =

B̄1 ±
√

B̄2
1 + 4η̄B̄2

2η̄
. (12)

The smallest one of real roots t12 and t̄12, lying in the interval [Tm,Td], is what we want
to find, and denoted by Te. Then Te − Tm gives the prolonged LE due to ART, indicates
the integrated treatment benefits. Based on the feasibility of four roots we can provide the
formula of Te and one of the possible cases is discussed in the following. Note that here
Td is set to be equivalent to or greater than the Te. Due to the fact the extension of the life
by ART has been increasing, we then assume that the LE of patients with ART can be as
long as the average LE of individuals without infection.
Let B2 ≥ 0 and B̄2 ≥ 0, then we have � > 0 and �̄ > 0, where � = B2

1 + 4ηB2 and
�̄ = B̄2

1 + 4η̄B̄2, then two roots t1 and t̄1 are positive. And further, if these two roots are
in their intervals, respectively, then Te can be defined as

Te = min{t1, t̄1} = min
{
B1 + √�

2η
,
B̄1 +

√
�̄

2η̄

}

. (13)
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This formula shows how the drug efficacy (η or η̄), sensitivity (τ50 or τ̄50), time of
emergence of drug resistant virus (Tr) affect the prolonged LE, and consequently the dis-
ease progression. In particular, Te = (B1 + √�)/(2η) indicates that the drug efficacy
is quite poor and the patient dies before the emergence of drug-resistant virus; while
Te = (B̄1+

√
�̄)/(2η̄) indicates that drug-resistant variants emerge during ART when the

patient is alive.
Based on above definitions and analyses, we can see that the natural HIV disease

progression is defined in the interval [Ti,Tm], and ART prolongs the LE till Te. From
the mathematical point of view, we can simulate the model (1) with (3–4) in the inter-
val [Ti,Tm) or model (1) with (5) in the interval [Ti,Te) to produce the whole disease
progressions without or with ART.

Formulation of DA To describe the effects of DA on treatment benefit, we further
extend the TBI to include the adherence rate (da, the fraction of the prescribed doses
of the drug which are actually taken), and also to include various patterns of randomly
or regularly missed doses. Assuming that once patients take doses daily, which will con-
tribute to the function TBI, while the TBI keeps at a day for doses missing. LetDa be a set
of days when doses are missed, then we have

Da ⊂ Dτm = {t,Ts ≤ t ≤ Te} . (14)

Denote the time intervals T [i] =[ i, i + 1], with integer i ∈[Ts,Te]. The daily treatment
benefit functions are as follows.

τ
[Ts,Tr)
i (t) = τmη

(
t − h1i − Ts

)

τ50 + η
(
t − h1i − Ts

) , t ∈ T [i], Ts ≤ i < Tr and i /∈ Da, (15)

τ
[Tr ,Te]
i (t) = τmη̄

(
t − h2i − Ts

)

τ̄50 + η̄
(
t − h2i − Ts

) + τTr , t ∈ T [i], Tr ≤ i ≤ Te and i /∈ Da, (16)

where h1i and h2i represent the accumulative number of days before i + 1 days, when
drug doses are missed during treatment intervals [Ts,Tr) and [Tr ,Te], respectively. Let
τ
c1
i+1 = τ

[Ts,Tr)
i (i+1) or τ

c2
i+1 = τ

[Tr ,Te]
i (i+1), so if the dose is missed at the first treatment

day (i.e. Ts), then we have τ
c1
Ts

= 0.
Based on the above notations we can define TBI (τ(t)) at i-th interval T [i] with any

pattern of drug adherence as following:

τ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ
c1
i , i ∈ Da, t ∈ T [i] and Ts ≤ i < Tr ,

τ
[Ts,Tr)
i , i ∈ Dτm\Da, t ∈ T [i] and Ts ≤ i < Tr ,

τ
c2
i , i ∈ Da, t ∈ T [i] and Tr ≤ i ≤ Te,

τ
[Tr ,Te]
i , i ∈ Dτm\Da, t ∈ T [i] and Tr ≤ i ≤ Te.

(17)

The data We consider a longitudinal cohort study that recruited 464 HIV infected indi-
viduals from Aihui, Hubei and Yunnan provinces from November 2003 and the cohort
has been followed until now. The ART information and clinical/lab biomarker data were
collected, including viral loads every 6 months and CD4 T cell counts every 3 months.
Due to the cost, viral loads for majority of patients were not tested for each follow-up, and
hence data on viral loads are missing. We analyzed the data anonymously.
In the cohort, few patients were tested at the ART starting point, and most of patients

have their first data points after a period of ART. Among these subjects, the CD4
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T cell counts for 94 patients were less than 350 cells/μl during the ART, shown in
Fig. 2. There are 149 patients whose CD4 T cell counts rebounded within interval
[350, 550], 119 patients whose CD4 T cell counts rebounded within interval [550, 750],
and 102 patients whose CD4 T cell counts rebounded above 750. Therefore, in order
to parametrize our model from the data, to reconstruct individual patient’s disease
progressions and TBI, we focused in this study on those patients for which we have
sufficient data about their CD4 T cell counts and viral loads. As a result, 15 patients
(listed as patient’s numbers between 1 to 15) are selected in our study, and we divide
them into three groups: (G1). Four death cases (named as patients 1–4) whose CD4
counts and viral loads were tested only after a period of treatment; (G2). Three cases
(patients 5–7) with ongoing first-line ART whose CD4 T cell counts and viral loads
were tested at the beginning ART; (G3). Eight cases (patients 8–15) with ongoing
first-line ART whose CD4 T cell counts and viral loads were tested after a period of
treatment.

The simulation method By using the least square method and fitting the proposed
model to the data together with information on first data point and/or the date of
death for the death cases we estimate some model parameters which are associated with
Weibull function (shape, scale and location parameters), drug sensitivity and efficacy,
ART initiation time, time of emergence of drug-resistant variants and LE. Other model
parameters such as the rate of supply of CD4+ T cell from precursors s, death rate of
uninfected CD4+ T cells d, the baseline infection rate per virion k and etc are cho-
sen from literature and listed in Table 1. Numerical simulations for the proposed model
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Fig. 2 CD4 T cell counts and viral loads for 94 patients whose recorded CD4 cell counts were less than 350
cells/μl. a and b denote the CD4 T cell counts and viral loads, respectively
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are carried out using Matlab 8, for the duration from infection (Ti) to death (Tm or Te
with ART).

Results
Mimicking the entire HIV disease progression

By linking the three-parameter Weibull functions to temporal variations of infection rate
and viral production rate, we obtain a non-autonomous system for the viral dynamics dur-
ing the entire disease progression within a host. Our goal is to use this non-autonomous
system to examine the comprehensive effect of ART on LE including the virological fail-
ure. Using the Weibull function for the temporal variation of the infection rate (k(t)) and
viral production rate (λ(t)) in a classic HIV viral dynamics model, we are able to produce
the viral dynamics in the entire disease progression shown in Fig. 3, faithfully capturing
the observed patterns (see, for example, [31]) in the early weeks of infection, during the
latency and the progression to AIDS.
The Weibull function, for either infection rate or viral production rate, involves three

parameters: shape, scale and location parameters. Our simulations show that each of
these parameters has impact on the overall patterns of disease progression. The scale
parameter (β) governs how severe the infection is or what quasi-stationary values of the
viral loads are during the latency stage (see, Fig. 4a, c); the shape parameter (α) deter-
mines how fast/slow of progression to AIDS during the late stage of disease progression,
as shown in Fig. 4b, d); and the location parameter (Tm) determines the survival time since
infection (Fig. 5). This shows that different patients may have different patterns of disease
progression even if they have the same life span Tm, and that the CD4 T cell counts and
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Fig. 3 A simulated typical course of HIV infection: CD4+ T cell counts and viral load. The baseline parameters
are listed in Table 1 and Tm = 11 years+12 weeks
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viral loads during the disease progression can be highly influenced by the values of shape
and scale parameters [6, 32, 33].

Treatment benefit and LE

We apply our model to examine the integrated effect of ART on the LE of a patient. The
maximum/optimal prolonged LE is given by the difference of the LE (Te) when the patient
is onART and the LE (Tm) when the patient is without ART, that is, τm = Te−Tm (see crit-
ical time points in Fig. 1). The actual prolonged LE defined as the Treatment Benefit Index
(TBI) at any given time t since the initiation of ART (Ts) is given by a saturated function
τ(t) (6). This index summarizes the integrated effect of ART on the LE of a patient, and
more importantly as will be shown in next section, this summative index can be recon-
structed from the individual clinic data. The actual LE of the patient is then determined
when the viral reproduction function reaches infinite, and this can be analytically calcu-
lated by finding the smallest root of a simple algebraic equation Tm + τ(t) − t = 0. As
the TBI tracks the prolonged LE during the ART, it is natural to observe (simulations not
reported here) that early initiation of ART delays disease progression and results in long
LE, and further simulations show that late emergence of drug resistant variants or strong
sensitivity leads to an increase in LE.
The viral dynamics model when the TBI is added to Tm in the Weibull functions

describes the disease progression during ART. This allows us to predict the virological
failure time, the time when viral loads respond to 1000 copies/μl since starting ART. This
model also allows us to examine how the baseline CD4 cell counts BCD4 (the CD4 cell
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Fig. 5 Simulations of HIV disease progressions with different life spans since infection. Tm = 6, 8, 10, 12, 14, 16
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Enlargement of initial incubation infection for CD4 T cell counts and viral loads

counts to initiate ART) impacts the prolonged LE and the duration of viral suppression
(T1000−Ts). Figure 6b, for example, shows that LE increases as the baseline CD4 cell count
increases. It is interesting to observe that T1000 is not sensitive to the baseline CD4 T cell
counts (Fig. 6c), for patients with the same Tm. On the other hand, Fig. 6d–e shows that
early initiation of ART can not only increase the prolonged LE, but also prolong the dura-
tion of viral suppression. In particular, if BCD4 = 350 copies/μl,Tm = 11 years and other
parameter values are fixed as Table 1, then an individual who started ART at Ts = 7.728
years after infection potentially has LE of Te = 15.2244 years (the prolonged LE is 4.2244
years) and the duration of viral suppression is about 2.5821 years. Our simulations also
illustrate that the prolonged LE or duration of viral suppression is insensitive to variation
in Tm (Fig. 6d–f), given the baseline CD4 T cell counts.
After drug-resistant virus variants emerge, the drug sensitivity and efficacy decline [34]

(with the reduction factors denoted by p and q in our study). Figure 7b–d shows that the
prolonged LE and the duration of viral suppression are shortened with declining drug
sensitivity. Figure 7f–h, on the other hand, shows that these durations are extended with
the late emergence of drug resistant virus variants (large Tr). In particular, for a patient
extremely (e.g. τ50 = 30) or normally(e.g. τ50 = 80) sensitive to drugs, the prolonged LE
and the duration of viral suppression increase by 1.4957 and 0.9842 or 0.4518 and 0.0012
years, respectively, with one year delay of drug resistance.
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Virological failure occurs when ART fails to suppress a patient’s viral loads to less than
1000 copies/μl, and a new treatment regimen may have to be chosen to better control
the infection. We further conducted simulations of disease progression, based on the
proposed models with piecewise TBI, to examine the second-line regime and its contri-
bution to LE. If the second-line regime has superior efficacy compared with the first-line
regime and patients are more sensitive to the second-line drugs than the first-line ones,
it could greatly prolong LE and durably suppress viral loads, as shown in Fig. 8. This is in
agreement with the finding that second-line ART in South Africa achieved durable viral
suppression in three-quarters of patients [24]. However, if the second-line drugs have the
relatively similar efficacy to the first-line ones, it barely suppresses viral reproduction but
still can prolong the LE. This indicates that the second-line drugs should bemore effective
than the first-line one in order to maximize the LE of a patient.

Effect of adherence on drug efficacy

Simulating our proposed model with function τ(t) defined (17) shows that the HIV dis-
ease progresses slowly with hight rate of adherence (not reported here). To show the
effects of different DA patterns on the HIV disease progression, we consider the following
two special patterns:

Case 1: Random pattern Suppose does missing is a random event due to uncertainty,
we randomly take the days from the interval [Ts,Te] with a proportion of 1 − da. We
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run the simulations with various DA rates and again obtain that the greater DA rate
the longer mean LE.
Case 2: Regular pattern Let w1 (w2) be the numbers of days of drug-on (drug-off),
then DA rate yields da = w1

w2+w1
. Therefore, we call the regular pattern as nw1 : nw2

pattern with n = 1, 2, 3, · · · , where n depicts the frequency of on-off pattern
switching with fixed adherence rate da.

A cohort study in China [34] has indicated that imperfect DA is an important factor
that reduces drug efficacy and sensitivity. Thus, in order to depict this point, we assume
the drug efficacy and sensitivity are functions of h2i , the dynamic accumulative days with
missed doses during treatment intervals [Ts,Te]. So we have the revised drug efficacy and
sensitivity as the following:

τDA50 (t)
(
τ̄DA50 (t)

)
= τ50r

h2i
1

(

τ̄50r
h2i
1

)

, ηDA(t)
(
η̄DA(t)

)
= ηrh

2
i

2

(

η̄rh
2
i

2

)

, t ∈ T [i], (18)

with r1 > 1 and close to 1, r2 < 1 and close to 1. Since no reliable information of how DA
influences on the time of emergence of resistant virus variants, we simply do not consider
the effects of DA on time of emergence of resistant strain here.
When the pattern of patient’s missed doses is regular, we can use the model to examine

the effect of frequency of drug on-off switching on LE. Figure 9 shows the distributions of
LE and correlation between duration of drug on (w1) and LE for various regular adherence
patterns at a given adherence rate of 90%. Figure 9a gives the distribution of 50 simulations
with various switching frequencies and Fig. 9b shows the positive correlation between
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LE (Te) and the duration of drug on. We conclude that a long duration of drug on (and
consequently a long duration of drug off due to the fixed DA rate) could yield slightly
longer LE by about 100 days. A repeat of the above with low drug efficacy and decreased
sensitivity due to imperfect adherence gives a short LE (shown in Fig. 9c, d).
In the case of randomly missed dose pattern, our simulations demonstrate that TBI

decreases and disease progresses faster with less DA rate. The simulated distributions of
LE again illustrate a comparative advantage of increasing adherence (not shown here). For
a given adherence 60% (or 90%), the mean LE is 16.6944 (or 23.2532) years with range of
271 (177) days. Similarly, lower drug efficacy and decreased sensitivity in such a scenario
give a shorter mean LE.
To examine how different DA rates and dose missing patterns with various switch-

ing frequencies influence LE and the time of virological failure, we plot variation in
LE with DA rates for different patterns. Figure 10a and b show that the LE and
prolonged LE are not sensitive to adherence patterns for a given DA rate. However,
timing of virological failure (T1000) and duration of viral suppression (T1000 − Ts)
show great variance for different adherence patterns, especially for 85 and 65%
adherence (shown in Fig. 10c–d). This implies that frequently switching drug on
and off is not beneficial to suppress viral replication, and hence results in slight
shorter LE.

A case study: reconstruction of TBI from the clinical data

Some model parameters are chosen from literature and other model parameters (such
as shape, scale and location parameters, drug sensitivity and efficacy, ART initiation
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time, time of emergence of drug-resistant variants, and LE) are estimated by fitting the
proposed model to the data together with information on first data point and/or the date
of death for the death cases. All estimated parameter values for 15 patients are listed in
the Tables 2 and 3, and the data fitting results for patient 8 to patient 11 are shown in
Fig. 11 (fitting results for other patients not reported here). In summary, we observed that
patients with adequate (high) CD4 response achieved relatively long prolonged LE (see
patients 8 and 10 in Fig. 11), patients with poor (low) CD4 response had relatively short
prolonged LE, while others whose CD4 counts barely responded to ART almost had no
prolonged LE.
The TBI can be reconstructed based on the estimated parameter values for all 15

patients, as shown in Fig. 12. This predicts the prolonged LE for each individual patient
on ongoing first-line regime. The turning point of each estimated TBI in Fig. 12 is the time
of emergence of drug-resistant virus variants, after which drug efficacy and sensitivity are
reduced. The TBI reported in Fig. 12a and estimated parameters for patient 3 show that
drug efficacy(η = 0.605) and sensitivity (τ50 = 383.85) are both low, and this resulted in a
small and slow increase of TBI over time and very insignificant increase in the prolonged
LE (Te − Tm = 20.96 days). Other data fits (not reported here) further confirms that the
first-line ART for patient 3 barely delayed the disease progression. For the patient 4 with
the first recorded CD4 counts of 40 cells/μl , we constructed the TBI (Fig. 12a) and cal-
culated the prolonged LE to be 299 days (Te −Tm = 299.46). Patient 2 had the longest LE
on the first-line ART among the four death cases, which was associated with late emer-
gence of drug-resistant virus variants and great drug efficacy and sensitivity. The TBI for
patient 8 increased with the fastest speed and latest time of emergence of drug resistant
variants (Fig. 12c). Figure 11 confirms that the disease progression of this patient was sig-
nificantly delayed during ongoing first-line ART. The predicted prolonged LE for patient 8
under first-line regimen is around 11.34 years (Te−Tm = 4140.4 days). The TBI shown in

Table 2 Estimated parameter values for patients 1–7

Par. P1 P2 P3 P4 P5 P6 P7

βλ 117.95 107.65 152.83 136.51 109.63 109.92 116.75

βk 1542.68 1614.66 1873.36 1270.91 1476.14 1471.95 1606.20

αλ 0.32 0.13 0.44 0.31 0.08 0.08 0.04

αk 0.56 0.99 0.84 1.08 1.11 1.11 1.07

Tm 4014 3946.7 4571.1 3739.2 3995 4002.1 4019.7

η 0.78 0.71 0.60 0.78 0.89 0.78 0.96

τ50 117.89 39.34 383.85 30.23 52.64 55.92 31.76

τm 15915 18055 4496 7574 17382 17277 20596

q 0.84 0.77 0.89 0.75 0.78 0.64 0.65

p 3.72 8.13 1.23 13.96 1.89 2.19 3.14

β̄k 73.35 1614.7 1869.7 12.70 1294.6 931.08 217.12

ᾱk 0.56 0.99 0.84 0.80 1.10 1.11 1.07

l 0.80 0.99 0.99 0.86 0.80 0.99 0.90

Ts 2983.6 3681 3290.4 3358.7 3719.5 3521 3839.7

Tr 3796.47 5070.56 3812.76 3929.77 5544.5 4424.67 4232.49

Te 4279.6 5116 4592.1 4038.7 4909 4615.4 6706.3

Td 18899.09 21736.01 7786.16 10932.50 21101.71 20798.12 24436.16

BCD4 200 100 200 50 – – –

where Par. represents parameter, and Pi denote Patient i
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Table 3 Estimated parameter values for patients 8-15

Par. P8 P9 P10 P11 P12 P13 P14 P15

βλ 108.12 109.99 127.17 107.15 174.51 112.38 139.62 113.85

βk 1619.24 1444.27 1170.06 1626.31 1586.35 1490.67 1660.41 1576.88

αλ 0.03 0.13 0.22 0.04 0.13 0.06 0.05 0.08

αk 1.18 1.10 0.93 1.09 1.23 1.09 1.17 1.18

Tm 3128.4 4026.7 3701.9 3118.1 3254.5 3952.6 4300.6 3220.4

η 0.99 0.87 0.95 0.94 0.96 0.93 0.93 0.95

τ50 30 30.09 30.71 53.27 30.22 55.79 39.33 65.58

τm 21897 18753 21340 20003 21530 17541 21454 20267

q 0.55 0.65 0.88 0.58 0.90 0.76 0.53 0.57

p 4.65 4.98 3.25 2.61 3.30 2.11 3.04 2.18

β̄k 746.11 619.94 961.22 189.82 1164.1 1321.1 814 772.8

ᾱk 1.18 1.09 0.87 1.09 1.13 0.93 0.66 1.11

l 0.92 0.86 0.84 0.92 0.83 0.93 0.81 0.93

Ts 2441.4 3498.6 3445.7 2472.7 2599.4 3002 3215.7 2569

Tr 4526.31 5048.56 4863.17 2872.21 3906.73 4790.24 4418.25 4498.8

Te 7268.8 6339.7 6938.3 5054.7 6722.5 5473 6294.4 4708.4

Td 24338.38 22251.46 24785.25 22476.19 24129.89 20542.58 24669.66 22835.56

BCD4 200 200 150 – 200 300 300 200

where Par. represents parameter, and Pi denote Patient i
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Fig. 12 also reveals low efficacy of the first-line treatment for patients 1, 3, 4, 5, and 6. This
further highlights the importance of early diagnosis of HIV infection and more effective
ART regimens including second-line regimens should be considered for this cohort.

Discussions
It is known that HIV infection typically results in a vast replication of virus during the
acute phase. The viral load then becomes much lower and approaches a quasi-steady
state, and finally increases significantly after the development of AIDS [6, 35]. The viral
loads change overtime and behave as the ‘bathtub curve’, which shows three stages over
the life time and hence is very well depicted by the proposed mixedWeibull function [23]
for the temporal variability of infection rate and viral reporduction rate. Despite intensive
and promising progress in HIV/AIDS viral dynamics modeling, it remains a challenge to
provide approximation of the entire HIV disease progression dynamics. Here, by linking
the viral reproduction rate and infection rate to the Weibull function with biologically
interpretable shape, location and scale parameters, we showed that the viral dynam-
ics model can describe a typical disease progression including acute infection, chronic
latency and AIDS stage. In particular, when life expectancy is assumed to be infinity, the
three-parameter Weibull function becomes unity and our proposed model reduces to the
classic model of HIV dynamics [8, 19, 21].
We have also shown that our model can be used to predict the LE of an HIV infected

individual and the time of virological failure. The accurate description of the entire HIV
disease progression makes it possible to use this model to predict the transmission proba-
bility at different stages based on viral loads, and this is important when we consider new
infections generated by a particular infected individual. Our model can also be used to
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determine the timing of infection for an infected individual based on individual param-
eters, monitored data on CD4 cell counts and viral loads, which is difficult to get. This
estimation of the infection time for each infected individuals provides vital information
on estimating new infections at the population level. In addition, the knowledge about the
timing of infection for HIV-infected individuals in various communities enables effective
contact tracing and facilitates treatment resource allocation.
Simulating the proposed model shows early initiation of ART can result in long LE

(great Te) and prolonged LE (Te − Tm), in agreement with those in previous studies
[26]. Since the waiting time for the emergence of resistant genomes is substantial [36]
and is incorporated in our introduced TBI, we developed a continuous (rather than an
impulsive model) model of HIV dynamics with switching to describe differences of drug
efficacy and sensitivity after emergence of drug resistant virus variants. Our results show
that later emergence of drug resistant virus variants leads to longer (prolonged) LE and
more persistent viral suppression. The estimated piecewise TBIs are increasing functions
with treatment duration, with a great/low slop before/after the emergence of drug resis-
tant virus variants. Therefore, we could estimate the time of emergence of drug-resistant
variants for an infected individual, whichmay provide information on the time for switch-
ing to the second-line regimen without resistance testing. It is known that individualized
therapy is hampered by limited availability of viral load and resistance testing, making it
difficult to determine whether the remaining antiviral potency of previously used drugs
outweighs their toxicity [27]. Hence, our estimation makes individualized therapy more
feasible and cost-effective.

Conclusions
The proposed novel modeling approach led us naturally to the introduction of the
treatment benefit index (TBI) to summarize the integrated effect of ART in terms of
prolonged LE. Moreover, this TBI can be reconstructed from clinical data with predict-
ing the time of virological failure. Our model can be used to determine the timing of
infection for an infected individual based on individual parameters, monitored data on
CD4 cell counts and viral loads. Main results show that combining model predictions
with monitored CD4 counts and viral loads can provide critical information about the
disease progression, to assist the design of ART regimen for maximizing the treatment
benefits.
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