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Abstract

Background: Herpes Simplex Virus Type 2 (HSV-2) is one of the most common
sexually transmitted diseases. Although there is still no licensed vaccine for HSV-2, a
theoretical investigation of the potential effects of a vaccine is considered important
and has recently been conducted by several researchers. Although compartmental
mathematical models were considered for each special case in the previous studies, as
yet there are few global stability results.

Results: In this paper, we formulate a multi-group SVIRI epidemic model for HSV-2,
which enables us to consider the effects of vaccination, of waning vaccine immunity,
and of infection relapse. Since the number of groups is arbitrary, our model can be
applied to various structures such as risk, sex, and age group structures. For our model,
we define the basic reproduction number �0 and prove that if �0 ≤ 1, then the
disease-free equilibrium is globally asymptotically stable, whereas if �0 > 1, then the
endemic equilibrium is so. Based on this global stability result, we estimate �0 for
HSV-2 by applying our model to the risk group structure and using US data from 2001
to 2014. Through sensitivity analysis, we find that �0 is approximately in the range of
2-3. Moreover, using the estimated parameters, we discuss the optimal vaccination
strategy for the eradication of HSV-2.

Conclusions: Through discussion of the optimal vaccination strategy, we come to the
following conclusions. (1) Improving vaccine efficacy is more effective than increasing
the number of vaccines. (2) Although the transmission risk in female individuals is
higher than that in male individuals, distributing the available vaccines almost equally
between female and male individuals is more effective than concentrating them within
the female population.

Keywords: Multi-group SVIRI epidemic model, Relapse, Basic reproduction number,
Global asymptotic stability, Herpes Simplex Virus Type 2, Vaccination

Background
Herpes Simplex Virus Type 2 (HSV-2) is one of the most common sexually trans-
mitted diseases, and has infected about 417 million people aged 15-49 worldwide [1].
Although there is still no licensed vaccine for HSV-2, a theoretical investigation of
the potential effects of a vaccine is considered important and has recently been con-
ducted by several researchers (see [2–4]). In [2, 3], compartmental epidemic models
with vaccination for HSV-2 were considered and the effectiveness of the vaccina-
tion was discussed in connection with the basic reproduction number �0 (see [5])
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through numerical simulations. However, there was little discussion about the stability
of each equilibrium. As observed in several papers on epidemic models with vaccina-
tion (see, for instance, [6–8]), backward bifurcation can occur at �0 = 1 for some
special models and �0 < 1 does not necessarily imply the global asymptotic sta-
bility of the disease-free equilibrium, that is, the eradication of the disease. In that
case, the vaccination effort solely to make �0 < 1 has less significance. There-
fore, a global stability analysis is critical for theoretically justifying the epidemiological
discussion.
In [4], Lou et al. considered a compartmental epidemic model for HSV-2 with age

and risk group structures and discussed the effectiveness of the vaccination together
with the global stability analysis of each equilibrium. In their study, the vaccination
was limited to female individuals, who are known to be the high-risk group for HSV-
2, and it was concluded that such a vaccination strategy can reduce the total infections
in both females and males. However, to support their conclusion, we need to consider
a more general model in which male individuals can also benefit from the vaccina-
tion and show that the optimal distribution ratio of the vaccines is 1 to 0 for female
and male individuals. In this paper, we consider such a general model and investi-
gate the optimal distribution ratio of the vaccines. As opposed to their conclusion,
our result shows that distributing the vaccines almost equally to females and males is
more effective for the eradication of HSV-2 than concentrating them within the female
population.
To consider the effect of vaccination with imperfect immunity, SVIR epidemic models

are often formulated, in which the total population is subdivided into the suscepti-
ble (S), vaccinated (V ), infective (I) and recovered (R) populations (see, for instance,
[2, 6–10]). However, to take into account the relapse of HSV-2 (see [2, 11]), it is
necessary to also consider a direct transition from R to I. Thus, in this paper, we
formulate a multi-group SVIRI epidemic model for HSV-2, which enables us to con-
sider the effects of vaccination, of waning vaccine immunity, and of infection relapse.
Since the number of groups is arbitrary, our model can be applied to various struc-
tures such as risk, sex, and age group structures. In the empirical portion of this
paper, we apply our model to the risk group structure and estimate the basic reproduc-
tion number �0 for HSV-2 by using data from the US from 2001 to 2014. Since the
infective population of HSV-2 seems to be in endemic equilibrium, the estimation of
�0 must be carried out under the global asymptotic stability of the endemic equilib-
rium. However, in general, the global asymptotic stability of the endemic equilibrium is
not trivial.
Recently, multi-group epidemic models have been studied by many authors

[10, 12–24]. One of the most effective approaches for global stability analysis of multi-
group epidemic models is the graph-theoretic approach developed by Guo et al. [14].
Since our model has a quite complex form with the paths from V to S (the wan-
ing of vaccine-induced immunity), R to I (relapse) and distributed time delay, the
global asymptotic stability analysis is challenging. In this paper, by applying the graph-
theoretic approach as in [14] together with an approach of max function as in [10], we
prove that if �0 > 1, then the endemic equilibrium is globally asymptotically stable,
whereas if �0 ≤ 1, then the disease-free equilibrium is so. Based on this theoretical
result, we estimate �0 for HSV-2 by using US data from 2001 to 2014. By using the
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estimated parameters, we discuss the optimal vaccination strategy for the eradication
of HSV-2.

Methods
The general multi-group SVIRI epidemic model

Let n ∈ N be the number of groups and let N := {1, 2, · · · , n}. Let Ni(t) be the
sexually active population in group i ∈ N at time t. Let us divide Ni(t) into four sub-
populations: susceptible Si(t), vaccinated Vi(t), infective Ii(t), and recovered Ri(t). Thus,
Ni(t) = Si(t) + Vi(t) + Ii(t) + Ri(t) for all i ∈ N . We make the following assumptions:

(A1) The number of individuals becoming sexually active in group i ∈ N per unit time
is bi > 0.

(A2) The per capita rate of removal from the sexual activity in group i ∈ N is μi > 0.
(A3) The coefficient for disease transmission from infective individuals in group j ∈ N

to uninfected (susceptible or vaccinated) individuals in group i ∈ N is βij ≥ 0. The
matrix (βij)i,j∈N is irreducible. The vaccine efficacy in group i ∈ N is σi ∈ [0, 1]
and the force of infection to vaccinated individuals in group i ∈ N is weakened by
multiplying σi. That is,

λSi (t) :=
n∑

j=1
βij

Ij(t)
Nj(t)

and λVi (t) :=σi

n∑

j=1
βij

Ij(t)
Nj(t)

, i ∈ N

are the forces of infection to susceptible and vaccinated individuals in group i ∈ N
at time t ≥ 0, respectively. Here we assume standard incidence.

(A4) The per capita vaccination rate for susceptible individuals in group i ∈ N is vi >

0. The per capita rate for the waning of vaccine-induced immunity for vaccinated
individuals in group i ∈ N is ωi ≥ 0.

(A5) The per capita recovery rate of infective individuals in group i ∈ N is γi > 0.
(A6) The survival probability for recovered individuals in group i ∈ N , who spent time t

in the recovered class, is Pi(t) := exp(− ∫ t
0 δi(η)dη), where δi(η) denotes the relapse

risk for individuals who spent time η in the recovered class in group i. For each
i ∈ N , δi ∈ L1loc,+(0,+∞) and

∫ +∞
0 δi(η)dη = +∞.

Under assumptions (A1)-(A2), we see that the time variation of Ni(t), i ∈ N is governed
by the following differential equation:

N ′
i (t) = bi − μiNi(t), i ∈ N . (1)

From the variation of constants formula, we easily see that limt→+∞ Ni(t) = bi/μi =:
N∗
i , i ∈ N . Hence, without loss of generality, we can assume that Ni(t) ≡ N∗

i , i ∈ N .
Then, under assumptions (A1)-(A4), we obtain the differential equations for Si(t) and
Vi(t), i ∈ N as follows:

S′
i(t) =bi − Si(t)

n∑

j=1
βij

Ij(t)
N∗
j

− (μi + vi) Si(t) + ωiVi(t), (2)

V ′
i (t) =viSi(t) − σiVi(t)

n∑

j=1
βij

Ij(t)
N∗
j

− (μi + ωi)Vi(t). (3)
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Under assumptions (A5)-(A6), the recovered population in group i ∈ N at time t is given by

Ri(t) =
∫ +∞

0
γiIi(t − ξ)e−μiξ e−

∫ ξ
0 δi(η)dηdξ

=
∫ t

−∞
γiIi(ξ)e−μi(t−ξ)e−

∫ t−ξ
0 δi(η)dηdξ , i ∈ N . (4)

By differentiating (4), we obtain the following integro-differential equation for Ri(t), i ∈ N .

R′
i(t) =γiIi(t) − μiRi(t) −

∫ t

−∞
δi(t − ξ)γiIi(ξ)e−μi(t−ξ)e−

∫ t−ξ
0 δi(η)dηdξ

=γiIi(t) − μiRi(t) −
∫ +∞

0
δi(ξ)γiIi(t − ξ)e−μiξ e−

∫ ξ
0 δi(η)dηdξ . (5)

From (1)-(5) we obtain the integro-differential equation for Ii(t), i ∈ N as follows.

I ′i(t) = (Si(t) + σiVi(t))
n∑

j=1
βij

Ij(t)
N∗
j

− (μi + γi)Ii(t)

+
∫ +∞

0
δi(ξ)γiIi(t − ξ)e−μiξ e−

∫ ξ
0 δi(η)dηdξ .

Under this setting, we arrive at the following main model in this paper.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
i(t) = bi − Si(t)

n∑

j=1
βij

Ij(t)
N∗
j

− (μi + vi)Si(t) + ωiVi(t),

V ′
i (t) = viSi(t) − σiVi(t)

n∑

j=1
βij

Ij(t)
N∗
j

− (μi + ωi)Vi(t),

I ′i(t) = (Si(t) + σiVi(t))
n∑

j=1
βij

Ij(t)
N∗
j

− (μi + γi)Ii(t)

+
∫ +∞

0
δi(ξ)γiIi(t − ξ)e−μiξ e−

∫ ξ
0 δi(η)dηdξ , i ∈ N .

(6)

Note that the differential equation of Ri(t), i ∈ N can be omitted since it does not appear
in the above three equations.
The equilibria of system (6) can be obtained as the solution of the following algebraic

equations.
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 = bi − Si
n∑

j=1
βij

Ij
N∗
j

− (μi + vi)Si + ωiVi,

0 = viSi − σiVi
n∑

j=1
βij

Ij
N∗
j

− (μi + ωi)Vi,

0 = (Si + σiVi)
n∑

j=1
βij

Ij
N∗
j

− (μi + γi − Qi)Ii, i ∈ N ,

(7)

where

Qi :=
∫ +∞

0
δi(ξ)γie−μiξ e−

∫ ξ
0 δi(η)dηdξ , i ∈ N .

Note that

Qi <γi

∫ +∞

0
δi(ξ)e−

∫ ξ
0 δi(η)dηdξ = γi

[
−e−

∫ ζ
0 δi(η)dη

]+∞
0

= γi, i ∈ N .

Hence, we have μi + γi − Qi > 0 for all i ∈ N .
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It is easy to see that the trivial solution of (7) such that Ii = 0 for all i ∈ N always
exists. It is called the disease-free equilibrium of system (6) and we write it as E0 :=(
S01,V

0
1 , 0, S

0
2,V

0
2 , 0, · · · , S0n,V 0

n , 0
) ∈ R

3n+ , where

S0i := bi
μi

μi + ωi
μi + vi + ωi

, V 0
i := vi

μi + ωi
S0i = bi

μi

vi
μi + vi + ωi

, i ∈ N .

Existence of the endemic equilibrium E∗ := (
S∗
1,V ∗

1 , I∗1 , · · · , S∗
n,V ∗

n , I∗n
) ∈ R

3n+ such that
I∗i > 0 for all i ∈ N will be discussed in connection with the basic reproduction number
�0, which is defined as the expected number of secondary cases produced by a typical
infected individual during its entire period of infectiousness at the initial invasion phase
into a fully susceptible population, and given by the spectral radius of the next generation
matrix (see [25]). Let

F :=

⎛

⎜⎜⎝

(
S01 + σ1v01

) β11
N∗
1

· · · (
S01 + σ1v01

) β1n
N∗
n

...
. . .

...(
S0n + σnv0n

) βn1
N∗
1

· · · (
S0n + σnv0n

) βnn
N∗
n

⎞

⎟⎟⎠ and V := diag
1≤i≤n

(μi + γi − Qi) .

Then, according to [25], the next generation matrix is given by

K := FV−1 =

⎛

⎜⎜⎜⎝

(
S01+σ1V 0

1
)
β11

(μ1+γ1−Q1)N∗
1

· · ·
(
S01+σ1V 0

1
)
β1n

(μn+γn−Qn)N∗
n

...
. . .

...
(S0n+σnV 0

n )βn1
(μ1+γ1−Q1)N∗

1
· · · (S0n+σnV 0

n )βnn
(μn+γn−Qn)N∗

n

⎞

⎟⎟⎟⎠ .

Hence, the basic reproduction number �0 is defined by

�0 := ρ(K), (8)

where ρ(·) denotes the spectral radius of a matrix. We will obtain the global stability
results for (6) in connection with �0 (see the “Results” section).

The special multi-group SVIRI epidemic model for HSV-2

The general model (6) can be applied to analyze the field data of HSV-2 epidemics. Sim-
ilar to other sexually transmitted infections, the risk factor for HSV-2 infection is sexual
behavior. To describe the heterogeneity of HSV-2 infection risk between host individu-
als, we characterize the group as the combination of sex and their sexual behavior. We
consider the following levels of sexual activity: x = 0, 1, 2, · · · , 5 meaning the number of
sexual partners within the last 12 months, where x = 5 implies the number of sexual part-
ners is 5 ormore. Let y ∈ {1, 2} denote the sex, 1 denotes male and 2 denotes female. Then,
the risk group is characterized by i ∈ {1, 2, · · · , 12} in the following way: i = 2xi + yi,
where

(xi, yi) =
{

(m − 1, 1) if i = 2m − 1,
(m − 1, 2) if i = 2m,

m = 1, 2, · · · , 6.

For example, i = 2 corresponds to (xi, yi) = (0, 2) and implies the group of female indi-
viduals with no sexual partners and i = 11 corresponds to (xi, yi) = (5, 1) and implies
the group of male individuals with 5 or more sexual partners. Then, (6) can be written as
follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
i(t) = bi − Si(t)

12∑

j=1
βij

Ij(t)
N∗
j

− (μi + vi)Si(t) + ωiVi(t),

V ′
i (t) = viSi(t) − σiVi(t)

12∑

j=1
βij

Ij(t)
N∗
j

− (μi + ωi)Vi(t),

I ′i(t) = (Si(t) + σiVi(t))
12∑

j=1
βij

Ij(t)
N∗
j

− (μi + γi)Ii(t)

+
∫ +∞

0
δi(ξ)γiIi(t − ξ)e−μiξ e−

∫ ξ
0 δi(η)dηdξ ,

i ∈ {1, 2, · · · , 12}.

(9)

Note that (9) is a special case of (6). In this section, we assume that δi(ξ) ≡ δi > 0 for all
i ∈ {1, 2, · · · , 12}. Note that the assumption (A6) is satisfied. In this case, we have:

∫ +∞

0
δi(ξ)γiIi(t − ξ)e−μiξ e−

∫ ξ
0 δi(η)dηdξ =δi

∫ +∞

0
γiIi(t − ξ)e−μiξ e−δiξdξ

=δiRi(t), i ∈ {1, 2, · · · , 12}.

Hence, together with the Eq. 5 of Ri(t), (9) can be simplified to the following multi-group
SVIRI epidemic model.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
i(t) = bi − Si(t)

12∑

j=1
βij

Ij(t)
N∗
j

− (μi + vi)Si(t) + ωiVi(t),

V ′
i (t) = viSi(t) − σiVi(t)

12∑

j=1
βij

Ij(t)
N∗
j

− (μi + ωi)Vi(t),

I ′i(t) = (Si(t) + σiVi(t))
12∑

j=1
βij

Ij(t)
N∗
j

− (μi + γi)Ii(t) + δiRi(t),

R′
i(t) = γiIi(t) − (μi + δi)Ri(t), i ∈ {1, 2, · · · , 12}.

(10)

No vaccine against HSV-2 infection is currently available, so we ignore the vaccinated
class Vi, i ∈ {1, 2, · · · , 12} in the estimation of �0. Then, (10) can be rewritten as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
i(t) = bi − Si(t)

12∑

j=1

βij

N∗
j
Ij(t) − μiSi(t),

I ′i(t) = Si(t)
12∑

j=1

βij

N∗
j
Ij(t) − (μi + γi)Ii(t) + δiRi(t),

R′
i(t) = γiIi(t) − (μi + δi)Ri(t), i ∈ {1, 2, · · · , 12}.

(11)

The basic reproduction number �0 for (11) is obtained as the spectral radius of the
following matrix.

⎛

⎜⎜⎜⎝

S01
μ1+γ1−Q1

β1,1
N∗
1

· · · S01
μ12+γ12−Q12

β1,12
N∗
12

...
. . .

...
S012

μ1+γ1−Q1
β12,1
N∗
1

· · · S012
μ12+γ12−Q12

β12,12
N∗
12

⎞

⎟⎟⎟⎠ ,
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where Qi = δiγi/(μi + δi) and we write βij as βi,j for improved readability.
Transmission rates between the risk groups i and j, βij, depend on sexual behavior and

sex. We modeled βij as follows;

βij = ρxiyiρxjyjRxixjSyiyj . (12)

The meaning of each symbol for βij is as follows.

• ρxiyi denotes the HSV-2 infection risk for the risk group i. The risk group is stratified
by sex and the number of partners within the last 12 months, the risk group i denotes
the individuals whose number of partners within the last 12 months is xi and sex is yi.
ρxiyi is given by;

ρxiyi = cyi(xi + 1)φ .

Here, similar to previous modelling studies of sexually transmitted infections, we
modeled the relationship between infection risk and sexual behavior by a power law
function [26].

• c denotes the sex specific HSV-2 transmission coefficient.
• φ denotes the exponent parameter describing the heterogeneity of the infection risk

between different sexual behaviors.
• R denotes the mixing matrix between the risk groups defined by sexual behavior, x;

Rxixj = qδxixj + (1 − q)
∑

y ρxyNxy∑
x
∑

y ρxyNxy
.

This is the classical one-parameter ‘preferred mixing’ formulation, proposed by [27].
• δ denotes Kronecker’s delta.
• q denotes assortative coefficient. When q = 0, the mixing between risk groups

defined by sexual behavior is ‘proportionately mixing’, and the mixing is ‘fully
assortative mixing’ when q = 1.

• S denotes the mixing matrix between sexes;

S =
(

a 1 − a
1 − a a

)
.

• a denotes the proportion of homosexual behavior.

We will use the special model (11) with transmission rate (12) to estimate the basic
reproduction number �0 for HSV-2 (see the “Results” section), and (10) with (12) to
discuss the effectiveness of vaccination strategy (see the “Discussion” section).

Results
Themain theorem

The main theorem of this paper is obtained for the general multi-group SVIRI epidemic
model (6). Since (6) has an infinite time delay, we define the fading memory space (see,
for instance, [28, 29]) as follows:

C := {
φ ∈ C((−∞, 0] ;R+) : φ(s)es is uniformly continuous on(−∞, 0] ,

sup
s≤0

|φ(s)|es < +∞
}
, (13)
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where  is a positive constant such that 0 <  < mini∈N {μi}. Let us define the following
state space for system (6):

� :=
{(

ψ1,ψ2, · · · ,ψn, ψ̃1, ψ̃2, · · · , ψ̃n,φ1(·),φ2(·), · · · ,φn(·)
)

∈ R
2n+ × Cn

 :

0 < ψi < S0i , 0 < ψ̃i < V 0
i , φi(0) > 0,

0 < ψi + ψ̃i + φi(0) <
bi
μi

, i ∈ N
}
. (14)

The following proposition is proved:

Proposition 1 � is positively invariant for system (6).

The main theorem of this paper is as follows.

Theorem 1 Let �0 and � be defined by (8) and (14), respectively. Let �̄ denote the
closure of �.

(i) If �0 ≤ 1, then the disease-free equilibrium E0 ∈ �̄ of system (6) is globally
asymptotically stable in � and there exists no endemic equilibrium E∗ in �̄.

(ii) If �0 > 1, then the system (6) has the unique endemic equilibrium E∗ in � and it is
globally asymptotically stable in �.

For the proofs of Proposition 1 and Theorem 1, see the Appendix.
Theorem 1 still works for (10) since it is a special case of (6). In particular, although (10)

does not include the integrated time delay, to our knowledge, there is no previous study
on the global asymptotic stability of the endemic equilibrium of model (10). From this
viewpoint, our main theorem can be regarded as valuable for the empirical study in the
subsequent sections.

Estimation of�0 for HSV-2

Based on Theorem 1, we estimate the basic reproduction number �0 for HSV-2
in the US from 2001 to 2014. For the estimation of �0, we use the special model
(11) with transmission rate (12). Note that (11) corresponds to the case where vi =
σi = ωi = 0 for all i ∈ {1, 2, · · · , 12}. Although the case where vi = 0 for
all i ∈ {1, 2, · · · , 12} is excluded under assumption (A4), it is easy to check in a
completely similar way as in the Appendix that the global stability result similar to
Theorem 1 holds.
Previous study derived the value of δi and γi from empirical data, δi and γi are param-

eterized based on [30], 1/δi = 78.5 days and 1/γi = 13 days for all i ∈ {1, 2, · · · , 12}.
Here note that we can regard μi as the removal rate from our system, which is given
by the sum of the sexual-inactivation rate and the mortality rate among those who
are sexually active. We assume that the sexual life span is 50 years (15-65 years old)
and parameterize the mortality rate by the national representative census data in the
US [31], μi = 0.0231 per year for all i ∈ {1, 2, · · · , 12}. Based on the previous stud-
ies [32] and [33], we obtain the estimations q = 0.3 and a = 0.02, respectively
(see Table 1).
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Table 1 The model parameters and related estimates

Parameter Meaning Value Reference

δi (i = 1, 2, · · · , 12) Relapse risk 1/78.5 [30]

γi (i = 1, 2, · · · , 12) Recovery rate 1/13 [30]

μi (i = 1, 2, · · · , 12) Rate of removal from sexual activity 0.0231 [31]

q Assortative coefficient 0.3 [32]

a Proportion of homosexual behavior 0.02 [33]

c1 Transmission coefficient for male 0.228 Estimated

c2 Transmission coefficient for female 1.78 Estimated

φ Exponent parameter 0.700 Estimated

�0 Basic reproduction number 2.07 Estimated

Using the observed data of sero-prevalence of HSV-2 in the US from 2001 to 2014
reported by [34], sex specific transmission coefficient c and the exponent parameter φ

were estimated by maximum likelihood estimation. Since the antibody against HSV-2
infection (IgG) provides life-long immunity [35], we fitted I+R to the observed data of the
number of sero-positive cases for the estimation of c and φ. To estimate c and φ, endemic
equilibria of Ii and Ri were solved numerically with varied c1 and c2 and φ, and the set of
c1 and c2 maximizing the likelihood function was explored. The likelihood function for c1
and c2 is given by

L(c1, c2,φ) = �
T

�
i
pmf

(
bin

(
Ndata
i,T ,

I∗i (ci, c2,φ) + R∗
i (c1, c2,φ)

N∗
i

)
,Pdatai,T

)
.

Here pmf denotes the probability mass function, bin denotes a binomial distribution,
Ndata
i,T denotes the observed data of the size of the risk group i in sampling year T, and Pdatai,T

denotes the observed data of the number of HSV2-seropositive cases in the risk group i in
sampling year T, respectively. For the confidence interval (CI) of the estimated parameter,
profile likelihood-based confidence intervals were calculated. Using estimated c and φ the
basic reproduction number �0 for HSV-2 in the US was calculated. Figure 1 shows the
comparison between the observed data of sero-prevalence of HSV-2 and the model esti-
mates. The estimated c are, transmission coefficient for male, c1 = 0.228 (95% CI 0.225
to 0.231), transmission coefficient for female, c2 = 1.78 (95% CI 1.75 to 1.81), exponent
parameter φ = 0.700 (95%CI 0.693 to 0.707) and estimated�0 = 2.07 (95%CI 2.03 to 2.11).
Sexual behavior shows wide variation between host individuals. To assess the sensitivity

of sexual behavior to �0 of HSV-2, we conducted a sensitivity analysis of the parameters
describing sexual behavior, i.e., the proportion of homosexual partnership a and assorta-
tivity coefficient for the mixing between risk groups q. Fig. 2 shows the relation of a and q
to estimated �0, �0 increase if i) a increases, and ii) q decreases. The realistic variations
of a and q [36, 37] can induce the variation of �0, which is approximately demonstrated
in the range of 2-3.

Discussion
Using the demographic and epidemiological parameters obtained above, we discuss the
effectiveness of each vaccination strategy.We investigate the sensitivity of the basic repro-
duction number �0 to the vaccination parameters, that is, the vaccination rate among
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Fig. 1 Comparison between the observed data of sero-prevalence of HSV-2 and the model estimates

susceptible population v and the vaccination efficacy σ . Here we have assumed that vac-
cination is conducted with the same rate v for the susceptible population over time. For
simplicity, we assume that the efficacy of vaccine σ is the same for all risk groups.
We first consider the case that vaccination rate v is the same between males and

females. In this case, the basic reproduction number �0 with different σ when v varies
over (0, 1) is shown in Fig. 3. We see from Fig. 3 that, if σ is 0.3 or smaller, �0 can
be less than 1. On the other hand, if σ is 0.4 or larger, �0 cannot be less than 1
for any v ∈ (0, 1). This implies that decreasing σ is more important than increasing
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Fig. 2 Sensitivity analysis with respect to the parameters describing sexual behavior a and q
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Fig. 3 The relation of v to estimated �0 with different σ

v to reduce the basic reproduction number �0. That is, improving the vaccine effi-
cacy is more important for the eradication of HSV-2 than increasing the number of
vaccines.
We next discuss the optimal sex ratio of the vaccinated population to control HSV-2.

HSV-2 infection is observed among females more frequently than males, “opportunistic”
vaccination can induce higher vaccination coverage among females than males. To assess
the optimal sex ratio of the vaccination rate, we expand the vaccination rate v as follows;

v1 = pv, v2 = (1 − p)v, v : total vaccination rate.

Here p denotes the sex ratio of vaccination. Figure 4 shows the relationship between p,
σ and �0, we assumed v = 0.9 as the representative value. Interestingly, small or large p
increases �0. This implies that vaccination biased to females (small p) or males (large p)
can result in persistence of the disease. In particular, it is noteworthy that the curves in
Fig. 4 are almost symmetric with respect to p and the minimum is attained near the center
p = 0.5. This implies that vaccination distributed equally to females and males is optimal
for the eradication of the disease even though the transmission coefficient for males is
lower than that for females.

Fig. 4 The relation of p and σ to estimated �0
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Conclusion
In this paper, we have formulated the multi-group SVIRI epidemic model (6), which
enables us to consider the effects of vaccination, the waning of vaccine-induced immunity,
and relapse. We have defined the basic reproduction number �0 and proved Theorem 1,
which states that if �0 ≤ 1, then the disease-free equilibrium E0 is globally asymp-
totically stable, whereas if �0 > 1, then the endemic equilibrium E∗ is so. Based on
Theorem 1, we have estimated the basic reproduction number �0 for HSV-2 as 2.07
(95% CI 2.03 to 2.11) by using US HSV-2 data from 2001 to 2014. Through the sen-
sitivity analysis for uncertain parameters on sexual behavior, we have found that �0
is approximately in the range of 2-3. Furthermore, using sensitivity analysis for vacci-
nation parameters, we have discussed the effectiveness of the vaccination. As a result,
we have come to the following conclusions. (1) Improving vaccine efficacy is more
effective than increasing the number of vaccines. (2) Although the transmission risk in
female individuals is higher than that in male individuals, distributing vaccines almost
equally to females and males is more effective than concentrating them within the female
population.

Appendix
Proof of Proposition 1

We first show the positivity of the solution of system (6). Suppose that there exist t1 > 0
and i∗ ∈ N such that Si(t) > 0 and Vi(t) > 0 for all t ∈[ 0, t1) and i ∈ N and
min (Si∗(t1),Vi∗(t1)) = 0. By the variation of constants formula, we have from the first
equation in the system (6) that

Si∗(t1) =Si∗(0)e
− ∫ t1

0

(∑n
j=1 βi∗ jIj(s)/N∗

j +μi∗+vi∗
)
ds

+
∫ t1

0
(bi∗ + ωi∗Vi∗(s)) e

− ∫ t1
s

(∑n
j=1 βi∗ jIj(u)/N∗

j +μi∗+vi∗
)
duds > 0.

Hence, Vi∗(t1) = 0. However, by the variation of constants formula, we have from the
second equation in the system (6) that

Vi∗(t) =Vi∗(0)e
− ∫ t1

0

(
σi∗

∑n
j=1 βi∗ jIj(s)/N∗

j +μi∗+ωi∗
)
ds

+
∫ t1

0
vi∗Si∗(s)e

− ∫ t1
s

(
σi∗

∑n
j=1 βi∗ jIj(u)/N∗

j +μi∗+ωi∗
)
duds > 0,

which is a contradiction. Hence, we see that Si(t) > 0 and Vi(t) > 0 for all t > 0 and
i ∈ N .
Suppose that there exist t2 > 0 and ĩ ∈ N such that Ii(t) > 0 for all t ∈[ 0, t2) and i ∈ N

and Iĩ(t2) = 0. By the variation of constants formula, we have from the third equation in
the system (6) that

Ii(t) =Ii(0)e−(μi+γi)t +
∫ t

0

⎛

⎝(Si(s) + σiVi(s))
n∑

j=1
βij

Ij(s)
N∗
j

+ hi(s)

⎞

⎠ e−(μi+γi)(t−s)ds,

(15)

where hi(t) :=
∫ +∞
0 δi(ξ)γiIi(t− ξ)e−μiξ e−

∫ ξ
0 δi(η)dηdξ . We see that hi(t) ≥ 0 for all i ∈ N

and t ∈ [0, t1). Hence, from (15), we have Iĩ(t2) > 0, which is a contradiction. Hence, we
see that Ii(t) > 0 for all t > 0 and i ∈ N .
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The boundedness of the solution of system (6) immediately follows from the fact that
N ′
i (t) = bi−μiNi(t), S′

i(t) ≤ bi−(μi+vi)Si(t)+ωiVi(t) andV ′
i (t) ≤ viSi(t)−(μi+ωi)Vi(t)

for all t > 0 and i ∈ N . This completes the proof.

Proof of (i) of Theorem 1

We define the following matrix, which corresponds to the next generation matrix:

M0 := V−1F =

⎛

⎜⎜⎜⎝

(
S01+σ1V 0

1
)
β11

(μ1+γ1−Q1)N∗
1

· · ·
(
S01+σ1V 0

1
)
β1n

(μ1+γ1−Q1)N∗
n

...
. . .

...
(S0n+σnV 0

n )βn1
(μn+γn−Qn)N∗

1
· · · (S0n+σnV 0

n )βnn
(μn+γn−Qn)N∗

n

⎞

⎟⎟⎟⎠ . (16)

In fact, it is easy to see that ρ(M0) = ρ(K) = �0.
First we show that system (6) has no endemic equilibrium E∗ ∈ �̄. Let us define the

following matrix-valued function on R
2n, which is equal to M0 if (S1,V1, · · · , Sn,Vn) =

(S01,V
0
1 , · · · S0n,V 0

n ):

M(S1,V1, · · · , Sn,Vn) :=

⎛

⎜⎜⎝

(S1+σ1V1)β11
(μ1+γ1−Q1)N∗

1
· · · (S1+σ1V1)β1n

(μ1+γ1−Q1)N∗
n

...
. . .

...
(Sn+σnVn)βn1

(μn+γn−Qn)N∗
1

· · · (Sn+σnVn)βnn
(μn+γn−Qn)N∗

n

⎞

⎟⎟⎠ .

Suppose that (S1, · · · , Sn) �= (S01, · · · , S0n). Then, from assumptions (A1)-(A6), we see
that 0 < M(S1,V1, · · · , Sn,Vn) < M0, where 0 denotes the zero matrix and the
inequality implies that it holds for each element and each of the two matrices are not
equal. Then, since it follows from assumptions (A1)-(A6) that matrices M0 and M0 +
M(S1,V1, · · · , Sn,Vn) are nonnegative and irreducible, we can apply the Perron-Frobenius
theorem (see [38, Corollary 2.1.5]) to obtain that ρ (M(S1,V1, · · · , Sn,Vn)) < ρ(M0) ≤ 1.
This implies that the equation M(S1,V1, · · · , Sn,Vn) (I1, · · · In)T = (I1, · · · In)T has only
the trivial solution (I1, · · · , In)T = 0, where T denotes the transpose of a vector. This
implies that E∗ does not exist in �̄.
Next we show the global asymptotic stability of E0. It follows from the Perron-

Frobenius theorem (see [38, Theorem 2.1.4]) that M0 has a strictly positive left
eigenvector (�1, · · · , �n), �i > 0, i ∈ N corresponding to the eigenvalue ρ(M0):
(�1, · · · , �n) ρ(M0) = (�1, · · · , �n)M0. Let ci := �i/ (μi + γi − Qi) , i ∈ N and Ji(t) :=∫ +∞
t δi(ξ)γie−μiξ e−

∫ ξ
0 δi(η)dηdξ , i ∈ N and consider the following Lyapunov function.

LDFE (I1, · · · , In) :=
n∑

i=1
ci

(
Ii(t) +

∫ +∞

0
Ji(ξ)Ii(t − ξ)dξ

)
.

From assumption (A6), Ji(t) ≥ 0, i ∈ N for all t ≥ 0 and hence,LDFE ≥ 0 and the equality
holds if and only if (I1, · · · , In) ≡ 0. Note that

(∫ +∞

0
Ji(ξ)Ii(t − ξ)dξ

)′
=

∫ +∞

0
Ji(ξ)

∂

∂t
Ii(t − ξ)dξ = −

∫ +∞

0
Ji(ξ)

∂

∂ξ
Ii(t − ξ)dξ

= −[ Ji(ξ)Ii(t − ξ)]+∞
0 +

∫ +∞

0

∂

∂ξ
Ji(ξ)Ii(t − ξ)dξ

= QiIi(t) −
∫ +∞

0
δi(ξ)γiIi(t − ξ)e−μiξ e−

∫ ξ
0 δi(η)dηdξ , i ∈ N .
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Hence, the derivative of LDFE gives

L′
DFE =

n∑

i=1
ci

⎛

⎝(Si + σiVi)
n∑

j=1
βij

Ij
N∗
j

− (μi + γi − Qi)Ii

⎞

⎠

=
n∑

i=1
�i

⎛

⎜⎜⎜⎝

(Si + σiVi)
n∑

j=1
βijIj

(μi + γi − Qi)N∗
j

− Ii

⎞

⎟⎟⎟⎠

= (�1, · · · , �n) · (M (S1,V1, · · · , Sn,Vn) − En) · (I1, · · · , In)T
≤ (�1, · · · , �n) · (

M
(
S01,V 0

1 , · · · , S0n,V 0
n
) − En

) · (I1, · · · , In)T
= (

ρ(M0) − 1
)
(�1, · · · , �n) · (I1, · · · , In)T ≤ 0, (17)

where En denotes the n-dimensional unit matrix and · denotes the product of vectors. It
is easy to see that when �0 < 1, L′

DFE = 0 holds if and only if Ii = 0 for all i ∈ N , that is,
the solution is in the disease-free equilibrium E0. When �0 = 1, from the third equality
in (17), we see that L′

DFE = 0 implies

(�1, · · · , �n) · M (S1,V1, · · · , Sn,Vn) · (I1, · · · , In)T
= (�1, · · · , �n) · (I1, · · · , In)T . (18)

Suppose that (S1,V1, · · · , Sn,Vn) �= (
S01,V 0

1 , · · · , S0n,V 0
n
)
. Then (�1, · · · , �n) ·

M (S1,V1, · · · , Sn,Vn) < (�1, · · · , �n) · M0 = ρ(M0) (�1, · · · , �n) = (�1, · · · , �n). Hence,
(18) has only the trivial solution such that Ii = 0 for all i ∈ N . This implies that L′

DFE = 0
holds only in the disease-free equilibrium E0 ∈ �̄. Consequently, from the LaSalle’s
invariance principle (see [39]), we can conclude that the disease-free equilibrium E0 is
globally asymptotically stable.

Proof of (ii) of Theorem 1

If �0 > 1, then (�1, · · · , �n) · (
M

(
S01,V

0
1 , · · · , S0n,V 0

n
) − En

) · (I1, · · · , In)T =(
ρ(M0) − 1

)
(�1, · · · , �n) · (I1, · · · , In)T > 0. Hence, we see from the third equality in

(17) that in a neighborhood of
(
S01,V 0

1 , · · · , S0n,V 0
n
)
, L′

DFE > 0. This implies the instability
of the disease-free equilibrium E0.
Since the disease-free equilibrium of E0 of system (6) is unstable if �0 > 1, we see from

the uniform persistence result of [40] and an argument as in the proof of Proposition 3.3 of
[41] that system (6) is uniformly persistent. That is, there exists a positive constant c > 0
such that for any initial value, it holds that lim inft→+∞ Si(t) ≥ c, lim inft→+∞ Vi(t) ≥ c
and lim inft→+∞ Ii(t) ≥ c for all i ∈ N . Since the uniform persistence together with
the uniform boundedness implies the existence of an interior equilibrium (see [42, 43]),
we see that system (6) has an endemic equilibrium E∗ ∈ �. From (7), we see that the
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components
(
S∗
1,V ∗

1 , I∗1 , · · · , S∗
n,V ∗

n , I∗n
)
of E∗ satisfy the following equations.

bi = S∗
i

n∑

j=1
βij

I∗j
N∗
j

+ (μi + vi)S∗
i − ωiV ∗

i , (19)

viS∗
i = σi

n∑

j=1
βij

I∗j
N∗
j

+ (μi + ωi)V ∗
i , (20)

(μi + γi − Qi)I∗i = (S∗
i + σiV ∗

i )

n∑

j=1
βij

I∗j
N∗
j
, i ∈ N . (21)

As in [14], we define θij :=
(
S∗
i + σiV ∗

i
)
βijI∗j /N∗

j , i, j ∈ N and

� :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
j �=1

θ1j −θ21 · · · −θn1

−θ12
∑
j �=2

θ2j · · · −θn2

...
...

. . .
...

−θ1n −θ2n · · · ∑
j �=n

θnj

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let ϕ := (ϕ1, · · · ,ϕn)T be a basis of the solution space of linear system �ϕ = 0. Then,
from [14, Lemma 2.1], we see that the dimension of the solution space is 1 and ϕi > 0,
i ∈ N . In particular, from the form of matrix �, the following equality holds.

n∑

j=1
θijϕi =

n∑

j=1
θjiϕj, i ∈ N . (22)

Using this ϕ and H(x) := x− 1− ln x ≥ H(1) = 0, we consider the following Lyapunov
functional to prove the global asymptotic stability of E∗.

LEE(S1,V1, I1, · · · , Sn,Vn, In) :=
n∑

i=1
ϕi

{
S∗
i H

(
Si
S∗
i

)
+ V ∗

i H
(
Vi
V ∗
i

)

+ I∗i H
(
Ii
I∗i

)
+

∫ +∞

0
Ji(ξ)I∗i H

(
Ii(t − ξ)

I∗i

)
dξ

}
.

In order to make this function well-defined, without loss of generality, we can restrict
our attention to the solution such that Ii(s) = ϕi(s), i ∈ N on (−∞, 0], where ϕi(0) =
Ii(0) and 0 < mi < ϕi(s) < Mi < +∞, s ∈ (−∞, 0] , i ∈ N for positive constants mi
and Mi, i ∈ N . Then, from the positive invariance of set � and the uniform persistence
of system (6), we see that the Lyapunov functional LEE is well-defined.
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Using (19), we can calculate the derivative of LEE as follows.

L′
EE =

n∑

i=1
ϕi

{(
1 − S∗

i
Si

) (
bi − Si

n∑

j=1
βij

Ij
N∗
j

− (μi + vi)Si + ωiVi

)

+
(
1 − V ∗

i
Vi

) (
viSi − σiVi

n∑

j=1
βij

Ij
N∗
j

− (μi + ωi)Vi

)

+
(
1 − I∗i

Ii

) (
(Si + σiVi)

n∑

j=1
βij

Ij
N∗
j

− (μi + γi)Ii

+
∫ +∞

0
δi(ξ)γiIi(t − ξ)e−μiξ e−

∫ ξ
0 δi(η)dηdξ

)
+

∫ +∞

0
Ji(ξ)I∗i

∂

∂t
H

(
Ii(t − ξ)

I∗i

)
dξ

}

=
n∑

i=1
ϕi

{(
1 − S∗

i
Si

) (
S∗
i

n∑

j=1
βij

I∗j
N∗
j

+ (μi + vi)S∗
i − ωiV ∗

i − Si
n∑

j=1
βij

Ij
N∗
j

− (μi + vi)Si + ωiVi

)
+

(
1 − V ∗

i
Vi

) (
Si
S∗
i
viS∗

i − σiVi

n∑

j=1
βij

Ij
N∗
j

− (μi + ωi)Vi

)

+
(
1 − I∗i

Ii

) (
(Si + σiVi)

n∑

j=1
βij

Ij
N∗
j

− (μi + γi)Ii

+
∫ +∞

0
δi(ξ)γiIi(t − ξ)e−μiξ e−

∫ ξ
0 δi(η)dηdξ

)
−

∫ +∞

0
Ji(ξ)I∗i

∂

∂ξ
H

(
Ii(t − ξ)

I∗i

)
dξ

}

=
n∑

i=1
ϕi

{
μiS∗

i

(
2 − S∗

i
Si

− Si
S∗
i

)
+ viS∗

i

(
2 − S∗

i
Si

− SiV ∗
i

S∗
i Vi

)
+ μiV ∗

i

(
1 − Vi

V ∗
i

)

+ ωiV ∗
i

(
−1 + S∗

i
Si

+ Vi
V ∗
i

− S∗
i Vi

SiV ∗
i

+ 1 − Vi
V ∗
i

)

+ S∗
i

n∑

j=1
βij

I∗j
N∗
j

(
1 − S∗

i
Si

)
+ (

S∗
i + σiV ∗

i
) n∑

j=1
βij

Ii
N∗
j

− (Si + σiVi)
n∑

j=1
βij

I∗j
N∗
j

I∗i Ij
IiI∗j

+ (μi + γi)I∗i
(
1 − Ii

I∗i

)
+

(
1 − Ii

I∗i

) ∫ +∞

0
δi(ξ)γiIi(t − ξ)e−μiξ e−

∫ ξ
0 δi(η)dηdξ

)

−
∫ +∞

0
Ji(ξ)I∗i

∂

∂ξ
H

(
Ii(t − ξ)

I∗i

)
dξ

}
.

(23)

Now it follows from integration by parts that

∫ +∞

0
Ji(ξ)I∗i

∂

∂ξ
H

(
Ii(t − ξ)

I∗i

)
dξ

= −Ji(0)I∗i H
(
Ii
I∗i

)
+

∫ +∞

0
δi(ξ)γie−μiξ e−

∫ ξ
0 δi(η)dηI∗i H

(
Ii(t − ξ)

I∗i

)
dξ

= −Qi

(
Ii − I∗i − I∗i ln

Ii(t)
I∗i

)

+
∫ +∞

0
δi(ξ)γie−μiξ e−

∫ ξ
0 δi(η)dη

(
Ii(t − ξ) − I∗i − I∗i ln

Ii(t − ξ)

I∗i

)
dξ .
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Hence, (23) can be calculated as follows:

L′
EE

=
n∑

i=1
ϕi

{
μiS∗

i

(
2 − S∗

i
Si

− Si
S∗
i

)
+ viS∗

i

(
2 − S∗

i
Si

− SiV ∗
i

S∗
i Vi

)
+ μiV ∗

i

(
1 − Vi

V ∗
i

)

+ ωiV ∗
i

(S∗
i
Si

− S∗
i Vi

SiV ∗
i

)
+ S∗

i

n∑

j=1
βij

I∗j
N∗
j

(
1 − S∗

i
Si

)
+ (

S∗
i + σiV ∗

i
) n∑

j=1
βij

Ii
N∗
j

− (Si + σiVi)
n∑

j=1
βij

I∗j
N∗
j

I∗i Ij
IiI∗j

+ (μi + γi − Qi)I∗i
(
1 − Ii

I∗i

)
− QiI∗i ln

Ii
I∗i

− I∗i
∫ +∞

0
δi(ξ)γi

(
Ii(t − ξ)

Ii
− 1 − ln

Ii(t − ξ)

I∗i

)
e−μiξ e−

∫ ξ
0 δi(η)dηdξ

}
. (24)

From (21) and (22), we have

n∑

i=1
ϕi (μi + γi − Qi) Ii =

n∑

i=1
ϕi (μi + γi − Qi) I∗i

Ii
I∗i

=
n∑

i=1
ϕi

(
S∗
i + σiV ∗

i
) n∑

j=1
βij

I∗j
N∗
j

Ii
I∗i

=
n∑

i=1

Ii
I∗i

n∑

j=1
θijϕi =

n∑

i=1

Ii
I∗i

n∑

j=1
θjiϕj =

n∑

i=1

n∑

j=1
θji

Ii
I∗i

ϕj

=
n∑

i=1

n∑

j=1
θij

Ij
I∗j

ϕi =
n∑

i=1
ϕi

n∑

j=1
θij

Ij
I∗j

=
n∑

i=1
ϕi

(
S∗
i + σiV ∗

i
) n∑

j=1
βij

Ij
N∗
j
. (25)

Hence, using (20), (21) and (25), we can calculate (24) as follows:

L′
EE =

n∑

i=1
ϕi

{
μiS∗

i

(
2 − S∗

i
Si

− Si
S∗
i

)
+ μiV ∗

i

(
3 − S∗

i
Si

− SiV ∗
i

S∗
i Vi

− Vi
V ∗
i

)

+ ωiV ∗
i

(
2 − SiV ∗

i
S∗
i Vi

− S∗
i Vi

SiV ∗
i

)
+ S∗

i

n∑

j=1
βij

I∗j
N∗
j

(
2 − S∗

i
Si

− SiI∗i Ij
S∗
i IiI∗j

)

+ σiV ∗
i

n∑

j=1
βij

I∗j
N∗
j

(
3 − S∗

i
Si

− SiV ∗
i

S∗
i Vi

− ViI∗i Ij
V ∗
i IiI∗j

)

− QiI∗i ln
Ii
I∗i

+ QiI∗i ln
Ii
I∗i

− I∗i
∫ +∞

0
δi(ξ)γiH

(
Ii(t − ξ)

Ii

)
e−μiξ e−

∫ ξ
0 δi(η)dηdξ

}
.

(26)

Using the inequality of arithmetic and geometric means, we see that the first three terms
in the right-hand side of (26) are non-positive and equal to zero if and only if (Si,Vi) =(
S∗
i ,V ∗

i
)
, i ∈ N . From the positivity of the function H(x), we see that the last term in the
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right-hand side of (26) is non-positive. Hence, taking the maximum as in [10] and using
the graph-theoretic approach as in [14], we can evaluate (26) as follows:

L′
EE ≤

n∑

i=1
ϕi

n∑

j=1

(
S∗
i + σiV ∗

i
)
βij

I∗j
N∗
j

× max
(
2 − S∗

i
Si

− SiI∗i Ij
S∗
i IiI∗j

, 3 − S∗
i
Si

− SiV ∗
i

S∗
i Vi

− ViI∗i Ij
V ∗
i IiI∗j

)

=
n∑

i=1
ϕi

n∑

j=1
θij max

(
2 − S∗

i
Si

− SiI∗i Ij
S∗
i IiI∗j

, 3 − S∗
i
Si

− SiV ∗
i

S∗
i Vi

− ViI∗i Ij
V ∗
i IiI∗j

)

=
∑

G∈�

w(G)
∑

(i,j)∈A(CG)

max
(
2 − S∗

i
Si

− SiI∗i Ij
S∗
i IiI∗j

, 3 − S∗
i
Si

− SiV ∗
i

S∗
i Vi

− ViI∗i Ij
V ∗
i IiI∗j

)
, (27)

where � denotes the set of all unicyclic graphs included in directed graphs with vertices
{1, 2, · · · , n}, G denotes the unicyclic graph included in �, w(G) denotes the weight of
graph G, CG denotes the unicycle included in G and A(CG) denotes the set of all arcs
included in CG. For instance, for a unicycle CG : 1 → 2 → 1, we have A(CG) =
{(1, 2), (2, 1)} and thus,

∑

(i,j)∈A(CG)

max
(
2 − S∗

i
Si

− SiI∗i Ij
S∗
i IiI∗j

, 3 − S∗
i
Si

− SiV ∗
i

S∗
i Vi

− ViI∗i Ij
V ∗
i IiI∗j

)

= max
(
2 − S∗

1
S1

− S1I∗1 I2
S∗
1I1I∗2

, 3 − S∗
1
S1

− V ∗
1 S1

V1S∗
1

− V1I∗1 I2
V ∗
1 I1I∗2

)

+ max
(
2 − S∗

2
S2

− S2I∗2 I1
S∗
2I2I∗1

, 3 − S∗
2
S2

− V ∗
2 S2

V2S∗
2

− V2I∗2 I1
V ∗
2 I2I∗1

)

= max
(
4 − S∗

1
S1

− S1I∗1 I2
S∗
1I1I∗2

− S∗
2
S2

− S2I∗2 I1
S∗
2I2I∗1

,

5 − S∗
1
S1

− S1I∗1 I2
S∗
1I1I∗2

− S∗
2
S2

− V ∗
2 S2

V2S∗
2

− V2I∗2 I1
V ∗
2 I2I∗1

,

5 − S∗
1
S1

− V ∗
1 S1

V1S∗
1

− V1I∗1 I2
V ∗
1 I1I∗2

− S∗
2
S2

− S2I∗2 I1
S∗
2I2I∗1

,

6 − S∗
1
S1

− V ∗
1 S1

V1S∗
1

− V1I∗1 I2
V ∗
1 I1I∗2

− S∗
2
S2

− V ∗
2 S2

V2S∗
2

− V2I∗2 I1
V ∗
2 I2I∗1

)
.

We see that all elements in the max in the last expression of the above formula are non
positive because of the inequality of arithmetic and geometric means. Similarly, we can
easily check that for all unicycles CG with at most n vertices, the second sum in the
last expression of (27) are non-positive (see [10, Proof of Theorem 4.1]). Hence, L′

EE
is non-positive and it is easy to check that the equality L′

EE = 0 holds if and only if
(S1,V1, I1, · · · , Sn,Vn, In) = (

S∗
1,V ∗

1 , I∗1 , · · · , S∗
n,V ∗

n , I∗n
)
. This implies, from the LaSalle’s

invariance principle, that the endemic equilibrium E∗ is globally asymptotically stable.
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