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Abstract

Background: Hepatitis B infection caused by the hepatitis B virus is one of the most
serious viral infections and a global health problem. In the transmission of hepatitis B
infection, three different phases, i.e. acute infected, chronically infected, and carrier
individuals, play important roles. Carrier individuals are especially significant, because
they do not exhibit any symptoms and are able to transmit the infection. Here we
assessed the transmissibility associated with different infection stages of hepatitis B
and generated an epidemic model.

Methods: To demonstrate the transmission dynamic of hepatitis B, we
investigate an epidemic model by dividing the infectious class into three
subclasses, namely acute infected, chronically infected, and carrier individuals
with both horizontal and vertical transmission.

Results: Numerical results and sensitivity analysis of some important parameters
are presented to show that the proportion of births without successful
vaccination, perinatally infected individuals, and direct contact rate are highest
risk factors for the spread of hepatitis B in the community.

Conclusion: Our work provides a coherent platform for studying the full
dynamics of hepatitis B and an effective direction for theoretical work.

Keywords: Hepatitis B epidemic model, Basic reproduction number, Stability
analysis, Lyapunov function theory, Geometrical approach, Numerical simulation

Background
Hepatitis implies the inflammation of liver. Hepatitis B infection caused by the hepa-

titis B virus is among the most serious viral infections. It is a global health problem

and one of the leading causes of death around the world. Worldwide, 2 billion people

are infected with hepatitis B virus and about 360 million individuals live with chronic

hepatitis B infection [1, 2]. In addition, hepatitis B virus infection is responsible for

about 80% of primary liver cancers [3]. Therefore, every year approximately 780,000 in-

dividuals die from chronic or acute hepatitis B virus infection [1]. Hepatitis B virus can

be transmitted from one individual to another in different ways, such as transmission

through blood (sharing of razors, blades, or toothbrushes), semen, and vaginal secre-

tions (unprotected sexual contact) [4–7]. The other major transmission route is from

an infected mother to her child during childbirth, which is called vertical transmission.

However, hepatitis B virus cannot be transmitted through water, food, hugging, kissing,

or causal contact such as in the work place, school, etc. [6–8].
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Hepatitis B infection has multiple phases: acute, chronic, and carrier. Acute hepatitis

B is a short-term infection within the first 6 months after someone is infected with the

virus. In this stage, the immune system is usually able to clear the virus from the body,

and recover within a few months. Chronic hepatitis B refers to the illness that occurs

when the virus remains in the individual’s body and, over time, the infection develops

into a serious health problem. Individuals with chronic hepatitis often have no history

of acute illness; however, it can cause liver scarring, which becomes the cause of liver

failure and may also develop into liver cancer [3]. The phase at which the individuals

do not exhibit any symptoms, but transmit the disease to others is known as the carrier

phase, which plays an important role in the transmission of hepatitis B infection. This

is the most dangerous and serious phase of hepatitis B, because it is difficult to control

the hepatitis B virus infection when a large group of carriers exist, as they will be re-

sponsible for transmitting the disease to new individuals.

Mathematical modeling is a powerful tool to describe the dynamical behavior of dif-

ferent diseases in the real world [9, 10]. Several mathematicians and biologists have

developed different epidemic models to understand and control the spread of transmis-

sible diseases in the population. In the last two decades, the field of mathematical mod-

eling has been used frequently for the study of transmission of different types of

infectious diseases. Mann and Roberts [3] and Thornley et al. [8] used a mathematical

model for eliminating hepatitis B virus in New Zealand. In 1991, Anderson and May

[11] described the effect of carriers on the transmission of hepatitis B virus by using a

simple deterministic model. Zhao et al. [12] presented an age structured model for the

prediction of the dynamics of hepatitis B virus transmission and evaluated the long-

term effectiveness of the vaccination program in China. In 2010, Zou et al. [13] pre-

sented a model for the transmission dynamics and control of the hepatitis B virus in

China. Recently, a mathematical model for the transmission dynamics and optimal con-

trol of hepatitis B has been presented by Khan et al. [14].

The different phases of hepatitis B play a very important role in the transmission

of hepatitis B infection, and have not yet been investigated collectively for their po-

tential role in generating a hepatitis B epidemic model. We consider a hepatitis B

epidemic model by identifying the different phases, acute, chronic, and carrier, of

hepatitis B infection.

Methods
With the different stages of hepatitis B, the total population is classified into seven dif-

ferent compartments with three infectious epidemiological classes, namely acute in-

fected, chronically infected, and carrier individuals. First we develop the model, then

we investigate the equilibria. For a biologically feasible region, we show the bounded-

ness. Further, we find the basic reproduction number by using the next-generation

matrix approach. In addition, we prove the local and global asymptotic stability of the

proposed model. For the local stability, we use the method of linearization and Routh–

Herwitz criteria. The global asymptotic stability is retrieved by using the method

proposed by Castillo-Chávez et al. [15] and a geometrical approach. Finally, the numer-

ical simulations are carried out by using a fourth-order Runge–Kutta method to show

the feasibility of the obtained results. Moreover, a sensitivity analysis of some important

parameters is also presented. Our work provides a coherent platform for studying the
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full dynamics of hepatitis B and an effective direction for theoretical work. In view

of the characteristics of hepatitis B, we develop an epidemic model of hepatitis B

by dividing the total population into seven epidemiological subclasses: susceptible

S(t), latent L(t), acute infected A(t), chronic infected B(t), carrier C(t), recovered

with permanent immunity R(t), and vaccinated V(t). We place the following as-

sumptions on the model.

A1 The initial populations S(0), L(0), A(0), B(0),C(0), V(0), and R(0) are all known and

non-negative.

A2 Recovered individuals have permanent immunity.

A3 The inflow of newborns with successful vaccination go into the vaccinated subclass.

A4 The inflow of newborns with perinatal infection go into the carrier subclass.

A5 The inflow of newborns without perinatal infection go into the susceptible subclass.

A6 The population with successful vaccination go into the vaccinated subclass.

Thus, the mathematical model can be presented by the following system of seven or-

dinary differential equations,

dS tð Þ
dt

¼ bξ 1−ηC tð Þð Þ þ φV tð Þ−βA tð ÞS tð Þ−γβB tð ÞS tð Þ−ζβC tð ÞS tð Þ− μ0 þ vð ÞS tð Þ;
dL tð Þ
dt

¼ βS tð ÞA tð Þ þ γβS tð ÞB tð Þ þ ζβS tð ÞC tð Þ− σ þ μ0ð ÞL tð Þ;
dA tð Þ
dt

¼ σL tð Þ− μ0 þ γ1 þ ψð ÞA tð Þ;
dB tð Þ
dt

¼ pγ1A tð Þ− μ0 þ μ1 þ γ2ð ÞB tð Þ;
dC tð Þ
dt

¼ bξηC tð Þ þ 1−pð Þγ1A tð Þ− μ0 þ μ2 þ γ3
� �

C tð Þ;
dR tð Þ
dt

¼ ψA tð Þ þ γ2B tð Þ þ γ3C tð Þ−μ0R tð Þ;
dV tð Þ
dt

¼ b 1−ξð Þ þ vS tð Þ− μ0 þ φð ÞV tð Þ:

ð1Þ

In the model (1), b represents the birth rate, ξ represents the proportion of births

without successful vaccination, η represents the proportion of perinatally infected indi-

viduals, φ represents the rate of waning vaccine-induced immunity, β represents the

transmission rate from susceptible to infected, γ and ζ represent the reduced transmis-

sion rate of chronic and carrier individuals infected with hepatitis B, respectively. The

natural death rate is represented by μ0. We use v to denote the vaccination rate, σ rep-

resents the moving rate from latent class to acute class, γ1 represents the moving rate

from acute to chronic and carrier, ψ represents the recovery rate from acute class to re-

covered, γ2 represents the moving rate of chronic carrier to immune, γ3 represents the

moving rate of carrier to immune, μ1 and μ2 represent the death rates occurring from

hepatitis B, and p represents the average probability of an individual’s failure to clear an

acute infection and going to the carrier state.

To represent the dynamics of our proposed model (1), we need to find the equilibria

of the proposed model (1), which are disease-free and endemic equilibria.
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Equilibrium analysis

The disease-free equilibrium point of the model (1) is denoted by E0 and defined as E0
= (S0, 0, 0, 0, 0, 0,V0), where

S0 ¼ b φþ μ0ξð Þ
μ0 μ0 þ vþ φð Þ ; V 0 ¼ b μ0 þ v−μ0ξð Þ

μ0 μ0 þ vþ φð Þ : ð2Þ

Similarly, the endemic equilibrium point is denoted by E1 = (S1, L1, A1, B1,C1, R1,V1),

where

S1 ¼ S0
R0

;
L1 ¼ S1

σ þ μ0ð Þ bξ þ φV 1−S1 μ0 þ vð Þð Þ;
A1 ¼ σL1

γ1 þ ψ þ μ0
;

B1 ¼ σpγ1L1
γ2 þ μ0 þ μ1ð Þ γ1 þ ψ þ μ0ð Þ ;C1 ¼ σγ1 1−pð ÞL1

γ1 þ ψ þ μ0ð Þ γ3 þ μ0 þ μ1−bηξ
� � ;

R1 ¼ 1
μ0

ψA1 þ γ2B1 þ γ3C1
� �

;
V 1 ¼ b 1−ξð Þ

φþ μ0
þ vS1:

ð3Þ

Boundedness

For the biologically feasible region, we prove the boundedness of the proposed model.

Theorem 1 The solution of the model (1) is bounded.

Proof: Let N(t) denote the total population, then N(t) = S(t) + L(t) +A(t) + B(t) +C(t) +

R(t) +V(t). Differentiation of N(t) with respect to time and the use of model (1) yields
dN tð Þ
dt ¼ bξ−μ0N tð Þ−μ1B tð Þ−μ2C tð Þ. Therefore, we can write dN tð Þ

dt þ μ0N tð Þ≤bξ: Integrat-
ing both sides and then using the theory of differential inequality [16], we obtain 0 < N

S; L;A;B;C;R;Vð Þ≤ bξ
μ0

1−e−μ0tð Þ þ N0e−μ0t : Now let t→∞, it becomes 0 < N

S; L;A;B;C;R;Vð Þ≤ bξ
μ0
: Hence, the solution of the model (1) initiating in R7

þ is limited

in the set Δ ¼ S; L;A;B;C;R;Vð Þ∈R7
þ : N ¼ bξ

μ0
þ ξ

n o
for any ξ > 0 and t→ ∞ , which

completes the proof.

Basic reproduction number

The threshold quantity that determines whether an epidemic arises or the infection dies

out is called the basic reproduction number of the disease, which is a key concept [11,

17]. It represents the expected average number of new infections produced directly and

indirectly by a single infected individual, when introduced into a completely susceptible

population. To find the basic reproduction number for the proposed model (1), we use

the method of Driessche and Watmough [18]. Let χ = (L(t), A(t), B(t),C(t))T, so from the

model (1), we have

dχ
dt

¼ F−V : ð4Þ

In eq. (4), F and V are the matrices that contain the nonlinear and linear terms, re-

spectively, such that
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F ¼
βS tð ÞA tð Þ þ γβS tð ÞB tð Þ þ ξβS tð ÞC tð Þ

0
0
0

0
BB@

1
CCA;

V ¼

σ þ μ0ð ÞL tð Þ
μ0 þ γ1 þ ψð ÞA tð Þ−σL tð Þ

μ0 þ μ1 þ γ2ð ÞB tð Þ−pγ1A tð Þ
μ0 þ μ2 þ γ3
� �

C tð Þ−bξηC tð Þ− 1−pð Þγ1A tð Þ

0
BBB@

1
CCCA:

Now, we find the Jacobian matrix of F and V at the disease-free equilibrium E0,

which becomes

F ¼ Jacobian of F at DFE ¼
0 βS0 γβS0 ζβS0
0 0 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA;

V ¼ Jacobian of V at DFE ¼
a11 0 0 0
−σ a22 0 0
0 −a32 a33 0
0 −a41 0 a44

0
BB@

1
CCA;

where a11 = σ + μ0, a22 = μ0 + γ1 + ψ, a32 = pγ1, a33 = μ0 + μ1 + γ2, a41 = (1 − p)γ1, and a44
= μ0 + μ0 + γ3 − bξη. Thus, the basic reproduction number R0 is the spectral radius of

the next-generation matrix K ¼ FV −1; that is, R0 ¼ ρ K
� � ¼ ρ FV −1

� � ¼ max

jλ1j;…; ; jλ4jf g; where λi for i = 1, 2, 3, 4 are the eigenvalues of K . Hence, the basic

reproduction number R0 for our proposed model (1) becomes

R0 ¼ R1 þ R2 þ R3; ð5Þ

where

R1 ¼ σβS0
σ þ μ0ð Þ γ1 þ ψ þ μ0ð Þ ;R2 ¼ σβγγ1pS0

σ þ μ0ð Þ γ1 þ ψ þ μ0ð Þ γ2 þ μ0 þ μ1ð Þ ;

R3 ¼ σβζγ1 1−pð ÞS0
σ þ μ0ð Þ γ1 þ ψ þ μ0ð Þ γ3 þ μ0 þ μ2−bξη

� � :

Local stability analysis

In this subsection, we discuss the local asymptotic satiability of the proposed model (1)

at disease-free equilibrium E0 and endemic equilibrium E1. To show the local asymp-

totic stability, we reduce the proposed model, because R appears only in the sixth equa-

tion of the model. Thus, the reduced model is given by

Khan et al. Theoretical Biology and Medical Modelling  (2017) 14:22 Page 5 of 17



dS tð Þ
dt

¼ bξ 1−ηC tð Þð Þ þ φV tð Þ−βA tð ÞS tð Þ−γβB tð ÞS tð Þ−ζβC tð ÞS tð Þ− μ0 þ vð ÞS tð Þ;

dL tð Þ
dt

¼ βS tð ÞA tð Þ þ γβS tð ÞB tð Þ þ ζβS tð ÞC tð Þ− σ þ μ0ð ÞL tð Þ;

dA tð Þ
dt

¼ σL tð Þ− μ0 þ γ1 þ ψð ÞA tð Þ; dB tð Þ
dt

¼ pγ1A tð Þ− μ0 þ μ1 þ γ2ð ÞB tð Þ;

dC tð Þ
dt

¼ bξηC tð Þ þ 1−pð Þγ1A tð Þ− μ0 þ μ2 þ γ3
� �

C tð Þ;

dV tð Þ
dt

¼ b 1−ξð Þ þ vS tð Þ− μ0 þ φð ÞV tð Þ:

ð6Þ

Regarding the local asymptotic stability of the proposed model at disease-free and en-

demic equilibrium points, we have the following results.

Theorem 2 If R0 > 1, then the model (1) is locally asymptotically stable at the endemic

equilibrium point E1, and if R0 < 1, then it is unstable.

Proof: The Jacobian matrix of model (6) at the endemic equilibrium point E1 is

J1 ¼

−h11 0 −βS1 −γβS1 bξη−ζβS1 φ

h21 −h22 βS1 γβS1 ζβS1 0

0 σ −b33 0 0 0

0 0 pγ1 b44 0 0

0 0 h53 0 −h55 0

v 0 0 0 0 −h66

0
BBBBBBB@

1
CCCCCCCA
; ð7Þ

where h11 = βS1 + γβB1 + ζβC1 − (μ0 + v), h21 = βS1 + γβB1 + ζβC1, h22 = σ + μ0, h33 = μ0
+ γ1 + ψ, h44 = μ0 + μ1 + γ2, h53 = (1 − p)γ1, h55 = μ0 + μ2 + γ3, h55 = μ0 + μ2 + γ3 and h66
= μ0 + φ. Using an elementary row operation to reduce the above matrix to echelon

form, we obtain the following matrix

J1 ¼

−K 11 0 −βS1 −γβS1 bξη−ζβS1 φ

0 −K 22 K 23 K 24 K 25 φh21
0 0 K 33 K 34 0 σφh21
0 0 0 K 44 K 45 −σφh21
0 0 0 0 K 44 σφh21
0 0 0 0 0 K 66

0
BBBBBBB@

1
CCCCCCCA
; ð8Þ

where K11 = − h11, K22 = h11h22, K23 = βS1(h11 − h21), K24 = γβS1(h11 − h21), K25

= ζβS1(h11 − h21), K33 = − h11h22h33 + σβS1(h11 − h21), K34 = σγβS1(h11 − h21), K35

= σζβS1(h11 − h21), K 44 ¼ − σβS1h44
pγ1

h11−h21ð Þ þ h11h22h33ð Þ; K45 = ζβS1(h11 − h21), K55 =

K44 + σζβS1(h11 − h21), K66 = K44 − L, and L is defined as

L ¼ ζβ h11−h21ð Þ σφvh44h53ð Þ
β pγ1ζh44 þ h45 pγγ1 þ h44ð Þð Þ :

Thus, the eigenvalues of the Jacobian matrix J1 are
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λ1 ¼ −K11 ¼ −h11; λ2 ¼ −K22 ¼ −h11h22;

λ3 ¼ K33 ¼ −h11h22h33 þ σβS1 h11−h21ð Þ;
λ3 ¼ K33 ¼ −h11h22h33 þ σβS1 h11−h21ð Þ;

λ4 ¼ K44 ¼ −σβS1 h11−h21ð Þ h44
pγ1

þ γ

0
@

1
A−

1
pγ1

h11h22h33h44;

λ5 ¼ K55 ¼ −
1
pγ1

σβS1h44 h11−h21ð Þ− 1
pγ1

h11h22h33h44−σβS1 γ−ζð Þ;

λ6 ¼ K66 ¼ K44−L:

All eigenvalues except λ5 have negative real parts and λ5 is negative, if γ > ζ. Hence,

all eigenvalues of the Jacobian matrix J1 have negative real part, if γ > ζ. Therefore, for

R0 > 1, the model (1) is locally asymptotically stable at the endemic equilibrium point

E1, if γ > ζ.

Global stability analysis

In this section, the global asymptotic stability of the proposed model for both disease-

free as well as at endemic equilibrium is shown. The method of Castillo-Chávez et al.

[15] is used to prove the global asymptotic stability at disease-free equilibrium. While

to show that the model (1) is globally asymptotically stable at endemic equilibrium, the

geometrical approach is implemented, which is a generalization of Lyapunov theory

[19]. Here, we give a brief analysis of the Castillo-Chávez et al. method and geometrical

approach to prove the global stability of the model (1) at disease-free equilibrium and

endemic equilibrium. Thus, by using the method of Castillo-Chávez et al. [15], to the

following two subsystems given by

dχ1
dt

¼ G χ1; ; χ2ð Þ;

dχ2
dt

¼ H χ1; ; χ2ð Þ: ð9Þ

In the system (9), χ1 and χ2 represent the number of uninfected and infected (latent,

acute infected, and chronic carrier) individuals, respectively, that is, χ1 = (S(t),V(t),

R(t)) ∈ R3 and χ2 = (L(t), A(t), B(t),C(t)) ∈ R4. The disease-free equilibrium is denoted by

E0 and defined as E0 ¼ χ01; 0
� �

: Thus, the existence of global stability at the disease-free

equilibrium point depends on the following two conditions.

� If dχ1
dt ¼ G χ1; 0ð Þ; χ01 is globally asymptotically stable.

� We have H χ1; ; χ2ð Þ ¼ Bχ1−H χ1; ; χ2ð Þ; where H χ1; ; χ2ð Þ≥0 for (χ1, χ2)∈ Δ..

In the second condition B ¼ Dχ2H χ01; 0
� �

is an M-matrix, that is, the off-diagonal en-

tries are positive and Δ is the feasible region. Then the following statement holds.

Lemma 1 For R0 < 1, the equilibrium point E0 = (χ0, 0) of the system (9) is said to be

globally asymptotically stable, if the above conditions are satisfied.

Similarly, to prove the global stability of the model (1) at endemic equilibrium E1, we

use the geometrical approach [19]. According to this method, we investigate the suffi-

cient condition through which the endemic equilibrium point is globally asymptotically

stable. To do this, we consider a system of differential equations given by
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_x ¼ f xð Þ; ð10Þ

where f :U→ Rn, U ⊂ Rn is an open set simply connected, and f ∈C1(U). Let us assume

that the solution to eq. (10) is f(x∗) = 0 and for x(t, x0), the following hypotheses hold.

� There exists a compact absorbing set K∈U.

� System (10) has a unique equilibrium.

The solution x∗ is said to be globally asymptotically stable in U, if it is locally asymp-

totically stable and all trajectories in U converge to the equilibrium x∗. For n ≥ 2, a con-

dition is satisfied for f, which precludes the existence of a non-constant periodic

solution of eq. (10) known as the Bendixson criterion. The classical Bendixson criterion

divf(x) < 0 for n = 2 is robust under C1 (see [19]). Further, a point x0 ∈U is wandering

for eq. (10), if there exists a neighborhood N of x0 and τ > 0, such that N ∩ x(t,N) is
empty for all t > τ. Thus, the following global stability principle is established for an au-

tonomous system in any finite dimension.

Lemma 2 If conditions 3 and 4 and the Bendixson criterion are satisfied for eq. (10),

then it is robust under C1local perturbation of f at all non-equilibrium, non-wandering

points for eq. (10). Then, x∗is globally asymptotically stable in U, provided that it is

stable.

Now to prove the robustness required for Lemma 2, let us define a function, such

that

P xð Þ ¼ n
2

� �
� n

2

� �
: ð11Þ

Eq. (11) is a matrix valued function on U. Further, assume that P−1 exists and is con-

tinuous for x ∈ K. Now define a quantity, such that

q ¼ lim
t→∞

sup sup
1
t

Z t

0
μ B x s; x0ð Þð Þð Þ½ �ds; ð12Þ

where B = PfP
−1 + PJ[2]P−1 and J[2] is the second additive compound matrix of the

Jacobian matrix J, that is, J(x) =Uf(x). Let ℓ(B) be the Lozinski measure of the matrix B

with respect to the norm ∣ ∣ . ∣ ∣ in Rn (see [20]) defined by

ℓ Bð Þ ¼ lim
x→0

∣I þ Bx∣−1
x

: ð13Þ

Hence, if q < 0, this shows that the presence of any orbit gives rise to a simple closed

rectifiable curve, such as periodic orbits and heterocyclic cycles.

Lemma 3 Let U be simply connected, and conditions 3 and 4 be satisfied, then the

unique equilibrium x∗of eq. (10) is globally asymptotically stable in U, if q < 0.

Now we apply the above techniques to prove the global stability of model (1) at

disease-free equilibrium and endemic equilibrium, respectively. Thus, we have the fol-

lowing stability results.

Theorem 3 If R0 < 1, the proposed model (1) is globally asymptotically stable at

disease-free equilibrium E0and unstable otherwise.

Proof: Let χ1 = (S(t),V(t)) and χ2 = (L(t), A(t), B(t),C(t)) represent the number of unin-

fected and infected individuals, respectively. Define E0 = (χ0, 0), where
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χ01 ¼
b φþ ξμ0ð Þ

μ0 μ0 þ vþ φð Þ ;
b μ0 þ v−μ0ξð Þ
μ0 μ0 þ vþ φð Þ

� �
: ð14Þ

Now using the proposed model (1), we have

dχ1
dt

¼ G χ1; ; χ2ð Þ;

dχ1
dt

¼ w tð Þ
b 1−ξð Þ− μ0 þ φð ÞV tð Þ þ vS tð Þ

� �
;

ð15Þ

where w(t) = bξ(1 − ηC(t)) + φV(t) − (βA(t) + γβB(t) + ζβB(t))S(t) − (μ0 + v)S(t). Thus, for

S = S0,V =V0, and G(χ1, 0) = 0, eq. (11) becomes

G χ1; 0ð Þ ¼ bξ þ φV 0− μ0 þ vð ÞS0
b 1−ξð Þ þ vS0− μ0 þ φð ÞV 0

� �
: ð16Þ

Thus, from eq. (16) as t→∞, χ1→χ01. Thus, χ1 ¼ χ01 is globally asymptotically stable.

Now to prove the second condition, that is H χ1; ; χ2ð Þ ¼ Bχ1−H χ1; ; χ2ð Þ, we have

Bχ1−H χ1; ; χ2ð Þ ¼
−c11 βS0 γβS0 ζβS0
σ −c22 0 0
0 c32 −c33 0
0 pγ1 0 −c44

0
BB@

1
CCA

L tð Þ
A tð Þ
B tð Þ
C tð Þ

0
BBB@

1
CCCA−

ϖ tð Þ
0
0
0

0
BB@

1
CCA; ð17Þ

where c11 = μ0 + σ, c22 = μ0 + γ1 + ψ, c32 = (1 − p)γ1, c33 = (μ0 + μ1 + γ2), c44 = μ0 + μ2 + γ3
+ bηξ, and ϖ(t) = βS0L(t) + γβS0A(t) + ζβS0C(t) − (βSL(t) + γβSA(t) + ζβSC(t)). Thus,

matrix B and H χ1; ; χ2ð Þ are given by

B ¼
−c11 βS0 γβS0 ζβS0
σ −c22 0 0
0 c32 −c33 0
0 pγ1 0 −c44

0
BB@

1
CCA; H χ1; ; χ2ð Þ ¼

ϖ tð Þ
0
0
0

0
BB@

1
CCA: ð18Þ

From the model (1), the total population is bounded by S0, that is, S, L, A, B,C ≤

S0, so βSL ≤ βS0I, βSA ≤ βS0A, βSB ≤ βS0B, and βSC ≤ βS0C, which implies that H

χ1; ; χ2ð Þ is positive definite. In addition, from eq. (18), it is clear that matrix B is

an M-matrix; that is, the off-diagonal elements are non-negative. Thus, conditions

1 and 2 are satisfied, so by Lemma 1, the disease-free equilibrium point E0 is glo-

bally asymptotically stable.

Theorem 4 If R0 > 1, the model (1) is globally asymptotically stable at endemic equi-

librium E1and unstable otherwise.

Proof: To prove the global asymptotic stability of the proposed model (1) at endemic

equilibrium E1, let us consider the subsystem of (1), such that
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dS tð Þ
dt

¼ bξ 1−ηC tð Þð Þ þ φV tð Þ−β A tð Þ þ γβB tð Þ þ ζβC tð Þð ÞS tð Þ

− μ0 þ vð ÞS tð Þ;
dL tð Þ
dt

¼ βS tð ÞA tð Þ þ γβS tð ÞB tð Þ þ ζβS tð ÞC tð Þ− σ þ μ0ð ÞL tð Þ;

dA tð Þ
dt

¼ σL tð Þ− μ0 þ γ1 þ ψð ÞA tð Þ:

ð19Þ

Obviously, the endemic equilibrium point E1 of the system (1) is locally asymptotic-

ally stable. Let J2 be the variational matrix of the system (19) given by

J2 ¼
−j11 0 −βS
j21 −j22 βS
0 σ −j33

0
@

1
A; ð20Þ

where

j11 ¼ βA tð Þ þ γβB tð Þ þ ζβC tð Þ þ 2μ0 þ vþ σ;

j22 ¼ βA tð Þ þ γβB tð Þ þ ζβC tð Þ þ 2μ0 þ vþ γ1 þ ψ;

j32 ¼ βA tð Þ þ γβB tð Þ þ ζβC tð Þ;
j33 ¼ 2μ0 þ σ þ γ1 þ ψ:

The second additive compound matrix of J2 is denoted by J∣2∣2 ; which becomes

J∣2∣2 ¼
− j11 þ j22ð Þ βS βS

σ − j11 þ j33
� �

0

0 j21 − j22 þ j33
� �

0
B@

1
CA: ð21Þ

Now choose a function P χð Þ ¼ P S; L;Að Þ ¼ diag S
L ;

S
L ;

S
L

� �
; which implies that P−1 χð Þ

¼ diag L
S ;

L
S ;

L
S

� �
; Then, taking the time derivative, that is, Pf(χ), we obtain

Pf χð Þ ¼ diag
_S

S
−
S _L

L2
;
_S

S
−
S _L

L2
;
_S

S
−
S _L

L2
g:

(
ð22Þ

Now Pf P−1 ¼ diag
_S

S −
_L

L ;
_S

S −
_L

L ;
_S

S −
_L

Lg
�

and PJ∣2∣P−1 = J∣2∣. Thus, we take B = PfP
−1 +

PJ∣2∣P−1, which can be written as

B ¼ B11 B12

B21 B22

� �
; ð23Þ

where

B11 ¼ −
_S

S
−
_L

L
−βA tð Þ−γβB tð Þ−ζBC tð Þ−2μ0−v−σ;

B12 ¼ βS tð Þ βS tð Þð Þ;

B21 ¼ σ

0

� �
;

B22 ¼ x11 0
x21 x22

� �
;

with x11 ¼
_S

S −
_L

L−βA tð Þ−γβB tð Þ−ζβC tð Þ−2μ0−v−γ1−ψ; x21 = βA(t) + γβB(t) + ζβC(t), and
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x22 ¼
_S

S −
_L

L−2μ0−σ−γ1−ψ: Let (a1, a2, a3) be a vector in R3 and its norm ∣ ∣ . ∣ ∣ defined

by

∣∣a1; a2; a3∣∣ ¼ max jja1jj; j; ja2jj þ j; ja3jjf g: ð24Þ
Let ℓ(B) be the Lozinski measure with respect to the above norm described by Martin

[20], then we choose

ℓ Bð Þ≤ sup g1; ; g2
� � ¼ sup ℓ B11ð Þ þ jjB12jj; ℓ B22ð Þ þ j; jB21jjf g; ð25Þ

where ∣ ∣ B12 ∣ ∣ and ∣ ∣ B21 ∣ ∣ are matrix norms, then

g1 ¼ ℓ B11ð Þ þ ∣∣B12∣∣; g2 ¼ ℓ B22ð Þ þ ∣∣B21∣∣; ð26Þ

where ℓ B11ð Þ ¼ −
_S

S −
_L

L−βA tð Þ−γβB tð Þ−ζBC tð Þ−2μ0−v−σ , ∣ ∣ B12 ∣ ∣ = βS(t), ℓ B22ð Þ
¼ max

_S

S −
_L

L−2μ0−v−γ1−ψ;
_S

S −
_L

L−2μ0−σ−γ1−ψg
�

¼ _S

S −
_L

L−2μ0−γ1−ψ−min v; σf g and ∣ ∣
B21 ∣ ∣ =max {σ, 0} = σ. Therefore, g1 and g2 becomes

g1 ¼
_S

S
−
_L

L
−βA tð Þ−γβB tð Þ−ζβC tð Þ−2μ0−min v; σf g þ βS tð Þ;

g2 ¼
_S

S
−
_L

L
−2μ0−σ−γ1−ψ;

which implies that

g1 ≤
_S

S
−2μ0−min v; σf g;

g2≤
_S

S
−2μ0−γ1−ψ: ð27Þ

Using eq. (27) in eq. (25), we obtain

ℓ Bð Þ ≤ sup g1; ; g2
� �

≤
� _S

S
−2μ0−min v; σf g;

_S

S
−2μ0−γ1−ψ

	
;

ℓ Bð Þ≤
� _S

S
−2μ0−min min v; σf g; γ1−ψ

� �	
:

ð28Þ

Hence, ℓ Bð Þ≤ _S

S −2μ0: Now integrating the Lozinski measure ℓ(B) with respect to t in

the interval [0, t] and taking limt→∞, we obtain
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Fig. 1 Solution curves of model (1) with respect to the following parameter values and initial size of the
compartmental population b = 0.0121, ξ = 0.8, η = 0.11, β = 0.012, γ = 0.46, ζ = 0.0123, σ = 0.0012, φ = 0.01, ψ
= 0.012, v = 0.6, p = 0.6, γ1 = 0.33, γ2 = 0.009, γ3 = 0.025, μ0 = 0.069, μ1 = 0.000532, μ2 = 0.000532, S(0) = 100,
A(0) = 70, B(0) = 60, C(0) = 50, R(0) = 0, and V(0) = 30.
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lim
t→∞

sup sup
1
t

Z t

0
ℓ Bð Þdt < −2μ0 < 0: ð29Þ

From eq. (29), we have

q ¼ lim
t→∞

sup sup
1
t

Z t

0
ℓ Bð Þdt < 0: ð30Þ

Thus, the system containing the first three equations of the model (1) is globally

asymptotically stable around its interior equilibrium (S1, L1, A1). Now consider the sub-

system of the model (1), such that

dB tð Þ
dt

¼ pγ1A tð Þ− μ0 þ μ1 þ γ2ð ÞB tð Þ;

dC tð Þ
dt

¼ bξηC tð Þ þ 1−pð Þγ1A tð Þ− μ0 þ μ2 þ γ3
� �

C tð Þ;

dR tð Þ
dt

¼ ψA tð Þ þ γ2B tð Þ þ γ3C tð Þ−μ0R tð Þ;

dV tð Þ
dt

¼ b 1−ξð Þ þ vS tð Þ− μ0 þ φð ÞV tð Þ:

ð31Þ

By taking the limit of the system (31), we obtain
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Fig. 2 Sensitivity analysis of model (1) by varying the value of ξ = 0.008, 0.08, 0.8 with all other values fixed:
b = 0.0121, η = 0.11, β = 0.012, γ = 0.46, ζ = 0.0123, σ = 0.0012, φ = 0.01, ψ = 0.012, v = 0.6, p = 0.6, γ1 = 0.33, γ2
= 0.009, γ3 = 0.025, μ0 = 0.069, μ1 = 0.000532, μ2 = 0.000532, S(0) = 100, A(0) = 70, B(0) = 60, C(0) = 50, R(0) = 0,
and V(0) = 30.
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dB tð Þ
dt

¼ pγ1A1− μ0 þ μ1 þ γ2ð ÞB tð Þ;

dC tð Þ
dt

¼ bξηC tð Þ þ 1−pð Þγ1A1− μ0 þ μ2 þ γ3
� �

C tð Þ;

dR tð Þ
dt

¼ ψA1 þ γ2B1 þ γ3C1−μ0R tð Þ;

dV tð Þ
dt

¼ b 1−ξð Þ þ vS1− μ0 þ φð ÞV tð Þ:

ð32Þ

This solves the system (32) using the initial conditions B(0), C(0), R(0), and V(0).

Thus, for large time t, that is, t→∞, B(t)→ B1, C(t)→ C1, R(t)→ R1, and V(t)→ V1,

which is sufficient to prove that the endemic equilibrium point E1 is globally asymptot-

ically stable.

Results and discussions
Numerical results and discussion

In this section, the numerical simulations of the proposed model (1) are presented. The

numerical results are obtained by using the fourth-order Runge–Kutta scheme [9, 10].

The simulation of our paper should be considered from a qualitative point of view, but

not from the quantitative point of view. Therefore, for this purpose, some of the pa-

rameters are taken from published articles and some are assumed with feasible values.
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Fig. 3 Sensitivity analysis of model (1) by varying the value of η = 0.001, 0.2, 0.8 with all other parameters
fixed: b = 0.0121, ξ = 0.8 β = 0.012, γ = 0.46, ζ = 0.0123, σ = 0.0012, φ = 0.01, ψ = 0.012, v = 0.6, p = 0.6, γ1 = 0.33,
γ2 = 0.009, γ3 = 0.025, μ0 = 0.069, μ1 = 0.000532, μ2 = 0.000532, S(0) = 100, A(0) = 70, B(0) = 60, C(0) = 50, R(0) =
0, and V(0) = 30.

Khan et al. Theoretical Biology and Medical Modelling  (2017) 14:22 Page 13 of 17



For our simulation, we consider the parameter values as follows: b = 0.0121, ξ = 0.8, η =

0.11, β = 0.012, γ = 0.46, ζ = 0.0123, σ = 0.0012, φ = 0.01, ψ = 0.012, v = 0.6, p = 0.6, γ1 =

0.33, γ2 = 0.009, γ3 = 0.025, μ0 = 0.069, μ1 = 0.000532, and μ2 = 0.000532. Some of these

parameters, the birth rate b, natural death rate μ0, and proportion of perinatally in-

fected individuals η, are taken from [13, 21, 22] and the remaining parameters are as-

sumed with biologically feasible values.

Fig. 1 represents the dynamical behavior of susceptible, recovered, vaccinated, latent,

acute infected, chronically infected, and vaccinated individuals, respectively. Moreover,

the time interval is taken 0–50, while the initial population size for the compartmental

population susceptible, latent, acute infected, chronically infected, carriers, recovered,

and vaccinated individuals are taken to be 100, 10, 70, 60, 50, 0, and 30, respectively.

The simulation of our proposed model shows that the susceptible, acute infected, and

chronically infected individuals decrease sharply, while the latent, carrier recovered,

and vaccinated increase at the beginning and then decrease, as shown in Fig. 1.

Sensitivity analysis

In the study of biological dynamics, the transmission dynamics of infectious disease

sensitivity analysis play an especially important role. Using sensitivity analysis, we can

investigate the role of each parameter used in the model and can easily develop a strat-

egy to control the spread of infection in the community. To do this, local sensitivity

analysis of the proposed model (1) has been carried out by varying parameters such as
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Fig. 4 Sensitivity analysis of model (1) by varying the value of β = 0.0012, 0.012, 0.12 with all other
parameters fixed: b = 0.0121, η = 0.8, ξ = 0.8, γ = 0.46, ζ = 0.0123, σ = 0.0012, φ = 0.01, ψ = 0.012, v = 0.6, p = 0.6,
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the birth rate, birth rate without successful vaccination, proportion of perinatally in-

fected individuals, interaction rate of infected and susceptible individuals, vaccination,

and the average probability of those individuals who fail to recover in acute stage and

develop the chronic stage. Thus, Figs 2–5 represents the sensitivity analysis of our pro-

posed model (1) with respect to birth rate without successful vaccination, proportion of

perinatally infected individuals, the interaction rate of susceptible and infected individ-

uals, and vaccination.

Figure 2 shows that the birth rate without successful vaccination is directly propor-

tional to carrier and inversely proportional to susceptible and vaccinated individuals,

while having no impact on acute and chronically infected individuals, which shows that

the inflow of newborns without successful vaccination will increase the risk of carrier

individuals. Fig. 3 represents that the rate of perinatally infected individuals is directly

proportional to carrier and inversely proportional to latent and vaccinated individuals,

while it has no impact on susceptible, acute infected, or and chronically infected indi-

viduals. Similarly to the inflow of newborns without successful vaccination, perinatally

infected individuals will also increase the risk of the carrier population. Fig. 4 shows

that the transmission/contact rate is directly proportional to the number of infected in-

dividuals including the latent, acute infected, chronically infected, and carrier individ-

uals, while inversely proportional susceptible, recovered, and vaccinated individuals,

which shows that the increasing contact rate of infected and non-infected will increase

the risk of the infected population. Fig. 5 shows that the vaccination rate is directly pro-

portional to recovered and vaccinated individuals and inversely proportional to
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Fig. 5 Sensitivity analysis of model (1) by varying the value of v = 0.002, 0.2, 0.4 with all other parameters
fixed: b = 0.0121, ξ = 0.8, η = 0.8, β = 0.012, γ = 0.46, ζ = 0.0123, σ = 0.0012, φ = 0.01, ψ = 0.012, p = 0.6, γ1 =
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susceptible and latent individuals, which illustrates that increasing vaccination will de-

crease the risk of an infected population. Thus, from the above discussion it is clear

that for the control of hepatitis B, we need to pay more attention to the above risk

factors.

Conclusion
In this article, we established a model for the transmission dynamics of hepatitis B by

taking into account the classification of different phases of individuals infected with

hepatitis B. We studied different mathematical analyses, including equilibrium analysis

and boundedness, and obtained the basic reproduction number by using the next-

generation matrix. Moreover, we discussed the stability analysis and showed that the

established model is both locally as well as globally asymptotically stable for the pos-

sible equilibria. To discuss the local stability, linearization and Routh—Herwitz criteria

were used, while global stability was retrieved by using the method of Castillo-Chávez

et al. and a geometrical approach. Finally, the numerical simulation and sensitivity ana-

lysis were presented to show the feasibility of the proposed work. Our work provides a

coherent platform for studying the full dynamics of hepatitis B and an effective direc-

tion for theoretical work. The techniques used in this article are also applicable to other

epidemic models.
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