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Abstract

Background: Social contact surveys can greatly help in quantifying the heterogeneous patterns of infectious
disease transmission. The present study aimed to conduct a contact survey in Japan, offering estimates of contact
by age and location and validating a social contact matrix using a seroepidemiological dataset of influenza.

Methods: An internet-based questionnaire survey was conducted, covering all 47 prefectures in Japan and
including a total of 1476 households. The social contact matrix was quantified assuming reciprocity and using the
maximum likelihood method. By imposing several parametric assumptions for the next-generation matrix, the
empirical seroepidemiological data of influenza A (H1N1) 2009 was analysed and we estimated the basic reproduction
number, R0.

Results: In total, the reported number of contacts on weekdays was 10,682 whereas that on weekend days was 8867.
Strong age-dependent assortativity was identified. Forty percent of weekday contacts took place at schools or
workplaces, but that declined to 14% on weekends. Accounting for the age-dependent heterogeneity with
the known social contact matrix, the minimum value of the Akaike information criterion was obtained and R0
was estimated at 1.45 (95% confidence interval: 1.42, 1.49).

Conclusions: Survey datasets will be useful for parameterizing the heterogeneous transmission model of various
directly transmitted infectious diseases in Japan. Age-dependent assortativity, especially among children, along with
numerous contacts in school settings on weekdays implies the potential effectiveness of school closure.
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Background
The epidemiological dynamics of directly transmitted in-
fectious diseases frequently exhibit highly heterogeneous
patterns [1]. In particular, the transmission of acute infec-
tious diseases tends to depend on the age of both primary
cases and their contacts [2], indicating a critical need to
account for age-dependent heterogeneity [3]. The basic
reproduction number in such a heterogeneously mixing
population is derived as the largest eigenvalue of the
age-dependent next-generation matrix [1, 4], and its com-
putation with n heterogeneously mixing age groups re-
quires quantification of n × n elements of the matrix.
However, it is frequently the case that the degrees of free-
dom during the statistical estimation are limited (e.g., lim-
ited by n different values of input data) [5].

Because use of the so-called WAIFW (who acquires
infection from whom) matrix serves as an approxima-
tion of the actual heterogeneous contact pattern [2], this
has recently attracted the attention of researchers, and
conducting a social contact survey appears to greatly as-
sist in reducing uncertainty with respect to heteroge-
neous contact patterns and quantifying a WAIFW
matrix [6, 7]. In many instances, participants in social
contact surveys, who are mostly recruited via conveni-
ence sampling, are asked to report the number of con-
tacts they experience on a given day (e.g., a weekday or
weekend day) with someone in the same or a different
age group, the social setting of that contact, the type of
contact (e.g., exchanging a few sentences or physical
bodily contact), the duration of contact, and so on. A
landmark study reporting the social contact patterns
among eight different European countries was con-
ducted as part of the so-called POLYMOD, a European
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Commission project [6]. Starting with the first study
published in 2008, similar surveys have been increas-
ingly conducted across the world, mostly using a
written diary [2, 6, 8, 9] or remote sensing device
[10–12]. Additional survey methods have also been
reported, including the analysis of time-use data [13]
and mobile phone network data [14]. Such empirical
data appear to be an essential back-up for infectious
disease modelling in the event of emerging infectious
disease epidemics, such as the Ebola virus disease epi-
demic in West Africa in 2014–2016 [15, 16].
POLYMOD surveys have taken place in East and

Southeast Asian countries and regions, including China,
the Hong Kong Special Administrative Region, Japan,
Taiwan, Thailand, and Vietnam [8, 9, 17–23]. Whereas
the findings have mostly echoed those reported in West-
ern countries (e.g., strong age assortativity, decreased
contacts with age, and increased contacts with house-
hold size) [8], these studies can be expected to provide
key information to parameterize infectious disease trans-
mission in these countries. An existing study in Japan by
Ibuka et al. [17] also successfully identified characteris-
tics similar to those stated above; however, that study in-
dicated a weak predictability of influenza using a contact
matrix alone. Also, people aged 20–29 years were con-
sidered to have been under-represented in the published
survey. The need remains for a similar data collection
method but one that addresses the issue of validation
using infectious disease data, possibly with better repre-
sentation of the Japanese population.
The present study aimed to conduct a contact survey

in Japan, offering estimates of contacts according to
5-year age groups, and validating the matrix using a ser-
oepidemiological dataset of influenza.

Methods
Data collection
We conducted an internet-based questionnaire survey
covering all 47 prefectures in Japan. Area sampling was
conducted using the population size in Japan, determin-
ing the sample size by age and prefecture to be propor-
tional to the actual age- and prefecture-specific
distributions. The survey was conducted via a private
company that has a collection of monitors to act as po-
tential respondents across Japan, and published studies
that rested on the internet survey of the same company
are found elsewhere [24–26]. The present survey started
with an advertisement that was notified among all regis-
tered monitors, and of these, a total of 1476 households
have voluntarily decided to participate in the survey. As
a consequence, a total of 2271 respondents were con-
veniently sampled to achieve a proportional sample of
0.015% in each 5-year age stratum and prefecture. The
survey was conducted from 28 October to 1 December

2014, with manual validation of unclear responses con-
tinuing until 9 March 2015. Demographic variables
other than age and prefecture of residence included sex,
occupation and household size. Each respondent re-
corded all contacts during one weekday (Wednesday)
and one weekend day (Sunday). A contact was defined
as an exchange of three Japanese sentences or a physical
touch on the skin. Each survey respondent was re-
quested to keep a diary, recording each contactor’s age,
sex, type of contact (i.e., conversation or physical), and
the duration and location of contact. The questionnaire
format was the same as that used elsewhere [6].

Contact matrix
According to the ages of each respondent–contactor
pair, reported contacts were grouped into 15 discrete age
groups (0–4, 5–9, …, 65–69, and 70 years or older).
These constituted the so-called social contact matrix
{mij} representing the rate of contact between an individ-
ual in age group j with individuals in age group i on a
given day. To quantify {mij}, we adopted an assumption
of reciprocity, i.e., the mean number of contacts that an
individual in age group i experiences with individuals in
age group j is equal to the number that an individual in
age group j experiences with individuals in age group i.
Thus, we adjusted the asymmetry of the contact rate
using the age-dependent population size. The mean con-
tact rate {mij} was estimated using the maximum likeli-
hood method, as previously reported [7].

Validation using influenza data
A key assumption when using the social contact matrix
to model age-dependent heterogeneity of infectious dis-
ease transmission is that the age-dependent transmission
matrix containing the contact frequency is informed by
the social contact matrix. To capture age-dependent het-
erogeneity, we used the so-called next-generation
matrix, K = {kij}, comprising the average number of sec-
ondary infections in age group i that are caused by a sin-
gle infectious individual in age group j in a fully
susceptible population. The matrix describes the
per-generation heterogeneity for the risk of infection by
age; in the simplest terms, it may be parameterized using
the social contact matrix as kij = qmij, where q is a con-
stant that can be interpreted as the disease-specific in-
fectivity [27]. Alternatively, one can parameterize K as
kij = simij if the susceptibility varies with age group i, and
similarly, kij = ujmij if the infectiousness of age group j
matters biologically.
Once the parametric assumption of the next-generation

matrix was determined, we quantified the next-generation
matrix by analysing the empirical seroepidemiological
dataset of influenza A (H1N1) 2009 collected by the
government of Japan [28] and estimating the basic
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reproduction number, R0, which is interpreted as the aver-
age number of secondary cases generated by a typical sin-
gle primary case in a fully susceptible population and is
calculated as the largest eigenvalue of the next-generation
matrix [1, 3, 4]. Depending on the parametric assumption,
we estimated the constant q or age-dependent susceptibil-
ity si to scale the next-generation matrix. To do so, we
analysed the age-specific final size distribution (or sero-
logically determined cumulative incidence) of influenza A
(H1N1) 2009, using the difference in the age-specific sero-
prevalence between the 2009 and 2010 surveys. In 2009
and 2010, a total of 6626 and 6539 samples were collected,
respectively, from all age groups. In each year, the survey
took place from June to September; thus, the surveys in
2009 and 2010 contained the first wave of the pandemic
within the inter-survey period. To determine seropositiv-
ity, we imposed a cut-off level of 1:20 as the default [29].
Additional file 1: Table S1 shows the dataset used to valid-
ate the importance of using the social contact matrix. Sub-
tracting the positive fraction in 2009 from that in 2010, we
obtained the empirical value of cumulative incidence zi,
which satisfies the so-called age-dependent final size
equation:

zi ¼ 1− exp −
X

j
z jkij

� �

where i and j denote age groups and {kij} denotes the
next-generation matrix. Iteratively solving this equation,
we optimized the likelihood function

L θ;n;mð Þ ¼
Y

i

n10;i
m10;i

� �
z9;i þ zi
� �m10;i 1−z9;i−zi

� �n10;i−m10;i

where n10,i and m10,i represent the observed total and
positive serological samples in age group i in 2010, re-
spectively, z9,i is the positive fraction of age group i in
2009, and θ is the population parameter. We parameter-
ized the next-generation matrix in various ways and
tested the goodness of fit referring to the Akaike
information criterion (AIC). As possible candidate
matrices that do not rest on the social contact matrix,
we tested the fully parameterized next-generation matrix
including the homogeneous mixing assumption (kij = R),
where R is a constant and the separable mixing assump-
tion (kij = aiaj), comparing their fit against those using
the social contact matrix. The 95% confidence intervals
(CI) of parameters were computed using the profile
likelihood.

Ethical considerations
The purpose of the study was explained to participants,
and they were ensured that the extent of the use of sur-
vey information would be limited to the present study.
Informed consent was obtained via a website, and

participants had the right to withdraw at any time dur-
ing the study period. The Medical Ethics Committees of
the Graduate School of Medicine, The University of
Tokyo approved this study (approval ID: 10478). As for
the seroepidemiological data, the present study used
publicly available data [28]. The datasets had already
been fully anonymized and did not include any identifi-
able information. Thus, ethical approval was not re-
quired for the analysis of seroepidemiological data.

Data sharing policy
Seroepidemiological surveillance data can be accessed
online via a linked URL [28]. A summary of the contact
datasets presented in this study can be obtained from
the corresponding author upon request.

Results
In total, the reported number of contacts on weekdays
was 10,682 and that on weekend days was 8867. Fig-
ure 1a shows the distribution of the daily rate of con-
tacts per person, revealing a right-skewed distribution
that could potentially be approximated to follow a power
law, which can be confirmed by approximately a linear
distribution by log-log plot. Due to area sampling with a
proportional age sampling distribution, the samples of
our survey qualitatively captured the essential part of the
ages that were observed, whereas the ages among elderly
respondents were relatively under-sampled (Fig. 1b).
Due to the internet survey that starts with recruitment
of registered monitors that are dominated by house-
wives, female slightly dominated respondents (59.6%).
Common occupations included office workers (25.4%),
housewives (23.9%), part-time worker (12.4%), retired
persons (4.9%), primary school children (4.5%), and
self-employed persons (4.2%). The household size ranged
from 1 to 10 with the mean and standard deviation of
3.2 and 0.2 persons, respectively, which are consistent
with the household size of the entire Japan.
Of contacts on weekdays and weekend days, 27.8 and

34.9% were classified as physical contacts, respectively.
On weekdays, the highest average number of physical
contacts per person (5.36) was seen in the age group 0–
4 years, and the highest number of non-physical contacts
(5.67) was seen in respondents aged 15–19 years. The
lowest average number of physical contacts (0.69) was
found among those aged 65–69 years and that of
non-physical contacts (0.12) was among small children
aged 0–4 years (Additional file 2: Table S2). These pat-
terns were maintained on weekend days (Additional file 3:
Table S3). The difference between weekdays and week-
end days was highlighted by the location of contact, i.e.,
40% of weekday contacts took place at school or the
workplace, but this declined to 14% on the weekend
(Additional file 4: Figure S1). On the contrary,
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Fig. 1 Distributions of contact frequency and age of sample population in Japan. a Log-log plot of contact frequency distribution. Logarithm of
the proportion of the sample population was taken against the number of contacts (contact frequency) per day. b Age distribution of the study
sample (bars) by age group and sex. Dashed lines represent the age distributions of the entire population of Japan as of 1 November 2016,
overlaid with the sample population

Fig. 2 Contact matrix on weekdays and weekend days. a Average weekday and b weekend contact rate with discrete gradations. Age-dependent
contact heterogeneity is approximately captured by these matrices. The number in each cell represents the contact rate per person
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household contacts accounted for 35 and 50% of con-
tacts on weekday and weekend days, respectively.
An age-dependent contact matrix by 5-year age groups

is shown in Fig. 2. The assortativity coefficient, measured
using Newman’s assortativity index or equivalently, Pear-
son’s moment correlation, was 0.27 and 0.18 for weekday
and weekend contacts, respectively, clearly indicating that
the mixing pattern was highly age assortative. From this
difference and the data in Additional files 2 and 3: Tables
S2 and S3, it can be seen that the assortative contacts
stemmed from contacts taking place at schools or work-
places. In addition to the contacts within similar age
groups, we identified the relatively high contact between
children and those aged from 25 to 40 years, representing
household contacts. The density of household contacts
was elevated on weekend days.
Figure 3 shows contacts classified into those in house-

holds and the community. The non-household contacts
indicate that assortative or within-age group contacts
dominated the overall contacts (Fig. 3a). However, in
households, contacts between parents and children dom-
inated the overall contacts (Fig. 3b). Contacts in the
community are likely to be non-physical, whereas those
in households are frequently physical contacts.
Analysing the difference in the seropositive proportions

between 2009 and 2010 (Additional files 1: Table S1), we
estimated the next-generation matrix using the
above-mentioned weekday contact matrix. Figure 4 shows a
comparison of the observed fraction infected against the
predicted cumulative incidence, using a variety of contact
heterogeneity methods. The highest proportion infected
was seen in adolescents aged 10–14 years (64.0%) and the
lowest proportion was among elderly people aged 60–64
years (13.5%). The overall cumulative incidence, weighted
by age-specific population, was 36.7%. Table 1 shows results

from the model comparison. Without accounting for
age-dependent heterogeneity, R0 was estimated at 1.25 (95%
CI: 1.24, 1.26), but the AIC was as large as 819. When we
accounted for age-dependent heterogeneity without using
the contact matrix, the AIC was reduced, but it remained
unclear whether the estimated heterogeneity sufficiently
captured the age-dependent heterogeneous transmission
patterns. Using the social contact matrix, but without
adjusting age-dependent susceptibility, the AIC was elevated
to 458. Using the matrix and adjusting for age-dependent
susceptibility, a minimum AIC of 209 was obtained, and R0
was estimated to be 1.45 (95% CI: 1.42, 1.49). Owing to
maximum use of the degrees of freedom, AIC for separable
mixing and that using the contact matrix with adjustment
of age-dependent susceptibility were the same to the second
decimal place, but the latter yielded the minimum value
with greater precision. On the other hand, when infectious-
ness was varied with age, the resulting improvement of AIC
was not as large as that of age-dependent susceptibility.
Figure 5 shows the estimated age-dependent relative

susceptibility, indicating a critical need to not rely on
the reported contact; age-dependent susceptibility must
be considered, to capture the observed age-dependent
heterogeneous patterns of transmission. Larger estimates
of relative susceptibility were obtained among those aged
from 20 to 29 years compared with children, perhaps
reflecting limited representation of the social contact
among adults to capture the actual transmission of influ-
enza. There were large variations in relative susceptibil-
ity estimates among elderly, but it is plausible that those
variations were induced by sampling error.

Discussion
In the present study, we performed a social contact sur-
vey in Japan, quantifying an age-dependent contact

Fig. 3 Contact matrix within the household and in the community (weekday contact). Colour bars indicate the mean number of contacts. a Non-
household contact matrix represents the estimated mean number of contacts per day between respondents (i.e., survey participant) and persons
other than their household members. b Household contact matrix represents the estimated mean number of contacts per day between respondents
(i.e., survey participants) and their household members. Household is defined as the same unit of living space, and household members are the individuals
who share that living space, regardless of blood relationship
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matrix by age group and also examining the characteris-
tics according to location of contact. Weekday contacts
were frequently seen in schools or workplaces
whereas weekend contacts mostly took place in
households. We identified strong age-dependent
assortativity, especially among children, implying the
potential effectiveness of school closure. A high rate
of contact was also identified between school-age
children and the age groups of their parents or
guardians. The contact matrix was used to quantify
heterogeneous transmission pattern by age, and we
validated its usefulness by analysing seroepidemiologi-
cal datasets of influenza A (H1N1) 2009. Using the
social contact data, we obtained the minimum AIC,
yielding an estimate of R0 for Japan at 1.45 (95% CI:
1.42, 1.49).

There have been numerous studies conducted on
social contact [2, 6–13, 17–23, 30–60], including an earl-
ier study in Japan [17] and a systematic review [30]. In
the present study, we aimed to validate social contacts in
Japan using infectious disease data. We specifically
investigated age-dependent cumulative incidence using
seroepidemiological data and estimating a next-
generation matrix, which would be key to real-time in-
terpretation of epidemiological dynamics [61–64]. We
thereby demonstrated the importance of accounting for
age-dependent susceptibility. It is important to consider
variations by survey setting and method. In fact, depend-
ing on geographic location, a statistical study using a
Bayesian hierarchical model demonstrated that the as-
sortative contact pattern can vary by location of contact
[31] (e.g., age-dependent assortativity in workplaces was

Fig. 4 Comparison between observed and estimated age-specific proportions of infected individuals during 2009 influenza A (H1N1) pandemic.
Age-specific proportions of infection, or the so-called population attack rate or final size, during the 2009 influenza A (H1N1) pandemic, illustrated
by age. Estimates were obtained by imposing various assumptions of age-dependent contact patterns, including homogeneous (or random)
mixing, separable mixing (i.e., contributions of contactor and contactee are separable), age-independent susceptibility (i.e., the contact matrix was
used, but the entire next-generation matrix was assumed proportional to that matrix), and age-dependent susceptibility (i.e., contact matrix plus
age-dependent susceptibility per contact were estimated)

Table 1 Comparison of model fit and estimated parameters

Contact pattern R0
‡ (95% confidence interval) Number of parameters AIC†

Use social contact matrix Plus age-independent susceptibility 1.34 (1.33, 1.35) 1 457.5

Plus age-dependent susceptibility 1.45 (1.42, 1.49) 15 208.6

Separable mixing 1.40 (1.38, 1.44) 15 208.6

Homogeneous mixing 1.25 (1.24, 1.26) 1 818.9

† Akaike information criterion, calculated as the 2NLL + 2param where NLL and param represent negative log-likelihood and the number of
parameters, respectively
‡ Basic reproduction number, R0, interpreted as the average number of secondary cases generated by a single primary case in a fully susceptible population.
When the age-dependent heterogeneity is taken into account, R0 is calculated as the dominant eigenvalue of the next-generation matrix.
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the least assortative, and inter-generational contact was
more frequent in Asia). Keeping in mind the possibility
of such variations, the present study focused on the use
of social contact data that were validated using epi-
demiological data of influenza, which has been missing
in the literature.
The present study findings support known evidence

from the POLYMOD surveys. First, in our study and also
in other published studies, age-dependent contact was
highly assortative, and quantifying this pattern was key to
appropriately estimating age-dependent interventions, in-
cluding age-dependent supplementary immunization. Sec-
ond, physical and non-physical contacts were surveyed,
and we observed that physical contacts were common in
households whereas non-physical contacts were frequent
in schools and workplaces. Physical contact may be the
key to understanding transmission via contact (e.g., house-
hold transmission of Ebola virus disease), whereas
non-physical contact may mirror the pattern of respiratory
diseases. Different patterns between weekends and week-
days highlight the possible effectiveness of school closure
on influenza transmission [32]. These are useful notions
for parameterizing models to predict future incidence of
infectious diseases [5].
Compared with Ibuka et al. [17], there are three major

differences in our study. First, the contact matrix was
validated using infectious disease data. Second, we per-
formed age-dependent area sampling. Sampling appro-
priate households according to age has been identified
as key for successfully capturing overall patterns of con-
tact [37]. Third, with respect to the overall frequency of
contact, the absolute number of contacts in the present

study was smaller than that in Ibuka et al. [17]; the earl-
ier study implemented a diary-based survey whereas
ours relied on daily input of contacts via a website. As
indicated elsewhere [37], a paper-based diary is more
efficient for recording contacts than an electronic device.
Improvement of the sampling scheme and data collec-
tion method remain open research subjects.
Whereas in the present study, we successfully quanti-

fied the social contact matrix, three technical issues of
the social contact matrix must be noted, from the view-
point of contact networks. First, whereas we devised the
approximate matrix without individual identity, it would
be useful to study how individual-based contacts affect
infectious disease transmission by investigating detailed
topological features as well as dynamic behaviour of the
network. In addition, contact duration was not incorpo-
rated into the estimated contact matrix, which is our
future aim. Second, conventional survey-based contact
data collection can mostly offer only static network data
and may be subject to human error, including reporting
and recall biases. Moreover, such surveys may be time
consuming and costly. Establishing a low-cost alternative
method using novel or existing technologies is warranted
[14, 16].
Four study limitations must be noted. First, the sample

size of the present study was limited, with fewer than
3000 participants, smaller than that of Ibuka et al. [17].
Second, whereas we explicitly chose to use area sam-
pling, sampling was conducted by prefecture; owing to
the proportional nature, we were unable to compare dif-
ferences between urban and rural locations. Third, the
actual definition of contact can be very broad; however,

Fig. 5 Age-dependent relative susceptibility against the 2009 influenza A (H1N1). Maximum likelihood estimates of the age-dependent relative
susceptibility are shown, taking the age group 0–4 years as the reference group with the value 1.0. Dashed lines represent lower and upper 95%
confidence intervals derived from the profile likelihood
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it must be remembered that social contact surveys
involve arbitrariness in defining the contact in each case.
Fourth, the survey included reporting bias, e.g., respon-
dents were mostly sampled from among homemakers
registered with an internet survey company, and the
extent of responses was dependent on the
respondent-driven sampling of household members and
respondents’ computer literacy.
We must emphasize that the present study successfully

adds validated evidence of the social contact matrix to
the literature, identifying common features in the pub-
lished POLYMOD surveys. These datasets will be useful
for parameterizing the heterogeneous transmission
model of infectious diseases in Japan in the future.

Conclusions
In the present study, we conducted a social contact survey
in Japan, validating an age-dependent contact matrix ac-
cording to age group and investigating the characteristics
according to location of contact. Strong age-dependent
assortativity was identified, especially among children, and
a high rate of contact was also identified between
school-age children and the age groups of their parents/
guardians. Survey datasets will be useful for parameteriz-
ing the heterogeneous transmission model of various
directly-transmitted infectious diseases in Japan.
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contact duration. (TIFF 219 kb)

Abbreviations
AIC: Akaike Information Criterion; CI: Confidence interval

Acknowledgements
LM acknowledges Dr. Shinya Tsuzuki for his support in planning the analysis.
We thank Analisa Avila, ELS, of Edanz Group (www.edanzediting.com/ac) for
editing a draft of this manuscript.

Funding
LM’s study was supported by the Japan Society for the Promotion of Science
(JSPS) Program for Advancing Strategic International Networks to Accelerate
the Circulation of Talented Researchers. HN received funding support from
the Japan Agency for Medical Research and Development (JP18fk0108050);
Japan Society for the Promotion of Science KAKENHI (Grant Numbers
16KT0130, 17H04701, 17H05808 and 18H04895); Health and Labour Sciences
Research Grant (H28-AIDS-General-001); the Inamori Foundation, the
Telecommunication Advancement Foundation; and the Japan Science and
Technology Agency (JST) CREST program (JPMJCR1413). The funders had no

role in the study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Availability of data and materials
Seroepidemiological surveillance data can be accessed online using a linked
URL [28]. A summary of the contact datasets that were reported in the
present study can be obtained from the corresponding author upon request.

Authors’ contributions
HN conceived the study and collected the data. HN and LM conceptualized
the study design, formulated the mathematical model, and performed
statistical analyses. YA assisted with the statistical analyses using R software.
HN and LM drafted an early version of the manuscript, and LM drafted the
figures. All authors provided comments on the revised manuscript and
approved the final version of the manuscript.

Authors’ information
The authors are experts with an interest in infectious disease epidemiology
and also theoretical epidemiology, and the corresponding author is the
chairperson and team leader of the Department of Hygiene, Hokkaido
University Graduate School of Medicine.

Ethics approval and consent to participate
The purpose of the study was explained to participants and they were
ensured that the extent of use of the survey information was limited to the
present study. Informed consent was obtained via the internet webpage,
and participants had the right to withdraw at any time during the study
period. The Medical Ethics Committees at the Graduate School of Medicine,
The University of Tokyo approved this study (approval ID: 10478). As for the
seroepidemiological data, we used publicly available data in the present
study [28]. The datasets had already been fully anonymized and did not
include any identifiable information. Thus, ethical approval was not required
for the analysis of seroepidemiological data.

Consent for publication
Not applicable – all details relating to participants were de-identified prior to
inclusion in this study.

Competing interests
The authors declare that co-author H. Nishiura is the Editor-in-Chief of Theor-
etical Biology and Medical Modelling. This does not alter the authors’ adher-
ence to all policies of Theoretical Biology and Medical Modelling on sharing
data and materials.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 10 December 2018 Accepted: 5 March 2019

References
1. Diekmann O, Heesterbeek JA, Metz JA. On the definition and the

computation of the basic reproduction ratio R0 in models for infectious
diseases in heterogeneous populations. J Math Biol. 1990;28:365–82.

2. Edmunds WJ, O'Callaghan CJ, Nokes DJ. Who mixes with whom? A method
to determine the contact patterns of adults that may lead to the spread of
airborne infections. Proc Biol Sci. 1997;264:949–57.

3. Farrington CP, Kanaan MN, Gay NJ. Estimation of the basic reproduction
number for infectious diseases from age-stratified serological survey data. J
R Stat Soc Ser C. 2001;50:251–92.

4. Diekmann O, Heesterbeek JA, Roberts MG. The construction of next-
generation matrices for compartmental epidemic models. J R Soc Interface.
2010;7:873–85.

5. Grenfell BT, Anderson RM. The estimation of age-related rates of infection
from case notifications and serological data. J Hyg. 1985;95:419–36.

6. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M,
Salmaso S, Tomba GS, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinska M,
Edmunds WJ. Social contacts and mixing patterns relevant to the spread of
infectious diseases. PLoS Med. 2008;5:e74.

Munasinghe et al. Theoretical Biology and Medical Modelling            (2019) 16:6 Page 8 of 10

https://doi.org/10.1186/s12976-019-0102-8
https://doi.org/10.1186/s12976-019-0102-8
https://doi.org/10.1186/s12976-019-0102-8
https://doi.org/10.1186/s12976-019-0102-8
http://www.edanzediting.com/ac


7. Wallinga J, Teunis P, Kretzschmar M. Using data on social contacts to
estimate age-specific transmission parameters for respiratory-spread
infectious agents. Am J Epidemiol. 2006;164:936–44.

8. Leung K, Jit M, Lau EHY, Wu JT. Social contact patterns relevant to the spread
of respiratory infectious diseases in Hong Kong. Sci Rep. 2017;7:7974–86.

9. Read JM, Lessler J, Riley S, Wang S, Tan LJ, Kwok KO, Guan Y, Jiang CQ,
Cummings DA. Social mixing patterns in rural and urban areas of southern
China. Proc R Soc Lond Ser B. 2014;281:20140268.

10. Barrat A, Cattuto C, Tozzi AE, Vanhems P, Voirin N. Measuring contact
patterns with wearable sensors: methods, data characteristics and
applications to data-driven simulations of infectious diseases. Clin Microbiol
Infect. 2014;20:10–6.

11. Mastrandrea R, Fournet J, Barrat A. Contact patterns in a high school: a
comparison between data collected using wearable sensors, Contact Diaries
and Friendship Surveys. PLoS One. 2015;10:e0136497.

12. Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, Jones JH. A high-
resolution human contact network for infectious disease transmission. Proc
Natl Acad Sci U S A. 2010;107:22020–5.

13. Zagheni E, Billari FC, Manfredi P, Melegaro A, Mossong J, Edmunds WJ.
Using time-use data to parameterize models for the spread of close-contact
infectious diseases. Am J Epidemiol. 2008;168:1082–90.

14. Wesolowski A, Buckee CO, Engø-Monsen K, Metcalf CJE. Connecting
Mobility to Infectious Diseases: The Promise and Limits of Mobile Phone
Data. J Infect Dis. 2016;214(suppl_4):S414–20.

15. Krauer F, Gsteiger S, Low N, Hansen CH, Althaus CL. Heterogeneity in
district-level transmission of Ebola virus disease during the 2013-2015
epidemic in West Africa. PLoS Negl Trop Dis. 2016;10:e0004867.

16. Bansal S, Chowell G, Simonsen L, Vespignani A, Viboud C. Big Data for Infectious
Disease Surveillance and Modeling. J Infect Dis. 2016;214(suppl_4):S375–9.

17. Ibuka Y, Ohkusa Y, Sugawara T, Chapman GB, Yamin D, Atkins KE, Taniguchi
K, Okabe N, Galvani AP. Social contacts, vaccination decisions and influenza
in Japan. J Epidemiol Community Health. 2016;70:162–7.

18. Horby P, Pham QT, Hens N, Nguyen TT, Le QM, Dang DT, Nguyen ML,
Nguyen TH, Alexander N, Edmunds WJ, Tran ND, Fox A, Nguyen TH. Social
contact patterns in Vietnam and implications for the control of infectious
diseases. PLoS One. 2011;6:e16965.

19. Fu YC, Wang DW, Chuang JH. Representative contact diaries for modeling
the spread of infectious diseases in Taiwan. PLoS One. 2012;7:e45113.

20. Kwok KO, Cowling B, Wei V, Riley S, Read JM. Temporal variation of human
encounters and the number of locations in which they occur: a longitudinal
study of Hong Kong residents. J R Soc Interface. 2018;15.

21. Chen SC, You ZS. Social contact patterns of school-age children in Taiwan:
comparison of the term time and holiday periods. Epidemiol Infect. 2015;
143:1139–47.

22. Stein ML, van Steenbergen JE, Chanyasanha C, Tipayamongkholgul M,
Buskens V, van der Heijden PG, Sabaiwan W, Bengtsson L, Lu X, Thorson AE,
Kretzschmar ME. Online respondent-driven sampling for studying contact
patterns relevant for the spread of close-contact pathogens: a pilot study in
Thailand. PLoS One. 2014;9:e85256.

23. Stein ML, van der Heijden PGM, Buskens V, van Steenbergen JE, Bengtsson
L, Koppeschaar CE, Thorson A, Kretzschmar MME. Tracking social contact
networks with online respondent-driven detection: who recruits whom?
BMC Infect Dis. 2015;15:522–34.

24. Mizumoto K, Yamamoto T, Nishiura H. Age-dependent estimates of the
epidemiological impact of pandemic influenza (H1N1–2009) in Japan.
Comput Math Methods Med. 2013;2013:637064.

25. Nishiura H, Oshitani H. Household transmission of influenza (H1N1-2009)
in Japan: age-specificity and reduction of household transmission risk
by zanamivir treatment. J Int Med Res. 2011;39:619–28.

26. Nishiura H, Oshitani H. Effects of vaccination against pandemic (H1N1) 2009
among Japanese children. Emerg Infect Dis. 2011;17:746–7.

27. Nishiura H, Chowell G, Safan M, Castillo-Chavez C. Pros and cons of
estimating the reproduction number from early epidemic growth rate of
influenza a (H1N1) 2009. Theor Biol Med Model. 2010;7:1–9.

28. National Institute of Infectious Diseases, Japan. National Epidemiological
Surveillance of Vaccine-Preventable Diseases (NESVPD). In: Tokyo: National
Institute of Infectious Diseases; 2018. Available from: https://www.niid.go.jp/
niid/ja/yosoku-index.html.

29. Endo A, Ejima K, Nishiura H. Capturing the transmission dynamics of the
2009 Japanese pandemic influenza H1N1 in the presence of heterogeneous
immunity. Ann Epidemiol. 2018;28:293–300.

30. Hoang TV, Coletti P, Melegaro A, Wallinga J, Grijalva C, Edmunds J, Beutels
P, Hens N. A systematic review of social contact surveys to inform
transmission models of close contact infections. bioRxiv. 2018:292235.
https://doi.org/10.1101/292235.

31. Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries
using contact surveys and demographic data. PLoS Comput Biol. 2017;13:
e1005697.

32. Hens N, Ayele GM, Goeyvaerts N, Aerts M, Mossong J, Edmunds JW, Beutels
P. Estimating the impact of school closure on social mixing behaviour and
the transmission of close contact infections in eight European countries.
BMC Infect Dis. 2009;9:187–99.

33. Kretzschmar M, Mikolajczyk RT. Contact profiles in eight European countries
and implications for modelling the spread of airborne infectious diseases.
PLoS One. 2009;4:e5931.

34. Mikolajczyk RT, Kretzschmar M. Collecting social contact data in the context
of disease transmission: prospective and retrospective study designs. Soc
Netw. 2008;30:127–35.

35. Rolls DA, Geard NL, Warr DJ, Nathan PM, Robins GL, Pattison PE, McCaw JM,
McVernon J. Social encounter profiles of greater Melbourne residents, by
location--a telephone survey. BMC Infect Dis. 2015;15:494–505.

36. Kiti MC, Kinyanjui TM, Koech DC, Munywoki PK, Medley GF, Nokes DJ.
Quantifying age-related rates of social contact using diaries in a rural coastal
population of Kenya. PLoS One. 2014;9:e104786.

37. McCaw JM, Forbes K, Nathan PM, Pattison PE, Robins GL, Nolan TM,
McVernon J. Comparison of three methods for ascertainment of contact
information relevant to respiratory pathogen transmission in encounter
networks. BMC Infect Dis. 2010;10:166–77.

38. Danon L, House TA, Read JM, Keeling MJ. Social encounter networks:
collective properties and disease transmission. J R Soc Interface. 2012;9:
2826–33.

39. Eames KTD, Tilston NL, Edmunds WJ. The impact of school holidays on the
social mixing patterns of school children. Epidemics. 2011;3:103–8.

40. Read JM, Eames KT, Edmunds WJ. Dynamic social networks and the
implications for the spread of infectious disease. J R Soc Interface. 2008;5:
1001–7.

41. van de Kassteele J, van Eijkeren J, Wallinga J. Efficient estimation of age-
specific social contact rates between men and women. Ann Appl Stat. 2017;
11:320–39.

42. Bernard H, Fischer R, Mikolajczyk RT, Kretzschmar M, Wildner M. Nurses'
contacts and potential for infectious disease transmission. Emerg Infect Dis.
2009;15:1438–44.

43. Glass LM, Glass RJ. Social contact networks for the spread of pandemic
influenza in children and teenagers. BMC Public Health. 2008;8:61–76.

44. DeStefano F, Haber M, Currivan D, Farris T, Burrus B, Stone-Wiggins B,
McCalla A, Guled H, Shih H, Edelson P, Wetterhall S. Factors associated with
social contacts in four communities during the 2007–2008 influenza season.
Epidemiol Infect. 2011;139:1181–90.

45. Potter GE, Handcock MS, Longini IM, Halloran ME. Estimating within-school contact
networks to understand influenza transmission. Ann Appl Stat. 2012;6:1–26.

46. Smieszek T. A mechanistic model of infection: why duration and intensity of
contacts should be included in models of disease spread. Theor Biol Med
Model. 2009;6:25–35.

47. Eames KTD, Tilston NL, Brooks-Pollock E, Edmunds WJ. Measured dynamic
social contact patterns explain the spread of H1N1v influenza. PLoS Comput
Biol. 2012;8:e1002425.

48. Jackson C, Mangtani P, Vynnycky E, Fielding K, Kitching A, Mohamed H,
Roche A, Maguire H. School closures and student contact patterns. Emerg
Infect Dis. 2011;17:245–7.

49. Johnstone-Robertson SP, Mark D, Morrow C, Middelkoop K, Chiswell M,
Aquino LD, Bekker LG, Wood R. Social mixing patterns within a south
African township community: implications for respiratory disease
transmission and control. Am J Epidemiol. 2011;174:1246–55.

50. Béraud G, Kazmercziak S, Beutels P, Levy-Bruhl D, Lenne X, Mielcarek N,
Yazdanpanah Y, Boëlle PY, Hens N, Dervaux B. The French connection: the
first large population-based contact survey in France relevant for the spread
of infectious diseases. PLoS One. 2015;10:e0133203.

51. Potter GE, Smieszek T, Sailer K. Modeling workplace contact networks: the
effects of organizational structure, architecture, and reporting errors on
epidemic predictions. Netw Sci. 2015;3:298–325.

52. Vino T, Singh GR, Davison B, Campbell PT, Lydeamore MJ, Robinson A,
McVernon J, Tong SYC, Geard N. Indigenous Australian household structure:

Munasinghe et al. Theoretical Biology and Medical Modelling            (2019) 16:6 Page 9 of 10

https://www.niid.go.jp/niid/ja/yosoku-index.html
https://www.niid.go.jp/niid/ja/yosoku-index.html
https://doi.org/10.1101/292235


a simple data collection tool and implications for close contact transmission
of communicable diseases. PeerJ. 2017;5:e3958.

53. Dodd PJ, Looker C, Plumb ID, Bond V, Schaap A, Shanaube K, Muyoyeta M,
Vynnycky E, Godfrey-Faussett P, Corbett EL, Beyers N, Ayles H, White RG.
Age- and sex-specific social contact patterns and incidence of
mycobacterium tuberculosis infection. Am J Epidemiol. 2015;183:156–66.

54. Grijalva CG, Goeyvaerts N, Verastegui H, Edwards KM, Gil AI, Lanata CF, Hens
N. A household-based study of contact networks relevant for the spread of
infectious diseases in the highlands of Peru. PLoS One. 2015;10:e0118457.

55. Kiti MC, Tizzoni M, Kinyanjui TM, Koech DC, Munywoki PK, Meriac M, Cappa
L, Panisson A, Barrat A, Cattuto C, Nokes DJ. Quantifying social contacts in a
household setting of rural Kenya using wearable proximity sensors. EPJ Data
Sci. 2016;5:21–42.

56. Strömgren M, Holm E, Dahlström Ö, Ekberg J, Eriksson H, Spreco A, Timpka
T. Place-based social contact and mixing: a typology of generic meeting
places of relevance for infectious disease transmission. Epidemiol Infect.
2017;145:2582–93.

57. van Hoek AJ, Andrews N, Campbell H, Amirthalingam G, Edmunds WJ,
Miller E. The social life of infants in the context of infectious disease
transmission; social contacts and mixing patterns of the very young. PLoS
One. 2013;8:e76180.

58. Aiello AE, Simanek AM, Eisenberg MC, Walsh AR, Davis B, Volz E, Cheng C,
Rainey JJ, Uzicanin A, Gao H, Osgood N, Knowles D, Stanley K, Tarter K,
Monto AS. Design and methods of a social network isolation study for
reducing respiratory infection transmission: the eX-FLU cluster randomized
trial. Epidemics. 2016;15:38–55.

59. Melegaro A, Del Fava E, Poletti P, Merler S, Nyamukapa C, Williams J,
Gregson S, Manfredi P. Social contact structures and time use patterns in
the Manicaland province of Zimbabwe. PLoS One. 2017;12:e0170459.

60. Ajelli M, Litvinova M. Estimating contact patterns relevant to the spread of
infectious diseases in Russia. J Theor Biol. 2017;419:1–7.

61. Yamamoto N, Ejima K, Nishiura H. Modelling the impact of correlations
between condom use and sexual contact pattern on the dynamics of
sexually transmitted infections. Theor Biol Med Model. 2018;15:6.

62. Sakamoto Y, Yamaguchi T, Yamamoto N, Nishiura H. Modeling the elevated
risk of yellow fever among travelers visiting Brazil, 2018. Theor Biol Med
Model. 2018;15:9.

63. Nishiura H, Tsuzuki S, Yuan B, Yamaguchi T, Asai Y. Transmission dynamics
of cholera in Yemen, 2017: a real time forecasting. Theor Biol Med Model.
2017;14:14.

64. Nishiura H, Endo A, Saitoh M, Kinoshita R, Ueno R, Nakaoka S, Miyamatsu Y,
Dong Y, Chowell G, Mizumoto K. Identifying determinants of
heterogeneous transmission dynamics of the Middle East respiratory
syndrome (MERS) outbreak in the Republic of Korea, 2015: a retrospective
epidemiological analysis. BMJ Open. 2016;6:e009936.

Munasinghe et al. Theoretical Biology and Medical Modelling            (2019) 16:6 Page 10 of 10


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data collection
	Contact matrix
	Validation using influenza data
	Ethical considerations
	Data sharing policy

	Results
	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

