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Abstract

Background: Alzheimer's disease (AD) is a degenerative brain disease. A novel agent-based modelling framework
was developed in NetLogo 3D to provide fundamental insights into the potential mechanisms by which a microbe
(eg. Chlamydia pneumoniae) may play a role in late-onset AD. The objective of our initial model is to simulate one
possible spatial and temporal pathway of bacterial propagation via the olfactory system, which may then lead to
AD symptoms. The model maps the bacteria infecting cells from the nasal cavity and the olfactory epithelium,
through the olfactory bulb and into the olfactory cortex and hippocampus regions of the brain.

Results: Based on the set of biological rules, simulated randomized infection by the microbe led to the formation
of beta-amyloid (ARB) plaque and neurofibrillary (NF) tangles as well as caused immune responses. Our initial
simulations demonstrated that breathing in C. pneumoniae can result in infection propagation and significant
buildup of AR plaque and NF tangles in the olfactory cortex and hippocampus. Our model also indicated how
mucosal and neural immunity can play a significant role in the pathway considered. Lower immunities, correlated
with elderly individuals, had quicker and more A plaque and NF tangle formation counts. In contrast, higher
immunities, correlated with younger individuals, demonstrated little to no such formation.

Conclusion: The modelling framework provides an organized visual representation of how AD progression may
occur via the olfactory system to better understand disease pathogenesis. The model confirms current conclusions
in available research but can be easily adjusted to match future evidence and be used by researchers for their own
individual purposes. The goal of our initial model is to ultimately guide further hypothesis refinement and
experimental testing to better understand the dynamic system interactions present in the etiology and
pathogenesis of AD.
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Background

Alzheimer’s Disease (AD) is a progressive, degenerative dis-
ease of the brain associated with dementia, mood instability
and cognitive impairment. Currently, approximately 5.8
million Americans have been diagnosed with AD: 5.6 mil-
lion individuals of age 65 and older and 200,000 individuals
younger than age 65 [1]. More specifically, AD affects 3%
of the population between 65 and 75 years of age and 47%
of the population over 85 years [2]. The U. S National Insti-
tute of Health (NIH) attributes a cost of over $100 billion
per year to AD and estimates that, with the current state of
population dynamics, Alzheimer’s prevalence may triple
within the next 30 years due the aging baby boom gener-
ation [3]. In consequence, there have been significant re-
search efforts to diagnosis, treat and possibly prevent the
disease progression. As of 2019, the U. S Food and Drug
Administration (FDA) has approved six drugs to alleviate
symptoms of AD [1]. In 2012, The National Alzheimer’s
Plan was released to outline an approach for more effective
prevention methods by 2025 [4]. However, despite such ef-
forts, AD is not completely understood, and treatment
modalities have yet to yield remission or halt progression.
This has, in turn, motivated comprehensive investigations
into new avenues of research such as the use of personal-
ized biomarker tests [1].

One supported conceptualization on what may trigger
AD proposes that fibrous protein aggregates, beta-amyloids
(AP), initiate disease pathogenesis [5]. AP peptides consist
of 40—42 amino acids and result from mis-cleavage of the
amyloid precursor protein (APP). Normal APP cleavage by
a-secretase and y-secretase results in smaller peptide units
that can be digested properly by the body [6]. However, in
an AD patient, APP is cleaved by [-secretase and y-
secretase, causing AP aggregates to form [6]. Extracellular
A aggregates can cause mechanical disruption of signaling,
activate microglial immune responses, increase the risk of
hemorrhagic stroke and initiate intracellular hyperpho-
sphorylation of the tau protein [1]. The tau protein plays a
fundamental role in the structural support of microtubules
and hyperphosphorylation of the tau protein separates it
from the microtubule, leading to neuronal death. These
separated tau protein molecules aggregate to then form
what are known as neurofibrillary (NF) tangles [6]. AP
plaque and NF tangles have been associated with cognitive
impairment and the pathology of AD [7, 8]. It has also been
found that the earliest concentrations of these molecules
and earliest brain damage occur in the entorhinal cortex
and the hippocampus regions of the brain, leading to AD’s
hallmark symptom: short-term memory loss [2].

Recent studies have demonstrated that bacterial or viral
infections may possibly initiate the generation and depos-
ition of AP plaque and NF tangles in the brain. These infec-
tions have been shown to lead to AD related symptoms.
For example, research found that Herpes Simplex Type 1
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virus (HSV1), Chlamydia pneumoniae and Spirochetes, dir-
ectly caused AP plaque to form in mice and cell culture
samples [9]. Specifically, for C. pneumoniae, the bacteria
may bypass the blood brain barrier by travelling through
the olfactory system: from the nasal cavity into the olfactory
system and spread through regions of the brain including
the entorhinal cortex and hippocampus [10-12]. In fact,
bacterial initiation may be linked to the abnormal gene ex-
pression seen in AD. One study found that C. pneumoniae
possibly causes the dysfunctional AD calcium-related gene
expression: human neuronal cells injected with the mi-
crobes exhibited similar gene expression as brain cells from
AD patients [13]. However, it is important to note that AD
may not have a single cause but is rather a result of mul-
tiple factors [1].

We have developed an agent-based computational
framework in NetLogo 3D to model the possible precur-
sor steps wherein C. pneumoniae may lead to late-onset
AD development via the olfactory system [14]. Although
there are existing AD models (such as agent-based, net-
work and mathematical), our work may be the first to
model AD pathogenesis from a microbial perspective
[15-17]. As described in this paper, the model demon-
strates how a direct bacterial infection and propagation
may occur and how immunity can play a significant role
in that older patients demonstrate quicker AP plaque
and NF tangle production. Its ability to describe the en-
vironment in a flexible, visual and simplified manner can
make it immensely helpful in understanding more about
AD progression. Ultimately, our novel model provides
the foundation for evaluating one possible pathway of
what we refer to as the C. pneumoniae-Olfactory mech-
anism and provides guidance for future hypothesis for-
mation/refinement and experimental testing.

The C. pneumoniae-olfactory mechanism

C. pneumoniae is a pathogenic, obligate intracellular
bacteria that has distinct, parasitic effects throughout the
human body [12]. It exhibits a biphasic life cycle and has
as an incubation period on the order of weeks making it
difficult to detect early and treat [18]. During one phase
of its life cycle, C. pneumoniae takes the form of an
elementary body (EB), which is responsible for infection
of host cells. This form is metabolically inactive and at-
taches to and enters the host, generally through phago-
cytosis. The second form of C. pneumoniae is known as
a reticulate body (RB), which is the non-infectious form
of the bacteria. An RB is metabolically active and repli-
cates through binary fission once inside of an endosome
within the host cell. Upon replicating, RBs reorganize
back into EBs, to be released back into the system envir-
onment via cell lysis, extrusion or exocytosis [12]. There
have been two suggested lengths for this life cycle. The
first life cycle takes 72h from EB infection, EB to RB
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transformation, RB replication, RB to EB reconversion,
and excretion of EB. The second suggests that the bac-
teria can remain in an RB state for longer periods of
time. It was found, however, that the shorter life cycle
was exhibited by infected microglia and epithelial cells
[10]. This shorter life cycle was used in the development
of our model. Furthermore, EBs cannot survive outside a
host cell environment for long periods of time as they
rely on the enzymatic machinery of the host to satisfy
many metabolic requirements [19]. However, persistence
may allow a small fraction of the microbial population
to survive for long periods of time, potentially causing
recurring infection and can be a potential untested con-
founder for the model as highlighted in the discussion of
this paper [20].

Studies have demonstrated that there may be a link
between C. pneumoniae and AP plaque deposition in
mice as well as humans [10-12] [21-23]. Available work
suggests that C. pneumoniae travels via the olfactory sys-
tem: from the nasal cavity, through the olfactory bulb
and into parts of the brain which receive smell informa-
tion such as the entorhinal cortex and hippocampus
[10-12, 23]. As the microbes pass through these regions,
they may initiate AP plaque production and evoke im-
mune responses [10]. Based on this hypothesis and the
associated studies, one possible pathway for the C. pneu-
moniae-Olfactory mechanism was mapped in our
NetLogo 3D model (Fig. 1).
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Initial evidence suggests that the link between C. pneu-
moniae and AD AP plaque formation may be causative.
It has been argued that the pathogenic nature of the mi-
crobe might elicit immune responses, triggering AD
pathogenesis [9]. For example, once the infectious agent
reaches the central nervous system, it may lie dormant
until reactivated by a waning immune system resulting
from aging [9]. The formation of AP plaque is just one
of the defense mechanisms against microbial reactivation
[24]. Additionally, biopsies of AD patients have revealed
microbial concentrations in the entorhinal cortex and
hippocampus [11, 21, 22]. These regions of the brain ex-
hibited both C. pneumoniae immunoreactivity as well as
AP plaque and NF tangle formation [23, 25]. Current
understanding of AD suggest that the entorhinal cortex
and hippocampus are among earliest regions to be dam-
aged in late-onset AD [26, 27]. Taken together, these ob-
servations suggest a relationship between AD and C.
pneumoniae and may implicate C. pneumoniae as a fac-
tor in the initiation of AD as opposed to an incidental
occurrence in AD tissue samples.

Method

Model overview

Our model was developed in the NetLogo 3D (v6.0.1), an
agent-based modeling was developed at Northwestern Uni-
versity’s Center for Connected Learning and Computer-
Based Modelling (https://ccl.northwestern.edu/netlogo). The
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approach taken in our model development mirrors the “top-
down” approach often used in systems modelling. In this
approach, a model is developed by starting from the larger
system level and adding detail as needed to account for sys-
tem complexities [28].

In the direct infection pathway considered in the
model, the microbe travels from an outside environment
through the nasal cavity and olfactory bulb and into the
brain regions that receive smell information. A simula-
tion view upon startup of the program model is depicted
in Fig. 2. The spatial arrangement of the studied system
is separated into five regions of interest: the nasal cavity,
the olfactory epithelium, the olfactory bulb, the olfactory
cortex and the hippocampus.

The results of simulations are presented in a variety of
real time plots. For example, one plot displays the num-
ber of infected sustentacular cells, olfactory epithelium
cells, mitral cells, olfactory cortex neurons and the
hippocampus neurons. Other plots display real time
counts of total Ap plaque patches and NF tangle x’s sep-
arately formed in the olfactory cortex and hippocampus.
The relevant variables, cell concentrations and rates of
cellular processes, used in the NetLogo model are listed
in Table 1. All the variables are adjustable via sliders on
the user interface and recommended values are provided
in the user interface. Adjustable variable settings also
allow the user to test multiple combinations of the ini-
tially set parameters to see the impact of these variables
under different scenarios. However, recommended vari-
able values, reflecting those found in prior art literature
and our initial model testing, have been provided to
guide the user.

Model legend

The cells present in each model region are listed in Table 2.
Additionally, colored barriers in the NetLogo simulation
distinguish the different compartments of the model. The

(2020) 17:5

Page 4 of 15

white barrier represents the mucus layer between the nasal
cavity and olfactory epithelium. The light pink barrier rep-
resents the cribriform plate between the olfactory epithe-
lium and olfactory bulb. The gray barriers distinguish
between the remaining regions of interest, namely the ol-
factory cortex and hippocampus.

Additionally, the following parameters were used to
appropriately scale the model. Through relative ratios of
the thicknesses of the olfactory epithelium, cribriform
plate and olfactory bulb, the model better represents a
virtual human patient.

Incubation period of C. pneumoniae: 1-3 weeks [14]
Thickness of olfactory epithelium: ~ 150 um [29]
Thickness of olfactory bulb: ~ 0.55 cm [30]
Thickness of cribriform plate: ~ 0.55 cm

The different cells sizes in the model have been tabu-
lated in Table 3. Again, ratios of cell sizes were used to
appropriately scale the simulation to realistic dimen-
sions. Neurons in the olfactory cortex and hippocampus
were assumed to be the same size as mitral cells since
there is limited available knowledge as to what exact cell
type in these regions are affected. More information
about this specific simplification is included in the list of
model rules.

Model assumptions

As a starting point, it was necessary to simplify the path-
way through which C. pneumoniae has been hypothe-
sized to enter the body and travel into the brain [11, 33].
The simplified pathway was a direct infection mechan-
ism through which C. pneumoniae enters the nasal cav-
ity of the host from the outside environment and travels
through the olfactory epithelium, as based on the find-
ings of Little et al. [11]. It is important to note that the
considered pathway may allow the obligate intracellular
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Fig. 2 3D spatial view of NetLogo model simulation. Regions of interest have been labelled. From left to right: the nasal cavity, the olfactory
epithelium, the olfactory bulb, the olfactory cortex and the hippocampus
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Table 1 Key variables used to adjust the system environment of
the model

Concentrations
EBs of C. pneumoniae bacteria in outside environment
Olfactory cells in olfactory epithelium
Sustentacular cells in olfactory epithelium
Mitral cells in olfactory bulb
Microglia in olfactory bulb
Neurons in olfactory cortex
Microglia in olfactory cortex
Neurons in hippocampus
Microglia in hippocampus
Rates
Olfactory cell recovery rate
C. pneumoniae chance of infection of olfactory cells
Microglia repair distance
Olfactory cell division
Replication of reticulate bodies in endosome of hosts

Infected cell lysis

bacteria to enter the brain without passing through nor-
mal defenses such as the blood brain barrier, which typ-
ically resists microbial invasion. In one study, mice were
inoculated intranasally with C. pneumoniae (just as a pa-
tient in our model breathes in the microbe) and ob-
served over the course of 3 months [11]. Through light
and electron microscopy, there was evidence of infection
presence in the olfactory epithelium and olfactory bulb.
After a month into the study, AP fibers were found in
the olfactory bulbs of the mice [11].

Based on this work and the outline described in Fig. 1,
it was assumed that the virtual patient is exposed to C.
pneumoniae, via their nasal cavity, which begins to make
its way through the mucus barrier and into the olfactory
epithelium. In the olfactory epithelium, if an EB microbe
is within infecting distance of a cell, it will infect the cell,

Table 2 NetLogo Model Agent Legend
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represented by changing the cell color to green. Upon
infection of the olfactory epithelium cells, it was as-
sumed that the bacteria would reproduce and spread to
other cells through axonal connections. As a result, the
infection can spread through the links between connect-
ing cells through the olfactory bulb, olfactory cortex and
hippocampus. As a side note, research has demonstrated
C. pneumoniae disseminates rapidly through a silent in-
fection strategy in the lungs, taking advantage of neutro-
phil apoptosis and the clearance mechanism of
phagocytes to move between cells [21]. As in reality,
multiple olfactory epithelium cells are connected to a
single mitral cell and it was assumed that the infection
of each connecting olfactory cell and its subsequent
nerve fiber was needed to effectively infect a mitral cell
with C. pneumoniae. Mitral cells are then connected to
neuronal cells in the olfactory cortex which are subse-
quently connected to neuronal cells in the hippocampus.
The infection travels to different cells and regions as
soon as all the in-links of a cell are infected and turned
green. In the olfactory epithelium, olfactory cortex and
hippocampus, microglia activate an immune response to
heal infected cells. However, in the olfactory cortex and
hippocampus only, healing of a neuron causes a white
AP plaque patch to form. Only after AP plaque patches
form in the hippocampus, orange NF tangle x’s begin to
form in either the olfactory cortex or the hippocampus
based on the mechanistic behavior. Ap plaque patches
form near infected cells and NF tangles form randomly
in the specific region. Additionally, only one AP plaque
patch forms per healing of an infected cell and a small
number of NF tangles form per healing of the infected
cell. These amounts of production were chosen arbitrar-
ily due to limited available knowledge but can be chan-
ged easily with future research.

Additionally, entities with complexities not substan-
tially relevant for our model were lumped together [28].
For example, the olfactory system exhibits widespread
connectivity [34]. To reduce this complexity, physical

Model Agent

Intended Designation

Small yellow spheres
Tan/pink edged circles
Filled purple spheres
Filled light blue spheres
Red edged cells

Filled dark blue cells
Filled magenta cells
White patches
Orange X's

EBs of C. Pneumoniae

Sustentacular cells in the olfactory epithelium
Olfactory epithelium cells in the olfactory epithelium
Mitral cells in the olfactory bulb

Microglia in the olfactory bulb, olfactory cortex and
hippocampus

Neurons in the olfactory cortex
Neurons in the hippocampus
AR plaque

NF tangles




Sundar et al. Theoretical Biology and Medical Modelling (2020) 17:5

Table 3 Cell sizes used to accurately scale NetLogo model [11,

29, 31, 32]

Cell Type Size (um)
C. pneumoniae (EB) 02-04[11]
Olfactory Epithelial 3-51[29]
Sustentacular 3-5[29]
Mitral 10.1 [31]

Olfactory Cortex Neurons Assumed to be same as Mitral
Assumed to be same as Mitral

Microglia 46 [32]

Hippocampus Neurons

representations of the olfactory cilia, glomeruli, olfactory
tract and olfactory (bowman’s) glands were excluded
from our model. However, some of the main biological
roles of these components were incorporated into the
depiction and behavior of included species by lumped
analysis. The role of the olfactory cilia, which are the
first to communicate/interact with outside agents (such
as C. pneumoniae EBs) was placed within the olfactory
cells themselves. This behavior is demonstrated when-
ever the olfactory cells, which move randomly through-
out the epithelial layer, move near the mucus layer wall
and are now susceptible to becoming infected. The func-
tion of basal cells, or stem cells with the capability to
create both olfactory and sustentacular cells, was incor-
porated into the code through the “reproduce” function
which introduces new olfactory cells into the olfactory
epithelium at a set frequency. Lastly, the function of the
glomeruli, which connect olfactory cell axons to the den-
drites of mitral cells was lumped into each “link” present
in the system, providing a pathway for infection to travel
into the olfactory bulb of the brain. This concept is a
critical aspect of the C. pneumoniae-Olfactory mechan-
ism as it rationalizes the possible presence of the bac-
teria in regions of the brain that may be directly
associated with the olfactory tract such as the entorhinal
cortex and the hippocampus [21, 22].

Model rules

In our model, the following set of specific rules were
assigned to individual cells and are continuously looped
as the simulation runs.

e There is random movement of cells within each
region representing interactions between cells.
While a realistic illustration of cell motion within
the body would be quite restrained due to the
packed nature of bone, tissue, etc., the model aimed
to represent the widespread interactions between
cells, achieved mainly through cell signaling (e.g.
autocrine, paracrine, and juxtacrine). This rule
encouraged the spread of bacteria upon infection,
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not only in terms of olfactory cells but also along
their axonal “links”. Ultimately, this leads to
distributed AP plaque and NF tangle formation
within the brain upon long-term bacterial exposure
and infection propagation.

There is directional flow of C. pneumoniae
through nasal cavity. The EBs of C. pneumoniae
that were modeled to pass through the nasal cavity
(left most region of environment) were assigned to
move primarily in the positive to negative y-
direction. This simulated the expected flow of the
bacteria through the system upon breathing in. In
addition, the cells could vary slightly in the x and z
directions to induce a more random walk which al-
lows some of the bacteria to encounter the mucus
layer of the nasal cavity. When in contact with this
layer, the agents were designed to move more slowly
in all directions, simulating the viscoelastic nature of
this region.

EBs of C. pneumoniae bacteria have short
lifespans outside the host cell. The bacterial
lifespan can be adjusted from the model interface,
however EBs of C. pneumoniae do not persist very
long when outside of a host cell [21].

RBs of C. pneumoniae bacteria replicate into x
number of EBs. This number x can be adjusted on
the interface of the model to match findings from
literature. The preset value was chosen to be 20,
based on the outcomes of multiple preliminary
simulations with varied initial conditions.

There is total olfactory cell linkage to mitral
cells. Axon formation greatly influences the survival
rate of olfactory cells within the olfactory epithelium
[35]. Based on this and for increased model
simplicity, all olfactory cells were created with
immediate “links” to mitral cells. The sustentacular
cells do not contain any axon links. It is important
to note that links displayed in the model often
appear to jump around the screen. This is due to
the implicit behavior of links in NetLogo which
constantly try to minimize the link length between
agents. Ultimately, this behavior does not affect the
model as the links remain assigned to their original
cells, providing a virtual connection for infection
spread.

Infection of olfactory epithelium cells occurs
when in very close proximity to EBs. The
infecting distance can be adjusted directly from the
interface of the model and represents the EBs of C.
preumoniae coming into “contact” with the
olfactory epithelial cells which are used as hosts.
This assumption was made due to the limited
knowledge of cell to cell transfer of obligate
intracellular bacteria [21]. Sustentacular cells, which
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do not connect to mitral cells, were exempt from
infection to simplify the code and reduce the ease in
which bacteria could propagate (early simulations
found rapid infection rates).

Infection of an olfactory epithelium cell causes
immediate infection of its axon. This was one of
the broader assumptions made in the modeling
framework that can be improved as more literature
is available. Mainly, it simplifies the pathway and
infection mechanism which connects olfactory cells
to mitral cells. Essentially, this rule assumes that the
rate of bacterial infection of olfactory cells is the
limiting step in the infection mechanism. Once an
olfactory cell becomes infected, it was assumed that
infection of the connected nerve cells (which make
up the axon which travels through the cribriform
plate to intertwine with the dendrites of a mitral cell
in the glomeruli) is inevitable and rapid. In the
model, this rapid spread of infection from the
olfactory epithelium to the olfactory bulb was
represented through the links, which turn green as
soon as their connected olfactory cells would turn
green. As stated in the previous rule, the mechanism
of infection for obligate intracellular bacteria from
an adjacent cell is unknown [21].

Olfactory cells without “links” die. As found in
literature, olfactory cells without axons have a much
lower survivability rate [35]. For this reason, the
code eliminates any olfactory cells without links.
Since the only agent this rule affects are infected
olfactory cells whose connecting mitral cells were
just renewed, this rule essentially states that all
infected olfactory cells connecting to a repaired
mitral cell die.

Cells become fully infected once all connected
input cells are infected. It was decided that cells
would only become infected upon infection of all
their connecting “in-links” — representing the
infection of all the axons which interact directly
with the dendrites of the connecting cells. This rule
reduces the rapid rate of cell infection that was
initially occurring in preliminary simulation testing.
As a result, this rule assumes that cells will have the
maximum potential for infection once all their
connected cells, from which they receive sensory
input, are infected.

Repaired cells lose original “links” to connecting
input cells. To simplify the system further, it was
assumed that repair of mitral cells in the olfactory
bulb, neuronal cells in the olfactory cortex and
neuronal cells in the hippocampus leads to the
degradation of all infected axons which are linked to
a specific cell. This rule was made to circumvent the
lack of detail regarding axon/dendrite mechanism
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while avoiding the oversimplification that cell repair
leads to total pathway repair.

Each mitral cell is linked to neurons in a lumped
olfactory cortex. Since the olfactory system has
various pathways for transfer of smell information to
the hippocampus, a lumped olfactory cortex was
used as the next region after the olfactory bulb. This
accounts for the entorhinal cortex, where C.
pneumoniae has been found in AD brain samples, as
well as other parts of the olfactory system where the
infection could possibly travel before reaching the
hippocampus [21, 22]. Connections from the
olfactory cortex project from mitral cells [36]. For
further simplification, the cells in this region are not
specified and referred to as just neuronal cells since
there is limited knowledge as to what exact regions
and cells of the olfactory cortex are affected in the
bacterial infection.

Each olfactory cortex neuronal cell is linked to
neuronal cells in the hippocampus. The olfactory
cortex project directly to the neuronal cells in the
hippocampus region of the model. The olfactory
cortex sends direct input to the hippocampus from
the entorhinal cortex to account for smell information
in centers of the brain for learning and behavior [37].
Again, since there is limited knowledge as to what
exact parts and cells of the hippocampus are affected
in the bacterial infection, these cells are referred to as
neuronal cells as a simplification. However, inclusion
of the hippocampus in the model is important as it
accounts for the microbial concentrations found in
this region of the brain in AD brain samples [21, 22].
Microglia swarm all infected cells in the
olfactory bulb, olfactory cortex and
hippocampus. While the microglia are modeled to
move randomly about these regions when the
system is in normal state, the infection of a cell
“activates” these defense cells causing them to flock
towards all sources of infection with the simulation.
This rule demonstrates the effect of cell signaling in
biological systems as the glial cells change their
behavior based on information passed out by other
cells in the environment. Their motility is reliant on
filamentous actin to propel the microglia to the
source of the anomaly [32]. An interesting
consequence of enacting this rule in the code was
that, upon the simultaneous infection of multiple
cells, the microglia were forced to split their time
between infection sites — thus decreasing the chance
of cell repair.

Microglia renew infected cells in close proximity
for the prolonged duration of the simulation.
This replaces the infected cell with healthy cell
(represented by coloring the cell back to its original
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color in the simulation), once the microglia fell
within a certain specified distance of the infected
cell. This distance can be adjusted from the interface
of the simulation and represents effective “contact”
between a microglial cell and an infected cell.

e Fully infected neuronal cells in the olfactory
cortex and neuronal cells in the hippocampus
cause systematic amyloid plaque and random
neurofibrillary tangle formation, progressively
damaging the brain. Following the main tenet of the
C. pneumoniae hypothesis, it was modeled that
infected cells within these regions would cause Af
plaque and NF tangle formation to form in the
specified region. Since it has been found that immune
response cells aggregate around areas where amyloid
plaque formation by several studies [25, 38], areas
where microglia swarm an infected cell produces a
single patch of plaque in the model. Since there is
limited knowledge as to how tangle formation is
initiated in a similar way, tangles are formed randomly
in the model within the specified region. Additionally,
however, further research may be needed to specify
more accurate numbers of formation, but the model
can be easily modified to fit the data.

e Amyloid plaque formation occurs first and then
tangle formation occurs. In mice, it has been found
that AP plaque form before NF tangles do in
Alzheimer’s [39]. This was accounted for the model by
forcing NF tangles to form only after A plaque begins
to deposit in the hippocampus. Since there is limited
knowledge on the time between the AP plaque
production and NF tangle production, for the purposes
of our model, NF tangles begin to form immediately
after AP plaque begin to form in the hippocampus.
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Results

The “Go” button should be selected to run the simulation.
EBs of C. pneumoniae can be introduced into the system by
flipping the C-Pneumoniae-Exposure switch to “on”. The
bacteria in the outside environment passes from the nasal
cavity, through the mucus barrier and into the olfactory epi-
thelium. The EBs travel mainly in the y-direction with slight
variation in x and z-directions. The bacterial flux in the nasal
cavity can be varied as the simulation continues to run to
model various bacterial exposure types. Infection then propa-
gates to the olfactory bulb, olfactory cortex and hippocampus
regions. Additionally, NetLogo does not run in normal time
but through “ticks”, so that each tick represents a single iter-
ation or loop through the code. For the purposes of our
model, a proportion of 100 ticks to 1 day was predetermined
to facilitate the application/relation of model output to be-
havior observed in real systems in real time. This proportion
was used in all simulation runs.

Response to constant microbial flux

One observation from running multiple simulations is
that, even with a constant flux of C. pneumoniae bac-
teria through the nasal cavity, there is a delay for when
the infection propagates enough to cause AP plaque for-
mation. This is demonstrated in Fig. 3, which shows that
for constant flux of a large microbial concentration, it
still takes roughly a month for any AP plaque to form.
In the simulation run in Fig. 3, AP plaque (white
patches) start forming after approximately 23 days in the
olfactory cortex and after approximately 24 days in the
hippocampus. This simulation was run as a baseline for
determining the timeframe and initial microbial concen-
tration for subsequent simulation runs.

Constant flux of C.
pneumoniae EBs

Infected cell
surrounded by
activated microglia

ApB plaque
(represented with a
white patch)

NF tangle
(represented with an
orange x)

Infected axonal link

Fig. 3 NetLogo 3D simulation view after exposure to a constant flux of C. pneumoniae (time equivalent ~ 24 days). Plague begins to form around
23/24 days (olfactory cortex/hippocampus) and this simulation was used as a baseline for time scales and concentrations in
subsequent simulations
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Response to altered immunity

To test more realistic situations, the C. pneumoniae exposure
was then limited to approximately 100 to 300 ticks or
roughly 1 to 3 days to represent more realistic exposure time
frames. We decided to test the effects of varied immunities,
using the olfactory recovery ability variable in the simulation.
Low and high olfactory recovery abilities were chosen to test
and compare simulation results (see Figs. 4 and 5). The
lower olfactory recovery ability was used to represent the
lower immunity an older individual might have. The higher
olfactory recovery ability was used to represent the more ro-
bust immunity a younger individual might have. Both simu-
lations were run for 185,000 ticks, or just over 5 years, to test
the model over a long-time frame. Additionally, a large num-
ber for the initial EB concentration was used to reduce simu-
lation time for AP plaque buildup, however adjusting the EB
microbial concentration may be needed in future model test-
ing/refinement.

The simulation results over time show that enough ex-
posure to C. pneumoniae in the nasal cavity as well as
increased ability for infection propagation can lead to
substantial buildup of A plaque and NF tangles in the
olfactory cortex and hippocampus regions of the brain.
We see that with the lower recovery ability, the first
plaque started forming in the olfactory cortex around
40,000 ticks or roughly 1year into the simulation. The
first plaque started forming in the hippocampus around
80,000 ticks or roughly 2years into the simulation.
While this might seem very early, it is important to note

(2020) 17:5
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that individuals only start exhibiting AD symptoms after
approximately 20 years of significant AB plaque buildup
[1]. There is a delay after initial AP plaque deposition
wherein the brain will initially atone for any damage
until it cannot do so anymore due to significant damage
[1]. Additionally, research suggests the AD may occur in
three stages: a pre-clinical stage where patients exhibit
AD biomarkers but not its symptoms, a mild cognitive
impairment stage where patients exhibit symptoms that
do not affect their day to day activities and finally, a de-
mentia stage [1]. As a result, while the simulations dem-
onstrate very early AP plaque and NF tangle formation,
these results seem to be in accordance with typical AD
progression rates. In contrast, for the higher recovery
ability, no Ap plaque and NF tangle form in the olfactory
cortex or hippocampus within the 5 years. After the ini-
tial dip in healthy olfactory cells, the simulations demon-
strate that the body can fight off infection and maintain
an absolute steady state, which occurs around 15 days.
This seems consistent with the fact that AD does not
usually develop at younger ages (perhaps due to a more
robust immune systems).

Furthermore, in the lower recovery ability, it was seen
that infection seemed to follow in spurts, probably since
infection propagates through axonal connections in our
model. Once a mitral cell was infected, the infection
spread to both the olfactory cortex and hippocampus
causing the AP plaque and NF tangle counts to shoot up
rapidly. It was also interesting to see delays between
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these infection spurts. These delays probably exist as
links “die” after cells are healed by microglia. As a result,
it is difficult for the infection to propagate very fast
through the connections between remaining cells. We
also found that our simulations mirrored experimental
results from literature in that AB plaque production al-
most always formed in the olfactory cortex before the
hippocampus as the simulation ran or as the virtual pa-
tient became “older” [39]. Typically, NF tangle formation
began in the hippocampus and then progressed to the
olfactory cortex as suggested by experimental data, how-
ever this was not always the case [39].

In the lower recovery simulation, the model converges
on a steady state between the number of infected and
healthy olfactory cells despite AP plaque and NF tangle
formation. Within the model, this may be due to a bal-
ance between the healthy olfactory cell reproduction rate
and infected cell lyse rate. This may be attributed to an
equilibration between the rates at play - olfactory pro-
duction, olfactory repair and cell lysis.

Table 4 lists the initial conditions under which these
simulations were run. All other settings not listed in this
table (e.g. olfactory cell tails, bacteria tails, C. pneumo-
niae exposure) were held constant between each trial.

Response to altered chance of infection
We then tested the effects of changing the probability a
patient would get the infection. Using the simulation in

Fig. 4 for comparison, the “chance of infection” variable
was adjusted to 0.8 as shown in Fig. 6. This may repre-
sent an older individual with a healthier immune system.
The simulation demonstrated that the overall formation
counts were significantly reduced. The AP plaque and
NF tangle formation counts in the lower infection
chance simulation were between one half to one third of
those in the higher infection chance simulation. Interest-
ingly, we also observed that that the infection chance
played a significant role in determining when the first

Table 4 Settings of user selected parameters for altered
immunity simulations (Figs. 4 and 5)

Attribute Fig 4 Values Fig 5 Values
EB Concentration 100 100
Initial Number of Olfactory Cells 50 50
Initial Number of Sustentacular Cells 50 50
Initial Number of Mitral Cells 15 15
Initial Number of Microglia (Olfactory Bulb) 15 15
Initial Number of Olfactory Cortex Neurons 30 30
Initial Number of Microglia (Olfactory Cortex) 15 15
Initial Number of Hippocampus Neurons 30 30
Initial Number of Microglia (Hippocampus) 15 15
Chance of Infection 10 1.0
Microglia Chance of Healing 0.2 0.2
Olfactory Recovery Ability 0.3 0.7
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AP plaque appeared. With the higher infection chance,
this first AP plaque formed around 1 year into the simu-
lation, however with the lower infection chance, the first
AP plaque formed around 2years into the simulation.
Additionally, although the simulations demonstrated
similar olfactory health in the simulation beginning, the
body fought off the infection completely in the lower in-
fection chance simulation. This is seen as the olfactory
healthy graph hit an absolute steady state and all olfac-
tory epithelium cells remain healthy for the rest of the
simulation run. This may be because the body has time
to be able to fight off the bacterial infection, as there is a
lower chance of infection, before further infection
propagation. Nevertheless, the significance of this vari-
able may be useful to test in further model and experi-
ment testing.

Table 5 lists the initial conditions under which the
simulation in Fig. 6 was run. All other settings not listed
in this table (e.g. olfactory cell tails, bacteria tails, C.
pneumoniae exposure) were held constant between each
trial.

Discussion

Model implications

Outside of behavior prediction and data fitting, there are
several ways our model may be utilized to understand
and test the implications of the hypotheses discussed

[28]. The model organizes the available information into
a visual form, which can help better understand and
communicate the mechanics of the considered pathway.
It describes a highly dynamic, regulatory and sophisti-
cated system that would be very difficult to understand
if taken as a whole. Through simplification, it is much
easier to reason and understand the principles behind
the system for later experimental design. Since a lot of
interactions in the body rely on temporal and spatial

Table 5 Settings of user selected parameters for altered

infection chance simulation (Fig. 6)

Attribute Fig 6 Values
EB Concentration 100
Initial Number of Olfactory Cells 50
Initial Number of Sustentacular Cells 50
Initial Number of Mitral Cells 15
Initial Number of Microglia (Olfactory Bulb) 15
Initial Number of Olfactory Cortex Neurons 30
Initial Number of Microglia (Olfactory Cortex) 15
Initial Number of Hippocampus Neurons 30
Initial Number of Microglia (Hippocampus) 15
Chance of Infection 0.8
Microglia Chance of Healing 0.2
Olfactory Recovery Ability 03
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variables, the use of NetLogo 3D allows inclusion of time
(via its ticks) and spatial interactions (via its visual view),
for better description of the system. Additionally, our
model clearly shows a time delay between bacterial in-
fection and AP plaque production, guiding experimental
design to test the proposed mechanism. Finally, our
model can play a key role in the testing of other hypoth-
eses which initiate AP plaque formation. Through this
hypothesis testing, the current set of hypotheses can be
refined, discriminated and removed as seen fit to better
understand AD etiology.

As with most models, particularly those attempting to
represent complex biological systems, limitations may
exist to which one can analyze or predict in vivo behavior
due to the many simplifying assumptions that were made
in modelling the system. In other words, not all published
data on the mechanism behind AD and C. pneumoniae
exposure was included in the model development as the
objective was to create an initial modelling framework to
build upon with future available research. For instance, in
our model, the movement of EBs within the nasal cavity
was adjusted to conform to the software language but
might not necessarily meet their true fluid motion when
they are breathed in from the environment. In addition, to
reduce system complexity, the model does not attempt to
include all cell types present, such as astroglia, but rather
selectively involves a group of potential main players to
represent fundamental actions of the larger community in
AD pathogenesis. Instead, for example, neurons served as
the main target of infection since they are primary constit-
uents of the hippocampus [40]. Astroglia were not in-
cluded in the modelling framework on the grounds of
system simplification.

In addition, many biological phenomena, such as micro-
bial persistence, were not captured by included model
functions. Persistence is a non-genetic, non-inherited abil-
ity displayed by bacteria to tolerate certain stresses. This
distinct and dormant physiological state often enables
long-term survival of a small fraction of the bacterial
population leading to chronic and/or recurrent infection
[41]. Since the fraction of persisting cells in each popula-
tion varies greatly by strain and environment, and the mo-
lecular mechanisms behind persistence for the pathway
considered are not firmly understood yet, no function was
created specifically to represent this behavior in the
model. In vivo, the existence of persistence can signifi-
cantly alter the temporal progression of infection, thus
confounding predictions of disease development. As more
information becomes available, our model can be updated
to better represent these true physiological behaviors. This
idea of validation by comparing or fitting experimental
data is a common step in computational modeling [28].
Our hope is that the continued research of the C. pneumo-
niae-Olfactory mechanism and the system it affects
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reveals further insight into these values, at which point the
model can be easily adapted to fit the findings. Hence, our
model remains flexible for the user in case any changes
are included. All variables considered are globalized and
are provided on the program interface for users to adjust
accordingly. For example, in the case a user would like to
model exposure by a different single microorganism [9],
they can encode the key properties of the organism (e.g.
size, environmental concentration, replication rate or in-
cubation time) into the code in a similar manner and ad-
just or duplicate the given commented user interface
variables to create the desired simulation. It may also be
necessary to include additional interactions between newly
included agents and the environment to explore and com-
pare effects. Our NetLogo model is extremely beneficial to
use in this situation as the software is easily accessible and
the underlying code has been shared. It is also easy to
learn to use as the work has been heavily commented.
Additionally, while some researchers have encountered
difficulties in isolating C. pneumoniae from AD patients,
this may to be due to differences in experimental tech-
niques or the likelihood that there is more than one
underlying cause of AD [12, 42, 43] Therefore, this model
may address only a portion of those who suffer from the
disease or a portion of the mechanistic pathways that
might occur.

Recommendations for future work

There are a few different approaches that can be consid-
ered to improve the model developed in this paper. First,
there are improvements to the NetLogo model that could
be made since there were many simplifying assumptions
used to develop the model from a programming perspec-
tive. Certain areas of code improvement might include
adjusting the EB movement to exhibit more realistic be-
havior, improving axonal depiction, and improving the in-
fection mechanism of C. pneumoniae. We also only
considered a single dosing scenario for the program, but it
may be that multiple inoculations by C. pneumoniae —
from chronic infection for example — will alter the rates of
bacterial propagation and AD symptom development.
This is especially so considering, with the current model, a
change in the amount of C. pneumoniae flux drastically
changed the numbers and times of first formation of Ap
plaque and NF tangles. This should be adjustable in our
model in the case of pulsing microbial fluxes into the
model with the switch for C. pneumoniae exposure on the
user interface. However, more information may be needed
to determine more accurate induction and temporal pro-
gression between inoculations. When more research into
the effects and values of these related parameters for a
multiple dosing scenario are available, it may be an inter-
esting next step to incorporate this information into the
model. Once more parameters are identified for C.
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pneumoniae infection in the brain through research, the
model can be improved to represent the infection with
higher accuracy.

Additionally, the actual mechanism presented by the
model may be extended and expanded upon. This model
only touches upon a possible precursor to the develop-
ment of AD, as an initial trigger to AP plaque produc-
tion. Therefore, it may also be beneficial to model the
effects of how AP plaque deposition may trigger other
events in AD pathogenesis. The role of lipopolysaccha-
rides in the inflammatory response can also be explored
[11]. Additionally, for the purposes of our model, we
looked at C. pneumoniae propagation through direct in-
fection of olfactory epithelial cells as a simplifying as-
sumption based on the infection mechanism proposed
by the mouse studies of Little et al. An alternative mode
of infection, which was considered but not included dir-
ectly in the model, involves shuttling via host immune
cells. Direct shuttling through the blood brain barrier via
macrophage recruitment after an inflammatory stimulus
was not considered in our model for simplification pur-
poses.. C. pneumoniae has been shown to also cause re-
spiratory infection wherein the organism can directly
infect lung epithelial cells and alveolar macrophages and
then disseminate to nearby leukocytes such as mono-
cytes, lymphocytes and neutrophils [44]. Chronic infec-
tion can subsequently lead to systematic infection,
through the blood, and the organism can make its way
to distal regions of the olfactory epithelium [44]. Re-
search has also shown that leukocytes can bypass the
blood brain barrier and move into the central nervous
system by passing through the olfactory epithelium and
into the olfactory bulbs [45]. In this case, the developed
NetLogo model does not comprehensively capture this
indirect introduction of the pathogenic microbe to the
olfactory system. However, the model may still predict
microbial propagation into the brain. As a result, it
would be interesting to research and model the com-
bined infection of olfactory epithelial cells and leuko-
cytes, in the future, which may both lead to bacterial
propagation into the brain.

Furthermore, studies have drawn a link between gen-
etic risk factors and C. pneumoniae load in the central
nervous system. The E4 allele of the APOE gene is cur-
rently the strongest risk factor for late-onset AD [46].
This gene, expressed extensively by astrocytes in the brain,
encodes a protein component of the low-density lipopro-
tein (LDL) which transports cholesterol to neurons by
binding to several cell surface receptors [25]. Studies have
shown that AD patients with the E4 allele, which has also
been implicated in the development of atherosclerosis and
coronary heart disease, display significantly higher num-
bers of C. pneumoniae infected cells in affected brain re-
gions compared to congruent samples from AD patients
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lacking the allele [47]. Further work by Gerard et al. dem-
onstrates that the APOE E4 can bind to chlamydial EBs
while maintaining the ability to bind to LDL receptors on
the surface of host sells [48]. The expression of the E4 al-
lele leads to a several fold increase in transport and adher-
ence of EBs of C. pneumoniae to astroglia and microglia
in vitro [48]. As research progresses and the mechanism is
further studied, the NetLogo modelling framework may
be updated to explore the difference in infection dynamics
between E4 allele carriers and non-carriers.

Additionally, better ways to isolate microbes in brain
samples is required to have more data for model valid-
ation as current methods may be largely invasive [49].
Most studies performed to allow the model to be devel-
oped thus far were performed on deceased patient sam-
ples. Nevertheless, it is extremely difficult to isolate C.
pneumoniae from the brain. Numerous papers have
expounded on this difficulty, especially in the reproduci-
bility of studies done by researchers [25]. However, there
is a definite need for ethical, longitudinal studies to under-
stand the proposed pathway and its mechanistic parame-
ters better. These parameters include more accurate lysis
and C. pneumoniae cell cycle lifespans in the brain and a
threshold for how long an immune response needs to be
sustained to cause AP plaque or NF tangle deposition or
prolonged inflammation. A verification of the mode of in-
fection would also improve the model. While there are
studies which analyze C. pneumoniae infections in other
parts of the body, such as the lungs, it would be useful to
ensure that the infection acts the same in both organs.
Strains of C. pneumoniae that infect the brain differ from
infections in the respiratory tract, thus expounding on the
need for experiments to understand infection in the brain
[10]. However, our model ultimately lays the foundation
for understanding one possible pathway of the C. pneumo-
niae-Olfactory mechanism and provides guidance for
these types of experimental tests.

Conclusion

We have created an initial modeling framework that maps
how microbes may propagate through the olfactory sys-
tem and play a role in the development and progression of
Alzheimer’s disease using NetLogo 3D. Our agent-based
model simulates the propagation of bacterial infection
through the olfactory tract and into the olfactory cortex
and hippocampus regions of the brain. By incorporating
spatial and temporal behaviors, the model attempts to
demonstrate how complex mechanisms may underlie AD
pathogenesis. As seen through initial model testing and
the simulations described in this paper, given sporadic ex-
posure to C. pneumoniae, older individuals or individuals
with waning immune systems developed A plaque or NF
tangles in the olfactory cortex and hippocampus regions
of their brain. These regions have often been cited to
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possibly be the first areas of deterioration in late-onset
AD. Younger individuals with very robust immune sys-
tems may not have AP plaque or NF tangles at all. Overall,
our simulations highlight the two major benefits of model-
ling this system as an agent-based system with tunable
variables: (1) simulations could be adjusted as desired to
investigate the effects of different mechanistic parameters
and (2) although simulations, with the same initial condi-
tions, had differing specific results, the overall system be-
havior remained predictable and consistent. While the
model may provide a simplified view of the complex sys-
tem, its results align with developments found in early
stages of late-onset Alzheimer’s disease. As a result, we
hope the framework can be used and refined for a variety
of different purposes such as hypothesis testing and ex-
perimental guidance.
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