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Abstract 

Background:  Natural disasters and infectious diseases result in widespread disruption to human health and liveli-
hood. At the scale of a global pandemic, the co-occurrence of natural disasters is inevitable. However, the impact of 
natural disasters on the spread of COVID-19 has not been extensively evaluated through epidemiological modelling.

Methods:  We create an agent-based epidemiology model based on COVID-19 clinical, epidemiological, and geo-
graphic data. We first model 35 scenarios with varying natural disaster timing and duration for a COVID-19 outbreak in 
a theoretical region. We then evaluate the potential effect of an eruption of Vesuvius volcano on the spread of COVID-
19 in Campania, Italy.

Results:  In a majority of cases, the occurrence of a natural disaster increases the number of disease related fatalities. 
For a natural disaster fifty days after infection onset, the median increase in fatalities is 2, 59, and 180% for a 2, 14, and 
31-day long natural disaster respectively, when compared to the no natural disaster scenario. For the Campania case, 
the median increase in fatalities is 1.1 and 2.4 additional fatalities per 100,000 for eruptions on day 1 and 100 respec-
tively, and 60.0 additional fatalities per 100,000 for an eruption close to the peak in infections (day 50).

Conclusion:  Our results show that the occurrence of a natural disaster in most cases leads to an increase in infection 
related fatalities, with wide variance in possible outcomes depending on the timing of the natural disaster relative to 
the peak in infections and the duration of the natural disaster.
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Introduction
As of July 2021, COVID-19 has spread to over 200 coun-
tries, infected more than 188 million, and killed over 4 
million people [1]. Natural disasters can threaten the 
measures in place to reduce disease transmission [2]. 
Understanding how disease spread can be worsened by 
natural disasters will aid preparedness and response plan-
ning [3]. Although a small increase in risk of epidemic 
outbreak following natural disasters has been identified 

[2, 4], very little is known about the spread of infection 
following a natural disaster during a pandemic such as 
COVID-19.

Numerical modelling is an important tool for under-
standing and projecting the spread of infectious diseases 
[5, 6], including COVID-19 [7–9]. A common approach 
is to divide a population up into susceptible, infected, 
recovered and deceased individuals [5, 6, 10]. More 
sophisticated models incorporate a larger number of 
different states (e.g. asymptomatic or seriously ill indi-
viduals [7];), and may account for other real world com-
plications (e.g. age, vaccination campaigns, etc.).

The time varying proportion of each state may be cal-
culated deterministically by solving a series of ordinary 
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differential equations [5–7]. This approach can accurately 
portray the spread of infectious diseases on a large scale 
[6, 7]. The deterministic approach is ill suited for simula-
tion of small population sizes, heterogeneous populations 
and threshold behaviour [9, 11]. A stochastic, agent-
based model structure may also be used [10, 12–14], in 
which case the variation between runs allows for quan-
tification of uncertainty [8, 14]. Agent-based models are 
are well suited to represent heterogeneous or complex 
populations and spatial variability [10, 12, 13].

Objectives
The main objective of the study is to evaluate the 
impact of a natural disaster on the spread of COVID-19 
infection.

The sub-objectives are the following:

1.	 To evaluate the impact of timing of natural disaster 
on infection spread and number of deaths.

2.	 To evaluate the impact of duration of natural disaster 
on infection spread and number of deaths.

Methods
Spatial, agent based model
We use geoSIR, a geospatial, agent-based model struc-
ture to account for the spread of disease and movement 
of individuals within the model space from a natural dis-
aster evacuation [10, 12]. This model builds on the basic 
susceptible, infected, recovered model structure to better 
account for the characteristics of COVID-19 [5, 6, 10]. 
Every cell in the model is either occupied by an individ-
ual, or by empty space (Xe). Each model individual may 
be in one of 7 states: susceptible (S), infected and mildly 
ill (Im), infected and severely ill (Is), infected and asymp-
tomatic (Ia), recovered (R), or deceased (D). Empty space 
allows us to account for geographic factors such as spa-
tially varying population density and the presence of cit-
ies. Individuals may also self-isolate or be quarantined. 
We base the definition of our states and model disease 
characteristics on COVID-19 data [15–21], and our 
model space on real-world geospatial data.

In geoSIR, the spread of the disease is initiated with 
the arrival of infected travellers [22]. The disease then 
spreads further through encounters between individu-
als within the model space. In each timestep, individuals 
make both close and distant encounters with other indi-
viduals. If either induvial is infected, they have a given 
probability of transmitting the infection to the other indi-
vidual, which we parametrise based on available data for 
COVID-19 [20, 23]. We also ensure that resulting repro-
ductive number R0 (as calculated from eq. 6) are consist-
ent with the range estimated for COVID-19 [15, 19, 24].

Infections may be either asymptomatic, mild or severe. 
Asymptomatic and mildly infected individuals merely 
transmit the infection, while severely infected individu-
als are at risk of death. If the total number of severely 
infected individuals exceeds the local hospital capac-
ity (for which we use the number of intensive care unit 
beds), the case fatality rate of severely infected individu-
als is increased. Further description of the model setup 
and key equations are provided in the supplementary 
materials, as well as a brief use manual for the open-
source code.

COVID‑19 data sources
We use published data for the spread of COVID-19 to 
parametrise the disease transmission in our model [15–
21]. Our data sources consider the original SARS-CoV-2 
strain and not any of the later variants.

The spread of the disease may be described by a disease 
spread parameter α:

In which I is the number of infected individuals and α 
is given by:

With nci being  the number of close encounters, Pci 
being the probability of infection for close encounters, ndi 
being the number of distant encounters, and Pdi being the 
probability of infection for distant encounters. Close 
encounters can represent sustained contact with another 
individual within a household or among close friends. 
Distant encounters can represent an individual’s risk of 
catching an infection through indirect contact such as 
visits to supermarkets, fomites transmission or whilst 
commuting. The details of these two parameters can be 
modified to account for specific modes of transmission.

We use data from two case studies of COVID-19 trans-
mission in Wenzhou, China [23] and Bavaria, Germany 
[20] to estimate parameters. We also ensure that result-
ing reproductive number R0 (as calculated from eq.  6) 
are consistent with the range estimated for COVID-19 
[15, 19]. We use nci ∈ [0,4], Pci = 0.4 ± 0.1, nci ∈ [5, 15], 
and Pci = 0.025 ± 0.005. The number of close and distant 
encounters are comparable to those used for an agent-
based simulation of influenza outbreaks in New York City 
[10]. The number of encounters and probability of infec-
tion transmission can be reduced through lockdowns and 
social distancing measures.

Infections begin by a period of disease incubation 
and are followed by a period of symptoms (unless the 
infection is asymptomatic). We use a mean incubation 
period of 5.1 days and a mean duration of symptoms of 

(1)∂I(t + 1) = α(t)I(t)

(2)α(t) = ρ(t)(nci(t)Pci(t))+ ρ(t)(ndi(t)Pdi(t))
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11 days [17, 18, 25]. A proportion PA of infections begin 
as asymptomatic and the remaining 1 − PA begin as mild. 
The proportion of asymptomatic COVID-19 patients 
has been estimated at around 20% through airport 
screenings [26], on the Diamond Princess cruise ship 
[21] and in China [27]. We use PA = 0.2 ± 0.05. Asymp-
tomatic infected individuals may infect others, but do 
not change state until they recover. Mild cases have a PS 
chance of transitioning to severe cases over the course 
of their illness. We use a definition of severe cases that 
combines the ‘severe’ and ‘critical’ categories from Wu 
and McGoowan [16], resulting in PS = 0.19 ± 0.02. Each 
severely ill individual has a probability PD of dying. The 
expected probability of dying for any infected individual, 
termed infection fatality rate PIFR is thus:

We use COVID-19 infection mortality rates from 
a compilation of Chinese data [16, 17, 28], calculated 
at 2.3 and 1.4% respectively. Accordingly, we define 
PD(0) = 0.12 ± 0.02, giving an approximate infection mor-
tality rate of 1.8%. A full list of the parameters used and 
associated data sources is provided in supplementary 
Table 1.

Geospatial data sources
The model simulation grid is built according to real-
world geospatial data. We vary the initial proportion of 
susceptible individuals S and empty space Xe to account 
for differences in population density and define the 
boundaries of the model space based on geographical 
information (Fig.  1). High and medium natural hazard 
areas are also inputted. These determine the areas in 
which evacuation may be necessary. For Vesuvius, high 
and medium hazard zone masks are created based on 
the ‘red’ and ‘yellow’ zones defined in the most recent 
Vesuvius National Emergency Plan [29]. Individuals 
living in high or medium hazard zones are tagged and 
retain more social interactions (e.g. a higher number of 
close or distant encounters) than other individuals fol-
lowing evacuation. Social distancing is challenging both 
during evacuation and in densely packed evacuation 
facilities [30–32].

Model scenarios: theoretical region
We run two different experiments, one based on a theo-
retical region to evaluate the effect of different disaster 
timings and durations in the absence of real-world com-
plexity and a second based on the region of Campania, 
Italy.

The theoretical region includes an idealised town or 
city with high population densities that radially decay 
away from the town centre. Initial effective population 

(3)PIFR = (1− PA) PS PD

densities vary from 1 for the centre of town to 0.3 in 
rural areas. A concentric geological hazard is located 
within this study area, with the medium hazard region 
overlapping moderate population density outskirts of 
the city and rural areas. Hazard NH is divided into high 
and medium hazard zones, with the high hazard zone 
entirely enveloped by the medium hazard zone. The theo-
retical region has a population of 100,000 individuals. 
We find that a population of 100,000 is sufficiently large 
to accurately reproduce disease spread, yet low enough 
to remain computationally efficient. We test 35 different 
scenarios, described in detail in supplementary Table  2. 
These scenarios vary the presence or absence of lock-
down measures, the timing and duration of the natural 
disaster, and the type of evacuation. We conduct 100 dif-
ferent runs for each scenario.

Model scenarios: Eruption of Vesuvius in Campania, Italy
Campania is Italy’s third most populated region and is 
home to its third largest city (Napoli). It is also home to 
active volcano Vesuvius. For the Campania model runs, 
we simulate the full 5.8 million inhabitants for 6 differ-
ent scenarios. Due to the large population size in this 
scenario, we adapt the code to run on a 24 core Haswell 
E5-2680v3 processor node of the Minnesota Supercom-
puting Institute. One of these scenarios is comparable to 
reality, with no natural disaster and a lockdown imple-
mented. We evaluate the results of it against real-world 
data from the wave of COVID-19 infections in spring 
2020. The other five scenarios are counterfactual sce-
narios- one in which no natural disaster occurs but no 
lockdown is implemented, and the other four in which a 
natural disaster occurs on day 2, 25, 50 or 100 of the sim-
ulation. We use a real-world natural disaster, the eruption 
of Vesuvius. The key mitigation strategy for a volcanic 
eruption at Vesuvius is a timely evacuation [33, 34], for 
which evacuation plans have been designed [29]. This 
disaster response results in widespread population dis-
placement - a key risk factor in disease spread [2].

Results
In the theoretical region, we perform 100 model runs 
for 35 different scenarios. These scenarios cover vari-
ous permutations of lockdown, natural disaster timing 
and natural disaster duration. Both the number of infec-
tions and number of deaths are higher when a natural 
disaster occurs during the infection outbreak (Fig.  2). 
The scale of this increase depends on the relative timing 
of the natural disaster and peak in infection cases, and 
on the duration of the disaster (Fig. 2). In the case with 
no natural disaster, the median number of infections is 
4900 (IQR 41405,640) cases per 100,000 and the median 
number of deaths is 66 (IQR 53–76) per 100,000. The 
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increase in deaths remains low when the natural disaster 
occurs during the onset of the outbreak (day 1, median 
57, IQR 39–100 deaths per 100,000) and after the initial 
infection peak has subsided (day 200, median 73, IQR 
53–92.5 deaths per 100,000 respectively). The num-
ber of infections and deaths is highest when the natural 

disaster occurs close to the peak of the outbreak. In this 
case, the number of infections are 153% higher and 
deaths are 602% higher when compared to the scenario 
with no natural disaster (NDt = day 20, median 12,390, 
IQR 7100–16,820 cases per 100,000; median 463, IQR 
126–847 deaths per 100,000).

Fig. 1  Illustration of the geospatial data used to build the geoSIR model space, using four maps of Campania. Geographical boundaries, population 
density data, and hazard zones are mapped onto a model grid. Satellite image from Sentinel-2. In the population density map, blue represents low 
population density and white represents high population density. In the hazard zones map, red, orange, and green represent the high, medium and 
low hazard zones, respectively. In the model space map, each black pixel represents an individual and each white pixel represents empty space
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For a given natural disaster timing (50 days), long dis-
ruptions cause more infections and deaths than short 
ones. A 3 day long natural disaster results in a simi-
lar number of deaths (median 66.5, IQR 55–80.5 per 
100,000) as the case with no natural disaster. A 31 day 
long natural disaster, however, causes and 180% increase 
in median number of deaths (median 183.5 IQR 149.5–
3172 deaths per 100,000). In the case where no lockdown 
is instigated, around 80% of the population is infected 
and death toll is extreme (median 3028, IQR 2674–3259 
deaths per 100,000).

For Campania, we first model the COVID-19 outbreak 
in a scenario similar to reality (lockdown initiated, no 
Vesuvius eruption). Our model predicts a median of 580 
(IQR 553–641) infections per 100,000, and a median of 
8.5 (IQR 7.9–8.9) deaths per 100,000. Model infections 
are lower, but consistent with Vollmer et  al., (2020)‘s 
estimate of 590–950 cases per 100,000 [35] and model 
deaths are consistent with real world data (7.7 deaths per 
100,000 in September 2020) [1].

We then model five counterfactual scenarios, four of 
which include an eruption of Vesuvius (Fig.  3) during 
Campania’s COVID-19 outbreak. The increase in total 
number of deaths remains low for an early (Day 2, mean 
9.6, IQR 7.6–13.1 deaths per 100,000) or post infections 
peak (Day 100, median 10.9, IQR 10–12.1 deaths per 
100,000) Vesuvius eruption. The median deaths rise to.

68.5 (IQR 12.1–133.3) per 100,000 when a Vesuvius 
eruption occurs close to the infection peak (Day 50). In 
this case, the deaths per 100,000 are comparable to the 
states in Northern Italy worst hit by COVID-19 (168, 95 
and 44 deaths per 100,000 in Lombardy, Piedmont and 
Veneto respectively in September 2020) or other hard-
hit regions such at New York State, USA (168 deaths per 
100,000 in September 2020) [1]. For an eruption occur-
ring close to the peak in infections at day 50, there is a 
large variability in possible outcomes. The median death 
rate is 8 times higher than with no eruption (68.5 deaths 
per 100,000). However, in 32% of runs the death rate is 
no more than double that of the no eruption scenario, 

Fig. 2  Number of infections and deaths for different theoretical disasters. The timing (a and b) and duration (c and d) of the ND are varied. Natural 
disasters occuring close to the peak of infections (around 20–30 days) have the largest impact. The increase in infections and deaths increases 
non-linearly with the duration of the disaster
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while in 12% of runs the death rate is more than 25 times 
higher.

Discussions
Italy was one of the most hard-hit countries during the 
COVID-19 pandemic [7], with over 39,000 deaths and 
750,000 confirmed cases as of November 2020. Campa-
nia had more than 4800 confirmed infections and 400 
deaths [1]. Although the probability of Vesuvius erupt-
ing during the COVID-19 pandemic is low, the wealth of 
volcanic evacuation plans and COVID-19 data make it 
a valuable case study. The exact nature of the geological 

hazard is not of primary importance, rather the param-
eters of the evacuation and increased human contact fol-
lowing influence the progression of the infectious disease 
outbreak. The Campania results may be used to under-
stand the effect of other disasters requiring widespread 
evacuation during a pandemic.

Natural disasters have already occurred during the 
COVID-19 pandemic [36, 37], and will occur during 
future infectious disease outbreaks. Cyclone Amphan 
made landfall in Bangladesh and West Bengal, India 
on May 20, 2020, prompting widespread evacuations. 
The number of new COVID-19 infections in the first 

Fig. 3  Results of the number of daily infections and deaths from COVID-19 in Campania, Italy under different scenarios. The red line represents real 
world data, the black line represents model mean and the grey lines represent individual model runs. All values are filtered with a 10 day moving 
mean to remove short period noise. The in the scenario with no eruption and a lockdown, model outputs are close to the observed real world data 
(a and g). Note that the model mean new daily cases appear artificially low due to different peak timings, but that the magnitude of individual runs 
are comparable to the real world outputs. The mean number of deaths is higher in all scenarios in which Vesuvius erupts (c and i, d and j, e and k, f 
and l), and higher by more than an order of magnitude where the eruption coincides with the peak in infections (e and k)
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week of June was 3.5 times higher in West Bengal and 
4.8 times higher in Bangladesh compared to the same 
period in May [1]. The number of COVID-19 related 
deaths rose by a similar percentage. Further research 
is required to determine whether Cyclone Amphan 
played a role in this increase in infections and deaths, 
which at this stage cannot be attributed to any particu-
lar cause.

The majority of previous studies on the relationship 
between infectious disease outbreak and natural disasters 
have focused on whether natural disasters initiate new 
outbreaks. In a small number of cases, a disease outbreak 
has followed a natural disaster [2]. However, a review of 
the topic concluded that “the risk for epidemics after a 
geophysical disaster is very low” [4]. Our results do not 
contradict this but highlight the previously overlooked 
extreme risk in cases of already widespread infection 
(Fig. 4).

The possibility of natural hazards interacting with 
COVID-19 has previously been raised [3, 36, 37]. Quig-
ley et  al., 2020 use a phenomenological model to inves-
tigate the impact of natural disaster occurrence during 
the COVID-19 pandemic. They also find that this results 
in a larger total number of infections, although the sim-
plicity of their model precludes detailed interpretation 

[36]. Phillips et  al., 2020 propose that climate change is 
increasing the magnitude and frequency of climatic haz-
ards, therefore raising the risk of natural disasters co-
occurring with disease outbreaks [37].

Conclusion
We use a stochastic SIR type model, built with a real-
world geographic model space, to investigate the effect 
on natural disaster evacuations on the spread of COVID-
19. We consider two scenarios, one in an idealised region, 
and one based on the region of Campania, Italy. Our 
model results show that in most cases, the occurrence of 
a natural disaster during the pandemic increases COVID-
19 spread. Furthermore, we investigate the key risk fac-
tors involved in this increase and highlight the timing 
and duration of the natural disaster as they key controls 
on the increase in infections.

In our Campania test case, we model the effect of evac-
uation in response to an eruption of Vesuvius volcano 
on all 5.8 million residents, based on an existing local 
disaster plan. We find that an eruption occurring close 
to the peak in COVID-19 infections could increase the 
number of disease-related deaths from 8.5 (IQR 7.9–8.9) 
deaths per 100,000 to 68.5 (IQR 12.1–133.3) per 100,000 
due to the large population displacement required in 

Fig. 4  Summary of impact of natural disasters on disease outbreak, as modelled in this study
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evacuating high volcanic-risk areas. The stochastic mod-
elling approach highlights a large variability in possible 
outcomes for the same initial conditions, complicating 
disease forecasting. Close links between the epidemi-
ology response and natural disaster response commu-
nities are necessary for the formulation of timely risk 
assessments.
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