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Abstract
Integral membrane proteins are the primary targets of novel drugs but are largely without solved
structures. As a consequence, hydrophobic moment plot methodology is often used to identify
putative transmembrane α-helices of integral membrane proteins, based on their local maximum
mean hydrophobic moment (<µH>) and the corresponding mean hydrophobicity (<H>). To
calculate these properties, the methodology identifies an optimal eleven residue window (L = 11),
assuming an amino acid angular frequency, θ, fixed at 100°.

Using a data set of 403 transmembrane α-helix forming sequences, the relationship between <µH>
and <H>, and the effect of varying of L and / or θ on this relationship, was investigated. Confidence
intervals for correlations between <µH> and <H> are established. It is shown, using bootstrapping
procedures that the strongest statistically significant correlations exist for small windows where 7
≤ L ≤ 16. Monte Carlo analysis suggests that this correlation is dependent upon amino acid residue
primary structure, implying biological function and indicating that smaller values of L give better
characterisation of transmembrane sequences using <µH>. However, varying window size can also
lead to different regions within a given sequence being identified as the optimal window for
structure / function predictions. Furthermore, it is shown that optimal periodicity varies with
window size; the optimum, based on <µH> over the range of window sizes, (7 ≤ L ≤ 16), was at θ
= 102° for the transmembrane α-helix data set.

Background
Integral membrane proteins are the primary choice as tar-
gets when developing new drugs and although clearly of
medical relevance, forming 20% – 30% of the gene prod-
ucts of most genomes, these proteins have been structur-

ally determined in only about thirty cases [1,2]. Where
high levels of sequence homology exist, an unknown pro-
tein's structure and hence, the location of its membrane
interactive segments, can sometimes be deduced by direct
comparison to known protein structures. However, where
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sequence information alone is available, the identifica-
tion of transmembrane α-helical structure requires a bio-
informatics approach to understanding the structure /
function relationships of these α-helices. A number of α-
helical properties have been used as models to study
transmembrane α-helices and their structure / function
relationships but the most commonly used are those
based on the amphiphilicity of protein α-helices with the
hydrophobic moment used as a measure of amphiphilic-
ity [3].

To quantify the amphiphilicity of protein secondary struc-
tures, Eisenberg and co-workers [4] introduced the hydro-
phobic moment, µ(θ), which provides a measure of the
structured partitioning of hydrophilic and hydrophobic
residues in a regular repeat structure of period θ. For a
structure comprising L consecutive residues, the general
form of µ(θ) is given by:

where Hj is the hydrophobicity of the jth residue within the
sequence, and θ is the angular frequency of the amino
acid residues forming the structure. Eisenberg et al., [4]
assumed that for an α-helix, θ is fixed at 100°, and that a
segment of eleven consecutive residues, equivalent to
three turns of an α-helix, could be used to represent
amphiphilic α-helices. These assumptions led to the more
generally used measure of α-helix amphiphilicity, the
mean hydrophobic moment <µH>, where

<µH> = µ(100°)/11

As a major extension to the use of the hydrophobic
moment, Eisenberg et al., [5] introduced hydrophobic
moment plot methodology, which provides a graphical
technique for the general classification of protein α-heli-
ces. Using this methodology, a putative protein α-helix is
characterised according to its maximum <µH> and corre-
sponding mean hydrophobicity, <H>, where this is
defined by:

The parameters <µH> and <H> are then plotted on the
hydrophobic moment plot diagram (figure 1) and the
location of the resulting data point used to classify the
putative α-helix.

The mean hydrophobic moment is widely used and gen-
erally regarded as a good predictor of α-helix amphiphilic-

ity but the results of statistical analyses have shown the
efficacy of hydrophobic moment plot methodology as a
predictor of α-helical class to be less certain [6]. A number
of authors have observed that the methodology can erro-
neously classify α-helices in cases where the hydrophobic
moment for a particular amino acid sequence is greatly
affected by the spatial arrangement of a few extreme
amino acids, thus masking the overall nature of an α-helix
[3]. However, a more fundamental source of erroneous
classification could come from the questionable assump-
tion made by hydrophobic moment methodology with
respect to angular periodicity. It is known that in naturally
occurring α-helices, θ can vary over the range (95° ≤ θ ≤
105°) and between consecutive residues [7]. Clearly,
assuming a fixed value of θ = 100° for all α-helices is an
approximation and could lead to classification difficulties
for the methodology. Furthermore, classification difficul-
ties could arise from the arbitrary choice of window length
made by the methodology as window length is known to
have a profound effect on the relationship between <µH>
and <H>[7]. It would seem that the optimisation of θ and
window length are crucial to the classification of
amphiphilic α-helices yet the values chosen for these
parameters by hydrophobic moment plot analysis are not
optimal for the classification of any single subclass.

A number of studies have considered the significance of
<µH> in relation to structure / function relationships of
the α-helical classes described by hydrophobic moment
plot methodology with common examples including: sur-
face active α-helices, transmembrane α-helices and
oblique orientated α-helices [8-10]. However, if different
α-helical classes have differing optima for θ and window
length, not only does this question the validity of results
obtained in these studies but also questions the validity of
α-helix classification according to hydrophobic moment
plot methodology. In this paper we examine the criteria
upon which the methodology is based and, in view of
their medical relevance, we use transmembrane α-helices
as a test data set. These α-helices possess central regions,
which are predominantly formed by hydrophobic resi-
dues and interact with the membrane lipid core, and end
regions, which are primarily formed by hydrophilic resi-
dues and reside in the membrane surface regions [8]. For
the α-helices of our data set, we analyse the relationships
for the mean hydrophobic moment and window size,
angular frequency and the robustness to varying angular
frequency. Correlations between the mean hydrophobic
moment and mean hydrophobicity of transmembrane α-
helices are established, verified and analysed to appraise
biological function using resampling Bootstrap and
Monte Carlo techniques [11,12].
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Results
A data set of 84 transmembrane proteins were identified
within Swiss-Prot and used to generate a set of 403 trans-
membrane sequences (see Additional file 1). All
sequences within the data were of 21 residues in length
and showed less than 5% homology (data not shown).
For the sequences of this data set, the maximum mean
hydrophobic moment, <µH>, and its corresponding
mean hydrophobicity, <H>, were determined and used to
generate the hydrophobic moment plot shown in figure 1,
based on the generally used 11 residue window (L = 11)
introduced by Eisenberg et al., [4]. It can be seen that data
points representing the sequences of our data set cluster
around the transmembrane region identified by Eisenberg
et al., [5] but as previously noted [6] there are a significant
number that fall outside the boundaries of this region. In
particular, many of this number possess <H> values less
than 0.5 and would not be classified as transmembrane α-
helices according to the hydrophobic moment plot taxon-
omy of Eisenberg et al., [5]. Even allowing for the diffuse
nature of these boundaries on the hydrophobic moment
plot diagram [5], these results clearly question the efficacy
of hydrophobic moment methodology for the prediction
of transmembrane α-helices.

The above analysis was repeated except that window sizes
varying in the range (7 ≤ L ≤ 20) were employed. The val-
ues for <µH> and corresponding <H> were plotted as
above and the results for window sizes of 7, 9, 16 and 20
are shown in figure 2. It can be seen that a weak negative
correlation exists between <µH> and <H> for smaller win-
dow sizes but that the level of correlation appears to
reduce as window size increases. The sample correlation
coefficients for the various window sizes are given in table
1. To conduct standard statistical tests to determine
whether the population correlation coefficients do differ
from zero, it is necessary to establish if these data are
bivariate Normal. The P-values obtained from Anderson-
Darling and Kolmogorov-Smirnov tests for Normality for
the various window sizes with θ = 100° are shown in table
2. These results present clear evidence that the popula-
tions for the variates for each window size are not bivari-
ate Normal. These findings prompted the use of the
bootstrap procedures to estimate the confidence intervals
for the population correlation coefficient values for the
window sizes in the range (7 ≤ L ≤ 20).

The results of this investigation for θ = 100° are presented
in figure 3. It would appear that the smaller window sizes
do show correlations between <µH> and <H> and if this
reflects a biological property of transmembrane
sequences, it could be of use in the analysis and prediction
of these motifs. It is known that angular frequency for a
transmembrane α-helix varies between 95° and 107°
[16], rather than being fixed at 100° as proposed by the

methodology of Eisenberg et al., [4]. For each window size
in the range (7 ≤ L ≤ 21) residues, to accommodate the
findings of Cornette et al., [16], the fixed value of θ was
therefore varied from 95° to 108° in increments of 1°.
Once the optimal window had been obtained, to observe
the discriminating effect of θ on <µH>, the <µH> values,
denoted by Σ<µH>, were summed for the 403 sequences
for each θ. Figure 4 shows the optimal θ, based on the
maximum values of Σ<µH> for each window length. It can
be seen that as the window size increases the total <µH>
reduces approximately linearly until the intermediate size
of eleven residues in length. For subsequent larger win-
dow sizes, we observe a further near linear reduction trend
but at a reduced rate. The optimal angular frequency

Conventional hydrophobic moment plot analysis of the transmembrane protein data setFigure 1
Conventional hydrophobic moment plot analysis of 
the transmembrane protein data set. Figure 1a shows 
the hydrophobic moment plot diagram [5] with protein clas-
sification boundaries. Figure 1b shows the results of hydro-
phobic moment plot analysis of the 403 transmembrane 
sequences of our data set using the conventional values of L 
= 11 and θ = 100° [4].
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corresponding to each window size (7 ≤ L ≤ 21) is also
given in figure 5. The overall relationship between Σ<µH>,
the window size, L, and the angular frequency, θ, is finally
depicted in figure 6 as a response surface diagram.

To assess the robustness of <µH> to this fixed angular fre-
quency assumption, and thus, the accuracy of the hydro-
phobic moment plot analysis for candidate
transmembrane sequences, Monte Carlo simulation

Hydrophobic moment plot analysis of the transmembrane protein data set with varying window sizeFigure 2
Hydrophobic moment plot analysis of the transmembrane protein data set with varying window size. Figure 2 
shows the 403 transmembrane sequences of our data set, which were analysed according to hydrophobic moment plot meth-
odology but with varying window size (L). In comparison to L = 1 (figure 1b), here in figure 2a, L = 7; in figure 2b, L = 9; in figure 
2c, L = 16; and in figure 2d, L = 20. In each case, θ = 100°.

Table 1: Sample correlation coefficients between <µH> and <H> for window sizes (7 ≤ L ≤ 20).

Window size (L) Sample correlation coefficient (r) Window size (L) Sample correlation coefficient (r)

7 -0.57648 14 -0.34654
8 -0.45020 15 -0.31280
9 -0.30316 16 -0.17998
10 -0.40110 17 -0.15074
11 -0.47663 18 -0.21843
12 -0.33693 19 -0.20038
13 -0.30354 20 -0.15653
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studies were conducted. Initially, the angular frequency, θ,
was assumed to have a mean value, E(θ), fixed at 100°
and the angle for each successive residue varied about
E(θ). The random variation, X, followed a Normal distri-
bution and six separate simulations were undertaken with
X~N(100, σ2), where the standard deviation, σ, was set at
0.1°, 0.3°, 0.5°, 0.7°, 0.9° and 1.1° respectively for each.
The process was repeated with the mean value being set at
the identified optimal angular frequency for the window
size, again, for each of the window sizes in the range (7 ≤
L ≤ 20).

Hydrophobic moment plots for variable angular fre-
quency were obtained for E(θ) = 100° for each window
size in the range (7 ≤ L ≤ 21) residues and for the separate
standard deviation values, σ = 0.1°, 0.3°, 0.5°, 0.7°, 0.9°,
1.1°. These were compared visually with the original plots
obtained under the fixed angular frequency assumption
(θ = 100°). In all cases, the bulk properties of the plots
were similar irrespective of the level of dispersion intro-
duced by the different values of the standard deviation.
The hydrophobic moment plot for L = 15; θ = 100° is pro-
vided in figure 7. This is to be contrasted with the plots for
L = 15; E(θ) = 100°, σ = 0.1°, σ = 0.7° and σ = 1.1°, also
present in figure 7. Similar results were obtained for all
other values, confirming, at least visually, that <µH> is
robust to slight random perturbations about a fixed value.
These properties were also observed for the simulation
study with the fixed angular frequency assumption being
violated about the optimum frequency for each of the
window sizes in the range (7 ≤ L ≤ 20) and for each corre-
sponding level of dispersion.

A more rigorous assessment of the variation was provided
by analysis of the sample correlations. These were calcu-
lated in each case and compared to the empirically
derived 99% confidence intervals established for window
sizes in the range (7 ≤ L ≤ 20) under the fixed angular fre-
quency assumption of θ = 100°. The calculated sample
correlation coefficients were also compared to the point
estimates for the original data. In all cases, the values were
within the appropriate confidence intervals and were
always close to the original sample correlation coefficient
values, again providing evidence that <µH> is robust to
random variation in angular frequency. The results of this
investigation are given in table 3.

To test whether these correlations are artefactual, hydro-
phobic moment plots were obtained for the <µH> and
<H> derived from the 403 artificial randomisation
sequences generated by random re-ordering or randomi-
sation [20] of each of the original optimum window
sequences. The plot for a window size of L = 11 is given in
figure 8. These analyses were undertaken for all those win-
dow sizes with previously identified statistically signifi-
cant correlation coefficients between <µH> and <H> and
were designed to test the importance of the spatial
arrangement of the amino acids within the optimum
sequences.

Similar plots were obtained from Monte Carlo simulated
data derived from the 403 sequences that had been gener-
ated by random sampling using the relative abundancies
of residues found in the set of optimal windows. These
analyses were therefore designed to look at the impor-
tance of relative amino acid composition for the

Table 2: Confidence Intervals for regression coefficient from bivariate Normality goodness-of-fit for window size L. * 93% Confidence 
Interval

Window size (L) 95% Confidence Interval 99% Confidence Interval

7 (1.077, 1.112) (1.072, 1.176)
8 (1.051, 1.084) (1.046, 1.089)
9 (1.067, 1.091) (1.061, 1.095)
10 (1.091, 1.171) (1.078, 1.184)
11 (1.078, 1.134) (1.068, 1.149)
12 (1.046, 1.075) (1.042, 1.080)
13 (1.054, 1.110) (1.047, 1.167)
14 (1.055, 1.124) (1.044, 1.135)
15 (1.050, 1.087) (1.044, 1.093)
16 (1.036, 1.045) (1.030, 1.051)
17 (0.976, 1.001) (0.977, 0.999)*
18 (0.959, 0.980) (0.956, 0.983)
19 (0.957, 0.967) (0.955, 0.968)
20 (0.950, 0.960) (0.948, 0.962)
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correlations between <µH> and <H> and the results can
be seen for a window size of L = 11 in figure 8. Again, anal-
yses were performed for all window sizes with associated
statistically significant correlations (data not shown). It is

worth noting that since the effect of varying window size
had a significant effect on the correlation between <µH>
and <H>, varying L was observed to vary the optimal
sequence identified within the transmembrane domain.
Clearly this was not unexpected.

Confidence intervals for the Correlation CoefficientFigure 3
Confidence intervals for the Correlation Coefficient. 
Figure 3a shows the 99% BCa confidence intervals for the 
correlation coefficients estimated from 4000 bootstrap repli-
cates. Figure 3b shows the 99% ABC confidence intervals for 
the correlation coefficients. Figure 3c shows the 99% Delta 
Method confidence intervals for the correlation coefficients.

Σ<µH> for the transmembrane protein data set for variable window sizes with optimised angular frequencyFigure 4
Σ<µH> for the transmembrane protein data set for 
variable window sizes with optimised angular fre-
quency. Figure 4 shows the variation of Σ<µH> for the 403 
transmembrane sequences of our data set with window size 
(7 ≤ L ≤ 20) for optimised θ (95° ≤ θ ≤ 108°).

The variation of optimal angular frequency with window size for the transmembrane protein data setFigure 5
The variation of optimal angular frequency with win-
dow size for the transmembrane protein data set. 
Figure 5 shows the variation of optimal angular frequency, θ, 
(95° ≤ θ ≤ 108°) with window size (7 ≤ L ≤ 20) for the 403 
transmembrane sequences ofour data set
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Conclusions
It can be seen from figure 5 that the most discriminating
angular frequency for a fixed window size varies within
the range, (95° ≤ θ ≤ 104°) for window sizes (7 ≤ L ≤ 20).
There is an obvious damped oscillation present, which
can be seen to correspond to the assumed intrinsic perio-
dicity of α-helical secondary structure i.e. 3.6 residues per
turn. Figure 5 clearly demonstrates that the fixed 100°
angular frequency, assumed when modelling α-helices in
general, is no more than a representative average with a
value nearer 102° providing a maximum for an optimum
L = 11 residue window in a transmembrane α-helical
sequence.

From figure 4, it is also evident that the degree of discrim-
ination possible using <µH> declines in a near linear fash-
ion with increasing window size with the optimum L = 11
residue window appearing to provide approximately aver-
age discrimination for transmembrane α-helices. The
bootstrap derived 99% confidence intervals for the corre-
lation coefficients between <µH> and <H> for window
sizes in the range (7 ≤ L ≤ 20) showed that there are highly
significant linear associations for the smaller window
sizes in the range (7 ≤ L ≤ 16). As the magnitude of each
of the corresponding sample coefficients is small (table
1), this should be interpreted as evidence of a strong (neg-
ative) association but with high variability being present.
These correlations become weaker, on average, with
increasing window size until they are not statistically
significant at the 1% level and we have no compelling evi-

dence that the variates are not independent. The choice of
window size therefore, becomes paramount if <H> and
<µH> are to be used to classify transmembrane α-helices.
More importantly, the variation in correlation between
these parameters and the effect of varying window size on
the location of the sequence identified as optimal for α-
helix classification brings into question the relevance of
using the mean hydrophobic moment for comparison
between varying window sizes. However, <µH> has been
shown to be robust to departures from the fixed angular
frequency assumption for a large range of window sizes
appropriate for transmembrane proteins and for a range
for levels of dispersion.

There were no substantial differences between the plots
for relative abundance sample data and those for the ran-
domisation sequences (figure 8) except for a few chance
negative <H> observations from the former. This suggests
that there are no serial correlations between residue types,
where presence in the identified section of the penetrating
transmembrane stretch is determined predominantly by
relative abundance. This is to be contrasted with the dis-
tribution of observations for the original transmembrane
sequences for a window size of 11 residues (figure 1).
Most noticeable is the difference in <µH> over the range
of <H> values. There appears to be a lower bound for
<µH> for the original sequence, which is clearly not
present for the randomisation data. Furthermore, whilst
the negative correlation would appear to be an artefact, as
it is exhibited in all cases, the dispersion around any opti-
mal fitted line through the data such as a least squares fit
also is clearly different. It appears similar and quite spread
out for the two randomised sequence data but considera-
bly less so for the transmembrane sequences. This
provides evidence that within the optimum window,
whilst residue composition is not influential, order is. It
would appear that this ordering is leading to both organ-
isation and biological function for at least segments of the
interacting portions of transmembrane proteins. This is
consistent with the belief that the hydrophobic moment
is a good predictor of amphiphilicity [8] although it can
be unduly influenced by relatively few amino acid resi-
dues within a sequence [21].

In summary, our analyses confirm previous studies, which
have shown limitations to the ability of hydrophobic
moment plot methodology to assign function to mem-
brane interactive α-helices [6]. More importantly, our
investigation leads to a questioning of the logic of com-
paring mean hydrophobic moments, in general, for trans-
membrane proteins. This is due to the effect of window
size on both, the correlation of mean hydrophobic
moment with mean hydrophobicity and the identified
sensitivity of the optimum window. Comparisons of the
hydrophobic moment are seemingly only meaningful for

Response surface diagram for the transmembrane protein data setFigure 6
Response surface diagram for the transmembrane 
protein data set. Figure 6. Response surface diagram for 
the Σ<µH> for window sizes (7 ≤ L ≤ 20) and angular fre-
quency (95° ≤ θ ≤ 108°).

1 5005
001

01

001

051

51 59
02L
Page 7 of 11
(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2004, 1:5 http://www.tbiomed.com/content/1/1/5
separate transmembrane proteins with identical window
sizes.

Despite these limitations, <µH> has been shown to be
robust to departures from the fixed angular frequency
assumption for transmembrane proteins. Given the severe
lack of structural information for transmembrane pro-
teins, the identification of transmembrane α-helices using

hydrophobic moment based analyses, and other bioinfor-
matic approaches, seems likely to continue for the foresee-
able future. Nonetheless, the results of such analyses
should only be taken as a guide, and where possible,
obtaining corroborative experimental data is essential. On
the positive side, our results have demonstrated the
importance of amino acid residue sequence order in
establishing organisation and biological function for the

Hydrophobic moment plot analysis of the transmembrane protein data set with varying standard deviation of θ about θ = 100°Figure 7
Hydrophobic moment plot analysis of the transmembrane protein data set with varying standard deviation of 
θ about θ = 100°. Figure 7 shows hydrophobic moment plot analysis of the 403 transmembrane sequences of our data set 
using L = 15 and: In figure 7a, θ = 100°; in figure 7b, θ is from a Normal Distribution with E(θ) = 100° and standard deviation of 
0.1° ; In figure 7c, θ is from a Normal Distribution with E(θ) = 100° and standard deviation of 0.7° and in figure 7d, θ is from a 
Normal Distribution with E(θ) = 100° and standard deviation of 1.1°.

Table 3: Sample correlation coefficients for optimum <µH> for θ = 100°, θ~N(100, σ2) and window sizes, L = 7, 11, 15, 16, 20.

Window size 
(L)

θ = 100; σ = 0 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 σ = 1.1

7 -0.576465 -0.576557 -0.576118 -0.574907 -0.577803 -0.575951 -0.577435
11 -0.476666 -0.476109 -0.475923 -0.476820 -0.476131 -0.475736 -0.475371
15 -0.312882 -0.312924 -0.312973 -0.313221 -0.313488 -0.312796 -0.311120
16 -0.180014 -0.180160 -0.180679 -0.180656 -0.179292 -0.178218 -0.180065
20 -0.156516 -0.156837 -0.156606 -0.156546 -0.158868 -0.158272 -0.155921
Page 8 of 11
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transmembrane α-helices of proteins. With the ongoing
development of predictive techniques, these results
should be useful in furthering this development and help-
ing to improve drug target identification.

Methods
The selection of transmembrane, α-helix forming segments
The primary structures of 96 transmembrane proteins
were selected from the Swiss-Prot data bank (http://
us.expasy.org/sprot/; accessed 25.05.04) and confirmed
as transmembrane by extensive analysis of the literature.
The sequences were analysed for homology using the
sequence alignment program BLAST (Basic local align-
ment search tool) [13] and twelve homologous sequences

were rejected. From the remaining 84 primary structures,
a data set comprising 403 putative transmembrane α-hel-
ical sequences, each of 21 residues, was established using
the algorithm, Top Pred2 ([14]; http://www.sbc.su.se/
~erikw/toppred2; accessed 25.05.04).

Hydrophobic moment plot analysis of transmembrane, α-
helix forming segments
In the present study, all hydrophobic moment plot analy-
ses were performed using the consensus hydrophobic
scale of Eisenberg [4,5]. To identify putative transmem-
brane α-helix forming segments using hydrophobic
moment plot methodology, hydropathy plot analysis [15]
is initially undertaken to identify the primary
amphiphilicity of candidate sequences. These sequences
are selected using a 21 residue window as this is suffi-
ciently long for an α-helix to span the bilayer.

Once a putative transmembrane domain has been identi-
fied, an eleven residue window is considered to progress
along the amino acid sequence and for each window, the
hydrophobic moment at 100° is calculated. Based on the
assumption that a protein sequence will adopt its most
amphiphilic arrangement, the window with the maxi-
mum mean hydrophobic moment, <µH>, is taken as the
most likely to form an amphiphilic α-helix [5]. The loca-
tion of the optimum window was observed accordingly
for window sizes of seven through to twenty consecutive
residues.

Optimal angular frequency and window length for <µH>
For window sizes ranging from 7 to 20 amino acid resi-
dues <µH> were computed for the range of angular fre-
quency values (95° ≤ θ ≤ 108°). In each case, the value of
θ, which maximises <µH>, i.e. the value of θ which
produces <µH>, was determined and is referred to as the
optimal angular frequency for that window size. These
procedures were based on previously published work,
which identified variations in θ for α-helices [16].

Hydrophobic Correlation
For window sizes ranging from 7 to 20 amino acid resi-
dues, scatterplots of <µH> versus <H> (hydrophobic
moment plots) with θ = 100° were obtained. The corre-
sponding sample correlation coefficients were calculated
to identify the effect of window size on the relationship
between these variates and hence on their ability to act as
discriminators in the prediction of transmembrane α-hel-
ices. In addition, for each window size in the range (7 ≤ L
≤ 20) residues and for θ in the range (95° ≤ θ ≤ 108°), the
response surface diagram for <µH> was constructed.

Confidence intervals for the Correlation Coefficient
Statistical confidence intervals were established for the
Pearson (Product-Moment) Correlation Coefficient

Hydrophobic moment plot analysis of the transmembrane data set using randomised sequence arrangementsFigure 8
Hydrophobic moment plot analysis of the transmem-
brane data set using randomised sequence arrange-
ments. Figure 8 Hydrophobic moment plot analysis of our 
data set was performed using sequences generated by a) ran-
dom rearrangement of sequences for the optimal windows, 
b) random sequences formed with amino acid relative fre-
quencies the same as those of the optimal windows. In all 
cases, L = 11 and θ = 100°.
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between <µH> and <H> for both cases where window size
was varied for a fixed value of the angular frequency, and
the angular frequency was varied for a fixed window size.
The resulting mean hydrophobicity measures were
checked for bivariate Normality and non-parametric
bootstrap procedures [11] were used to estimate confi-
dence intervals for the Correlation Coefficients [17].

To provide evidence of the statistical significance of any
linear association, the bootstrap bias-corrected and accel-
erated technique (BCa) [18] and an analytical extension
of this, the ABC [19]. In addition, the bootstrap Delta
method was employed, which although another boot-
strap based method, was developed specifically for esti-
mating the variance of a function of sample means. As the
sample Correlation Coefficient can be readily expressed as
such a statistic, it is also well suited to the estimation of
confidence intervals for these Correlation Coefficients
[12]. As both main approaches differ substantially, a more
informed assessment of statistical significance could
therefore be made.

Variable angular frequencies
To assess the robustness of <µH> to the fix angular fre-
quency assumption, e.g., θ = 100°, θ was varied randomly
about 100° and <µH> was calculated for each of the opti-
mal windows for window sizes (7 ≤ L ≤ 20) for the 403
transmembrane proteins. These calculations were also
obtained for similar random variations about the
observed optimum angular frequencies, again, for the
various window sizes (7 ≤ L ≤ 20). In all cases, it is
assumed that the variation follows a Normal distribution
with the mean value set at the desired value for θ and with
the standard deviation, σ, set at: 0.1°, 0.3°, 0.5°, 0.7°,
0.9° and 1.1° respectively for six separate Monte Carlo
simulation studies. The sample correlation coefficients for
each simulation were calculated and compared to the
empirically derived 99% confidence intervals for the cor-
responding population values and, in particular, with the
point estimates for the original sequences.

Causality and biological function
Given that these data are from an observational study, it is
necessary to assess whether any linear associations
between <µH> and <H> for the α-helix forming sequences
of our data set are likely to be causal or merely an artefact
of amino acid composition. To investigate these
possibilities, two additional simulation studies were
undertaken. The first looked at spatial arrangements of
residues within the primary sequences and the second
focused on the effect of amino acid composition on corre-
lations between <µH> and <H>.

To assess if positional or sequential correlational proper-
ties existed for the amino acids within the sequences, the

sequence of residues for each of the optimum windows
was re-ordered randomly. Artificial sequences were thus
generated by random rearrangement or randomisation
[20] of the primary sequences within the 403 optimal
windows. Hence, each window associated with <µH> was
used to generate a random arrangement.

To further investigate whether correlations between <µH>
and <H> were dependent on sequence composition and
not on spatial or sequential correlation, an additional par-
ametric bootstrap simulation study was conducted. Here
403 artificial sequences were created. Each was randomly
generated where, for each position, selection was based
on the relative abundance of all the residues for the com-
plete 403 optimum windows.

In both cases the corresponding <µH> and <H> from
these newly created sequences were calculated, the associ-
ated hydrophobic moment plots obtained and sample
correlations calculated. These were inspected to assess
whether any linear associations for the original trans-
membrane data were thus likely to be causal or merely
artefactual and whether, from inspection of variation,
there was evidence of increased organisation, which could
be interpreted as an indication of biological function.
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