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Abstract

Background: In vitro aggregating brain cell cultures containing all types of brain cells
have been shown to be useful for neurotoxicological investigations. The cultures are
used for the detection of nervous system-specific effects of compounds by measuring
multiple endpoints, including changes in enzyme activities. Concentration-dependent
neurotoxicity is determined at several time points.

Methods: A Markov model was set up to describe the dynamics of brain cell
populations exposed to potentially neurotoxic compounds. Brain cells were assumed
to be either in a healthy or stressed state, with only stressed cells being susceptible to
cell death. Cells may have switched between these states or died with
concentration-dependent transition rates. Since cell numbers were not directly
measurable, intracellular lactate dehydrogenase (LDH) activity was used as a surrogate.
Assuming that changes in cell numbers are proportional to changes in intracellular
LDH activity, stochastic enzyme activity models were derived. Maximum likelihood and
least squares regression techniques were applied for estimation of the transition rates.
Likelihood ratio tests were performed to test hypotheses about the transition rates.
Simulation studies were used to investigate the performance of the transition rate
estimators and to analyze the error rates of the likelihood ratio tests. The stochastic
time-concentration activity model was applied to intracellular LDH activity
measurements after 7 and 14 days of continuous exposure to propofol. The model
describes transitions from healthy to stressed cells and from stressed cells to death.

Results: The model predicted that propofol would affect stressed cells more than
healthy cells. Increasing propofol concentration from 10 to 100 μM reduced the mean
waiting time for transition to the stressed state by 50%, from 14 to 7 days, whereas the
mean duration to cellular death reduced more dramatically from 2.7 days to 6.5 hours.

Conclusion: The proposed stochastic modeling approach can be used to discriminate
between different biological hypotheses regarding the effect of a compound on the
transition rates. The effects of different compounds on the transition rate estimates can
be quantitatively compared. Data can be extrapolated at late measurement time points
to investigate whether costs and time-consuming long-term experiments could
possibly be eliminated.
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Background
The central nervous system (CNS) is a frequent target for toxic effects of environmen-
tal, industrial and pharmaceutical compounds. Natural or artificial toxic compounds can
cause irreversible damage to the nervous tissue or even kill the neurons [1]. In vitro assays
have been developed for the initial identification of potential neurotoxicants. Aggregating
brain cell cultures are suited for the detection and study of neurotoxicants for devel-
opmental, acute and chronic neurotoxicity [2-5]. These are three-dimensional in vitro
cell cultures prepared from mechanically dissociated embryonic rat brain. The initial
cell suspension is kept under continuous gyratory agitation. Spherical aggregates form
spontaneously and are maintained in suspension culture for several weeks. Within the
aggregates, the cells reconstitute a histotypic brain architecture. The cultures acquire
organ-specific functionality since they contain the different brain cell types (especially
neurons, astrocytes and oligodendrocytes) which are able to interact in a physiological
manner. High availability, reproducibility and robustness of brain aggregate cell cultures
enable routine test procedures for CNS toxicity testing.
Brain aggregate cell cultures are used in studies of chronic toxicity when the cells are

highly differentiated. The cultures are exposed to several concentrations of potential neu-
rotoxicants. Besides cell type-specific enzyme activities, the ubiquitous cytosolic enzyme
lactate dehydrogenase (LDH) as indicator for cellular integrity is measured photometri-
cally to assess cell loss. The brain cell types respond differently to injury. Each injured cell
type can send signals to the others. The latter will respond to these signals by becom-
ing reactive (astrocytes), stressed (neurons and oligodendrocytes) or by dying. In order
to describe the effects of potential neurotoxicants on the behavior and survival of differ-
ent brain cell types, we set up and applied a mathematical cell population model. For the
mathematical modeling approach, the populations of neurons and oligodendrocytes were
divided into two subtypes, which we called healthy and stressed. This clearly is a simpli-
fication of continual biological processes leading from cellular health to cellular death:
nevertheless, a mathematical model represents specific aspects of reality that may be suf-
ficient to answer particular questions (see [6], pp. 4-6), two of which are investigated in
the present study. On the one hand we examined whether the complex mechanisms lead-
ing to cellular death of brain cells caused by a toxic compound could be discretized into a
stochastic two-step process: the first step accounts for a period of adaptive and protective
mechanisms of cells enhancing cellular survival, whereas the second step describes a crit-
ical degree of injury beyond which the cells will not be able to escape cellular death. On
the other hand, the effect of the compound on the rates of the process was studied, given
that the model correctly reflects the cellular mechanisms. For the modeling approach, the
population of astrocytes was also subdivided into two subtypes that we called quiescent
and reactive, which can have different susceptibilities to cellular death. Again, a rather
complex biological process was simplified so that it could be analyzed by mathematical
techniques. Figure 1 illustrates the subtypes of neurons, astrocytes and oligodendrocytes
that were modeled.
In the present manuscript, a mathematical model was derived to describe and predict

dynamics of brain cell populations that were exposed to a potentially neurotoxic com-
pound. The cell population was modeled as a two-state Markov process in continuous
time with concentration-dependent transition rates. Since cell numbers are not directly
measurable, intracellular LDH activity was used as a surrogate. Intracellular LDH activity
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Figure 1 Compound effects on brain cell populations. Direct compound effects on the single brain cell
populations are modeled. Secondary effects due to interaction between populations are not considered.

is proportional to the living cells, i.e. a cell that contains intracellular LDH is consid-
ered to be alive. From the cell population model, stochastic time-concentration activity
models for intracellular LDH activity data were derived, and maximum likelihood and
nonlinear least squares regression techniques were used to estimate the transition rates.
In computer simulation studies the estimators were compared via their bias, and cover-
age probabilities for the confidence intervals were determined. Likelihood ratio tests were
performed for testing hypotheses about the biologically-based activity model parameters.
The activity model was applied to experimental data, and least squares estimates of the
parameters were obtained and interpreted.
The manuscript is organized as illustrated in Figure 2. At first, experimental data are

described. The cell population model is set up and the mathematical formulae for the
enzyme activity model are derived, which contain biologically-based parameters. Sim-
ulation studies are carried out to assess the performance of parameter estimation. The
formulae are applied to experimental data. Parameter estimates can be used to predict
toxicity at additional time points or exposure concentrations.

Figure 2 Procedure of modeling. Procedure of mathematical modeling in this paper.
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Experimental data
Aggregating brain cell cultures were grown in flasks containing between 200 - 500 aggre-
gates. Cell cultures were exposed to several concentrations of the compound under study
at several time points in independent parallel cultures. As an endpoint for neurotoxi-
city testing, absolute intracellular LDH activity was monitored (see Koh and Choi [7]
pp. 83-90 for a description of the method). Measurements were independent rather than
longitudinal.
The detailed experimental setup is illustrated in Figure 3. In total, five experiments,

in which cultures were harvested and analyzed for intracellular LDH activity, were per-
formed. Measurements were obtained after 7 and 14 days of exposure to propofol. In each
experiment, propofol was tested at four concentrations together with a group of solvent
cultures. Since analysis of variance with factors concentration and experiment showed no
significant effect of experiment at level 5%, measurements from experiments at the same
time point were analyzed as if they originated from one experiment at that time point.

Mathematical model formulation
We model the fate of cells in a brain aggregate. The model parameters are expressed as a
function of the concentration of the compound.

Cell population model

Cells of a population are assumed to be: a) in one of two states; b) reversibly switch
between these two states; or c) die (see Figure 4). Let X(t, c) denote the number of cells in
state one and Y (t, c) denote the number of cells in state two at time t and concentration
c. In a small time interval [ t, t + �t) the following events can occur:

• a cell in state one can become a cell in state two with probability αXY (t, c)�t + o(�t),
• a cell in state two can become a cell in state one with probability αYX(t, c)�t + o(�t),

Figure 3 Design of propofol experiment. Experimental setup for aggregating brain cell cultures exposed
to propofol.
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Figure 4 Cell population model with two states: ‘healthy’ and ‘stressed’. A brain cell population
modeled as a two-state Markov process in continuous time with transition rates dependent on exposure
concentration of a compound.

• a cell in state one can die with probability δX(t, c)�t + o(�t),
• a cell in state two can die with probability δY (t, c)�t + o(�t),
• more than one event at the same time instant occurs with probability o(�t).

Assume the system starts at time t = 0 with X(0, c) = x0 and Y (0, c) = y0 for all
c ≥ 0 and that cells act independently of each other. With these definitions, the pro-
cess (X(t, c),Y (t, c)) is a Markov process in continuous time. Let Pi,j(t, c) := P[X(t, c) =
i,Y (t, c) = j] denote the joint distribution of (X(t, c),Y (t, c)). Every cell will be in one of
three states, namely healthy, stressed or dead. Hence the process (X(t, c),Y (t, c), x0+y0−
X(t, c)−Y (t, c)) follows amultinomial distribution. The distribution is derived analytically
via the generating function denoted by

�x0,y0(x, y, t, c) = E

[
xX(t,c)yY (t,c)|X(0, c) = x0,Y (0, c) = y0

]
=

∑
i,j

xiyjPi,j(t, c)

= �1,0(x, y, t, c)x0 · �0,1(x, y, t, c)y0 (1)

for a process (X(t, c),Y (t, c)) which starts in state (x0, y0) at time t = 0 for any concen-
tration c ≥ 0. The last equality in (1) holds due to the independence of the cells since a
process starting with x0 cells in state one and y0 cells in state two can be viewed as a sum
of x0 processes starting with one cell in state one and y0 processes starting with one cell
in state two.
Assume X(0, c) = x0 ≥ 1 and Y (0, c) = 0, i.e. that all cells start in state one at time

t = 0 for all c ≥ 0. Due to (1) it is sufficient to solve the Kolmogorov forward equations
(see e.g. Feller [8]) for x0 = 1, y0 = 0. These are given by P’ = AP, i.e.

(
P′
1,0(t, c)

P′
0,1(t, c)

)
=

(
− (δX(t, c) + αXY (t, c)) αYX(t, c)

αXY (t, c) − (δY (t, c) + αYX(t, c))

)
·
(
P1,0(t, c)
P0,1(t, c)

)
,

with initial condition

P0 =
(
P1,0(0, c)
P0,1(0, c)

)
=

(
1
0

)
.
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The Kolmogorov forward equations are solved analytically for time-independent transi-
tion rates by a matrix exponential, i.e. P = eλtvP0 where v is the eigenvector of A to the
eigenvalue λ, i.e. Av = λv. Explicitly the solutions are given by

P1,0(t, c) = [ λ1(c) + δY (c) + αYX(c)] ·eλ1(c)t−[ λ2(c) + δY (c) + αYX(c)] ·eλ2(c)t
λ1(c) − λ2(c)

P0,1(t, c) = αXY (c) · e
λ1(c)t − eλ2(c)t

λ1(c) − λ2(c)
where λ1(c) �= λ2(c) are the real solutions of the characteristic equation

λ2(c)+[ δX(c) + αXY (c) + δY (c) + αYX(c)] ·λ(c) + αYX(c)δX(c) + δY (c)δX(c) + αXY (c)δY (c) = 0.

The solutions are continuously extended for the limiting case λ1(c) = λ2(c), which holds
if and only if

αYX(c) = 0 and δX(c) = δY (c) − αXY (c)

or

αXY (c) = 0 and δX(c) = δY (c) + αYX(c).

The solution for P0,0(t, c) is given by

P0,0(t, c) = 1 − P1,0(t, c) − P0,1(t, c).
The joint distribution of (X(t, c),Y (t, c)) is given by

�x0,0(x, y, t, c) = �1,0(x, y, t, c)x0 ⇔
∑
i,j

xiyjPi,j(t, c) = [
P0,0(t, c) + xP1,0(t, c) + yP0,1(t, c)

]x0

⇔
x0∑
k=0

k∑
l=0

xlyk−lPl,k−l(t, c) =
x0∑
k=0

k∑
l=0

(
x0
k

)(
k
l

)
Px0−k
0,0 (t, c) · [

xP1,0(t, c)
]l · [

yP0,1(t, c)
]k−l .

As expected the distribution of (X(t, c),Y (t, c)) follows a multinomial distribution

Pl,k−l(t, c) = x0!
l! (k − l)! (x0 − k)!

· Pl1,0(t, c) · Pk−l
0,1 (t, c) · Px0−k

0,0 (t, c), (2)

for all k = 0, ..., x0 and l = 0, ..., k with Px0,0(0, c) = 1 and Pi,j(0, c) = 0 for all (i, j) �= (x0, 0)
and c ≥ 0.
The expected values of (X(t, c),Y (t, c)) are given by

E[X(t, c)] = x0 · P1,0(t, c),
E[Y (t, c)] = x0 · P0,1(t, c).

Solutions of the Kolmogorov forward equations and the joint distribution of
(X(t, c),Y (t, c)) can analogously be derived for x0 = 0 and y0 ≥ 1.

Activity models

Cell numbers cannot directly be observed experimentally and therefore enzyme activity
data are used as a surrogate for the cell number. Absolute enzyme activity measurements
strongly fluctuate between experiments. For comparability between experiments absolute
enzyme activitymeasurements are normalized. Depending on the aim of the experimental
study, two normalization approaches can be taken. In the first approach, time activity data
are normalized with respect to time point zero to determine effects of time on untreated
cultures. For concentration c = 0 absolute enzyme activities at time t are divided by the
mean of absolute enzyme activities at time t = 0. A time activity model is derived for
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this case. In the second approach, time-concentration activity data are normalized with
respect to an untreated control group at the same time point. Absolute enzyme activities
at time t and concentration c are divided by themean of absolute enzyme activities at time
t and concentration c = 0. A time-concentration activity model is derived for this case.
Note that in general the time activity model is not a special case of the time-concentration
activity model since data differ with respect to the normalization procedure.

Time activitymodel

In this model, transition rates are constant and the dependence of cell numbers, enzyme
activity and probability functions on concentration c is omitted for notational conve-
nience. In the absence of exposure the time course of enzyme activity of untreated cells is
modeled by

A(t) = X(t) + Y (t)
X(0) + Y (0)

= X(t) + Y (t)
x0

. (3)

The following assumptions are made:

A1 The number of cells at time zero is given by: X(0) = x0, Y (0) = 0.
A2 Cells in state one cannot die: δX = 0.
A3 The transition from state one to state two occurs with positive probability: αXY > 0.
A4 Cells in state two can die with positive probability: δY > 0.

The sum X(t) + Y (t) follows a binomial distribution: X(t) + Y (t) ∼ B(x0, 1 − P0,0(t)).
The solutions of the characteristic equation depend only on the sum of the transition rates
and the product δY · αXY : λ1/2 = −p ± w, where p = (δY + αXY + αYX)/2 ∈ (0,∞) and
w = √

p2 − δYαXY ∈[ 0, p). Hence not all three transition rates are identifiable via P0,0(t),
and the parameterization of P0,0(t) only depends on p and w:

P0,0(t) =
{
1 − [

(p + w) · e(−p+w)t − (p − w) · e−(p+w)t] /(2w) ,w > 0 (δY �= αXY or αYX > 0)
1 − e−δY t · (1 + δY t) , p = δY = αXY ,w = αYX = 0 .

Time-concentration activitymodel

In this model, transition rates are assumed to be linear functions of concentration.
Enzyme activity of cells exposed to several concentrations c of a compound at time t is
modeled by

A(t, c) = X(t, c) + Y (t, c)
mean[X(t, 0) + Y (t, 0)]

, (4)

where the denominator denotes the arithmetic mean of replicate measurements of
untreated control c1, ..., cr = 0, i.e. mean[X(t, 0) + Y (t, 0)]= ∑r

l=1(X(t, cl) + Y (t, cl))/r.
The transition rates are defined as linear functions of concentration, i.e. δX(c) = δXi + c ·
δXs, δY (c) = δY i + c · δY s,αXY (c) = αXY i + c · αXY s and αYX(c) = αYXi + c · αYXs. The
subscript i denotes intercept parameters, i.e. parameters that are independent of concen-
tration, whereas the subscript s denotes slope parameters, i.e. parameters that account for
the linear effect of concentration. In addition to A1 the following assumptions are made:

A2* Cells in state one cannot die: δXi = δXs = 0.
A3* Cells in state two cannot switch back to state one: αYXi = αYXs = 0.

Since the compounds under study are potentially toxic, these assumptions reflect that
the probability of a stressed cell becoming healthy or a healthy cell dying are negligible
compared to probability of a healthy cell becoming stressed or a stressed cell dying. Note
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that if δY i = 0 or αXY i = 0, cells from the control culture cannot die. In this case X(t, 0)+
Y (t, 0) ≡ x0 for all t ≥ 0 and hence A(t, c) is a generalization of A(t).
To calculate the distribution of A(t, c) we approximated the binomial distribution

of X(t, c) + Y (t, c) by a normal distribution. Let Var denote the variance. If 0 <

Var (mean[X(t, 0) + Y (t, 0)] ) 
 E[X(t, 0) + Y (t, 0)], i.e. P[X(t, 0) + Y (t, 0) > 0]→ 1,
then according to Hinkley [9], A(t, c) approximately follows a normal distribution:
A(t, c) ∼ N (μA(t, c), σ 2

A(t, c)) with

μA(t, c) = E[X(t, c) + Y (t, c)]
E[X(t, 0) + Y (t, 0)]

= 1 − P0,0(t, c)
1 − P0,0(t, 0)

,

σ 2
A(t, c) = Var[X(t, c) + Y (t, c)]

(E[X(t, 0) + Y (t, 0)] )2
= (1 − P0,0(t, c)) · P0,0(t, c)

x0 · (1 − P0,0(t, 0))2
.

Note that it must be verified whether 0 < Var (mean[X(t, 0) + Y (t, 0)] ) 
 E[X(t, 0) +
Y (t, 0)] holds for the parameters at all times t ≥ 0.
Figure 4 and the parameter restrictions A2* and A3* imply that A(t, c) is symmetric in

δY (c) = δY i + c · δY s and αXY (c) = αXY i + c · αXY s:

P0,0(t, c) =
{
1 − [

αXY (c) · e−δY (c)·t − δY (c) · e−αXY (c)·t] /(αXY (c) − δY (c)) , δY (c) �= αXY (c)
1 − e−δY (c)·t · (1 + δY (c) · t) , δY (c) = αXY (c) .

Exchangeability of the pairs of parameters (δY i, δY s) and (αXY i,αXY s) is removed by
requiring δY i ≤ αXY i in order to prevent optimization problems.

Parameter estimation for activity models
Let (ai, ti, ci) for i = 1, ..., n denote n measurements of activities at time points and
concentrations. Model parameters are estimated preferably by maximum likelihood tech-
niques. We perform least squares regression as an alternative approach to parameter
estimation since it is easily implemented.

Maximum likelihood estimation

Parameters from the time activity model can be estimated byminimization of the negative
log-likelihood

− logL = −
n∑

i=1
x0ai log(1 − P0,0(ti)) + x0(1 − ai) logP0,0(ti).

Parameters from the time-concentration activity model can be estimated byminimizing
the approximate negative log-likelihood

− logL =
n∑

i=1

1
2

· (ai − μA(ti, ci))2

σ 2
A(ti, ci)

+ log σA(ti, ci).

As noted before, it has to be verified whether the estimated parameter combina-
tions obtained from experimental data lead to 0 < Var (mean[X(t, 0) + Y (t, 0)] ) 

E[X(t, 0) + Y (t, 0)] for all times t ≥ 0. In case this condition is not fulfilled, maximum
likelihood estimation cannot be relied on.
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Least squares estimation

For the time activity model, E[A(t)]= E[X(t) + Y (t)] /x0 according to (3). For least
squares regression we assume that

a(ti) = E[A(ti)]+εi = 1 − P0,0(ti) + εi,

where ε1, . . . , εn ∼ N (0, σ 2) are independent measurement errors. The least squares
estimator minimizes

RSS =
n∑

i=1
[ ai − (1 − P0,0(ti))]2 .

For the time-concentration activity model E[A(t, c)]= E

[
X(t,c)+Y (t,c)

mean[X(t,0)+Y (t,0)]

]
according

to (4). The expected value can be approximated by a second order Taylor series expansion,
i.e.

E[A(t, c)]≈ E[X(t, c) + Y (t, c)]
E[X(t, 0) + Y (t, 0)]

+ Var (mean[X(t, 0) + Y (t, 0)] ) · E[X(t, c) + Y (t, c)]
(E[X(t, 0) + Y (t, 0)] )3

.

Note that this approximation of the expected value of A(t, c) differs from μA(t, c).
Analogously we assume that

a(ti, ci) = E[A(ti, ci)]+εi = 1 − P0,0(ti, ci)
1 − P0,0(ti, 0)

+ (1 − P0,0(ti, ci)) · P0,0(ti, 0)
r · x0 · (1 − P0,0(ti, 0))2

+ εi,

where r denotes the number of replicate measurements of the control group. The least
squares estimator minimizes

RSS =
n∑

i=1

[
ai − 1 − P0,0(ti, ci)

1 − P0,0(ti, 0)
−

(
1 − P0,0(ti, ci)

) · P0,0(ti, 0)
r · x0 · (

1 − P0,0(ti, 0)
)2

]2

.

Performance of estimation

Let θ = (θk)k=1,...,m ∈ R
m denote the parameter to be estimated and θ̂i ∈ R

m, i = 1, ...,N
be N independent estimates of θ . The relative bias in each component θk , k = 1, ...,m of
θ is given by B(θk) = N−1 ∑N

i=1(θ̂ik − θk)/θk . Wald confidence intervals with a 95% con-
fidence level are calculated from the Jacobian from the optimization algorithm for least
squares estimation and from the Hessian from the optimization algorithm for maximum
likelihood estimation. Coverage probabilities for confidence intervals are determined to
investigate the actual probability that the confidence interval contains the true parameter.

Testing hypotheses about transition rates
If there is biological evidence that a subset of parameters are identical, e.g. δY i = αXY i, a
likelihood ratio (LR) test can be performed to compare nested model fits (see Fahrmeir
and Hamerle [10], pp. 76 - 78). Under the null hypothesis H0 that the parameter vector
θ ∈ R

m can be parameterized in the simpler form θ = g(θ0) with rank rk(∂g(θ0)/∂θ0) =
k < m, the test statistic 2 ·

(
logL(θ̂) − logL(θ̂0)

)
calculated with maximum likelihood

estimates for θ and θ0 is asymptotically χ2
df distributed with df = m − k degrees of free-

dom.H0 can be rejected at significance level α, if 2 ·
(
logL(θ̂) − logL(θ̂0)

)
> χ2

df (1−α),
where χ2

df (1 − α) is the 1 - α quantile of the χ2
df distribution. If there is biological evi-

dence that a parameter is zero, e.g. δY s = 0, the distribution of the test statistic under
the null hypothesis is a mixture of chi-squared distributions (see Self and Liang [11]). If
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maximum likelihood estimation cannot be relied on, an extra sum of squares analysis for
nested models as described in Bates and Watts, pp.103 - 104 [12] can be performed.

Model simulation
For both models the process (X(t, c),Y (t, c)) is simulated according to its multinomial
distribution (2) at predefined time points and concentrations, i.e. snapshots of theMarkov
process are taken. Motivated by the cell number in the brain aggregate culture system, we
assume that the system starts with x0 = 106. Activities are simulated for one time unit at
ten equidistant time points in three replicates.
A different dynamic range consisting of ‘Fast’, ‘Normal’ or ‘Slow’ with ‘high stress’ and

‘low stress’ scenarios, i.e. scenarios with a very small or a very high transition rate αYX , is
chosen (see Table 1) such that expected activities lie between 0% - 90%.
Data from the time-concentration activity model are simulated at five exposure con-

centrations and control. We choose representative parameter combinations for which
0 < Var (mean[X(t, 0) + Y (t, 0)] ) 
 E[X(t, 0) + Y (t, 0)] holds for all 0 ≤ t ≤ 1 for a
detailed simulation study (see Table 1).

Implementation
The MATLAB environment is used to simulate dynamics of cell numbers by the function
mnrnd. Log-likelihood functions as well as maximum likelihood and least squares param-
eter estimation are implemented by the functions fmincon and lsqcurvefit respectively.

Application to simulated data
Time activity model

Performance of estimation procedure

Table 2 shows the relative bias of least squares and maximum likelihood estimates as well
as coverage probabilities with 95% confidence intervals for the time activity modelA(t). A
coverage probability of 90.25% was expected for the joint confidence intervals of p and w,
which is the product of the single 95% confidence levels. Maximum likelihood and least

Table 1 Transition rates for simulation studies of time activity and time-concentration
activity models

A(t) A(t, c)

Scenario δY αXY αYX δYi αXYi δYs αXYs

‘Fast low stress’ 10 10 30 - - - -

‘Fast high stress’ 35 15 0 - - - -

‘Normal low stress’ 3.5 2 4.5 - - - -

‘Normal high stress’ 6 4 0 - - - -

‘Slow low stress’ 0.5 0.5 0.5 - - - -

‘Slow high stress’ 1.0 0.5 0 - - - -

‘Different parameters’ - - - 1.1 3.3 1.7 5.1

‘Identical intercept’ - - - 2.2 2.2 5.1 1.7

‘Identical slope’ - - - 1.1 3.3 8.4 8.4

’Identical rates’ - - - 2.2 2.2 3.4 3.4

Transition rates are denoted by δY (c) ≡ δY , αXY (c) ≡ αXY , αYX (c) ≡ αYX in [time]−1 for the time activity model and by
δY (c) = δY i + c · δY s , αXY (c) = αXY i + c · αXY s for the time-concentration activity model in [time]−1 and [time · concentration]−1

for intercept and slope parameters, respectively.
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Table 2 Performance of parameter estimation for the time activity model

B(p)×10−3 B(w)×10−3 Coverage probability

Model A(t) LS ML LS ML LS ML

‘Fast low stress’ .057 .053 .062 .057 .97 [.96,.98] .97 [.96, .98]

‘Fast high stress’ .032 .029 .076 .069 .61 [.58,.64] .97 [.95, .97]

‘Normal low stress’ .009 −.014 .001 −.017 .96 [.95,.97] .96 [.94, .97]

‘Normal high stress’ −.013 −.016 −26.8 −29.7 .95 [.93,.96] .96 [.95, .97]

‘Slow low stress’ 3.2 −.138 5.4 -.303 .91 [.89,.93] .94 [.92, .95]

‘Slow high stress’ .090 .006 4.0 −1.7 .92 [.90,.93] .90 [.88, .92]

Bias B of least squares (LS) and maximum likelihood (ML) estimators and coverage probability with a 95% confidence interval of
joint estimates for the time activity model determined from 1000 simulations and fits of the scenarios each.

squares confidence intervals had coverage probabilities between 90% - 97% and 61% - 97%,
respectively. Least squares and maximum likelihood estimators were nearly unbiased for
all scenarios.

Testing hypotheses about transition rates

The limiting case p = δY = αXY , w = αYX = 0 was simulated 1000 times for three
different dynamic ranges: ‘fast’ (p = 10), ‘normal’ (p = 1.5) or ‘slow’ (p = .5). LR tests of
H0 : w = 0 versusH1 : w > 0 were performed at the significance level of 5% to investigate
whether a restricted model could be discriminated from the full model. According to Self
and Liang [11] the test statistic under H0 is distributed according to a 50 : 50 mixture
of χ2

0 and χ2
1 distributions. Simulating ‘slow’ resulted in 11 cases in which the full model

showed a significantly better fit than the restricted model. Simulating ‘normal’ resulted
in 36 cases in which the full model showed a significantly better fit than the restricted
model. Simulating ‘fast’ resulted in 20 cases in which the full model showed a significantly
better fit than the restricted model. Hence the observed type I error of the LR tests was
between 1.1% - 3.6%. All 1000 simulations of the other scenarios for A(t) given in Table 1
led to the rejection of a restricted parameterization, showing that the LR test achieved a
power of 100%.

Time-concentration activity model

Performance of estimation procedure

Table 3 shows the relative bias of least squares and maximum likelihood estimates as well
as coverage probabilities with 95% confidence intervals for the time-concentration activity
model A(t, c). A coverage probability of 81.75% was expected for the joint confidence
intervals of δY i,αXY i, δY s and αXY s, which is the product of the single confidence levels.
The coverage probabilities for maximum likelihood and least squares confidence intervals
were between 58% - 78% and 77% - 87%, respectively. Confidence intervals of maximum
likelihood estimates were smaller than least squares confidence intervals (not shown),
resulting in lower coverage probabilities for maximum likelihood confidence intervals.
Accuracy of estimation could be improved when the number of replicates was increased.
For example, by increasing the number of replicates from 3 to 10 for the scenario ‘Identical
slope,’ the coverage probabilities for maximum likelihood and least squares confidence
intervals increased from 77% to 89% and from 73% to 81%, respectively, and the relative
bias decreased by up to 2 orders of magnitude. Least squares and maximum likelihood
estimators had a relative bias of about ± 10−4.
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Table 3 Performance of parameter estimation for the time-concentration activity model

B(δYi ) B(αXYi ) B(δYs ) B(αXYs )

×10−2 Coverage probability

ModelA(t, c) LS ML LS ML LS ML LS ML LS ML

‘Different parameters’ .013 −.004 −.029 −.058 .009 .029 .005 .003 .86 [.84,.88] .78 [.75,.80]

‘Identical intercept’ .012 −.014 .023 −.018 −.005 .018 −.001 .002 .87 [.85,.89] .61 [.58,.64]

‘Identical slope’ −7.94 −7.91 23.9 23.5 .050 .094 −.057 −.055 .77 [.74,.79] .73 [.70,.75]

‘Identical rates’ 1.48 1.29 −1.64 −1.92 2.99 2.74 −2.75 −2.41 .81 [.79,.84] .58 [.55,.61]

Bias B of least squares (LS) and maximum likelihood (ML) estimates and coverage probability with a 95% confidence interval of joint estimates for the time-concentration activity model determined from 1000 simulations and fits of the
scenarios each.
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Testing hypotheses about transition rates

The scenario ‘Different parameters’, i.e. δY i �= αXY i, δY s �= αXY s, is the most general case
for A(t, c). The scenarios ‘Identical intercept’ (δY i ≡ αXY i) and ‘Identical slope’ (δY s ≡
αXY s) are special cases of the scenario ‘Different parameters’. The scenario ‘Identical rates’
(δY (c) = αXY (c)) is a special case of all the other scenarios. LR tests were performed for
1000 simulated datasets to compare nested models. At the significance level of 5% the
following results were obtained.
Simulating ‘Identical rates’ resulted in 62 ‘Identical intercept’, 57 ‘Identical slope’ and

80 ‘Different parameters’ cases that showed a significantly better fit than ‘Identical rates’.
Hence the observed type I errors of the corresponding LR tests were 6.2%, 5.7% and
8%. Simulating ‘Identical intercept’ resulted in 74 cases in which ‘Different parameters’
showed a significantly better fit than ‘Identical intercept’. Hence the observed type I error
of the LR test was 7.4%. Simulating ‘Identical slope’ resulted in 60 cases in which ‘Different
parameters’ showed a significantly better fit than ‘Identical slope’. Hence the observed
type I error of the LR test was 6%. All performed LR tests achieved a power of 100%.

Application to experimental data
Data from the experiment illustrated in Figure 3 were time-concentration activity data
modeled by A(t, c). The initial number of cells was assumed to be x0 = 106. Orders of
magnitude of the maximum likelihood parameter estimates were too high, resulting in
the death of all cells at 14 days for the control culture, i.e. P[X(t = 14, c = 0) + Y (t = 14,
c = 0) = 0]= 1. Here the approximation of the log-likelihood failed because the
approximation of the distribution of A(t, c) relies on E[X(t, c) + Y (t, c)]� 0.
Least squares estimates were given by δ̂Y i = 1.1 × 10−11 in [day]−1, ˆαXY i = .0634

in [day]−1, δ̂Y s = .0371 in [day ·μM]−1 and ˆαXY s = .0008 in [day ·μM]−1, with resid-
ual sum of squares equal to 1.8683. The point estimate for δYi was on the boundary of
the parameter space, hence the Fisher information matrix could not be used to calculate
confidence intervals for the parameter estimates. Therefore, A(t, c) was also applied to
the dataset with parameter restrictions and the restricted fits were compared to the full
model fit. A restricted model fit with δY i ≡ 0 led to identical residual sum of squares and
ˆαXY i = .0636 [ .0297, .1361] in [day]−1, δ̂Y s = .0370 [ .0134, .1021] in [day ·μM]−1 and
ˆαXY s = .0008 [ .0004, .0017] in [day ·μM]−1. A restricted model with δi ≡ δY i ≡ αXY i

(identical intercept) yielded only minimally larger residual sum of squares equal to 1.8922
and δ̂i = .0787 [ .0332, .1864] in [day]−1, δ̂Y s = .0477 [ .0193, .1181] in [day ·μM]−1 and
ˆαXY s = .0008 [ .0004, .0017] in [day ·μM]−1. The restrictions δY i ≡ αXY i, δY s ≡ αXY s

(identical rates), δY s ≡ αXY s (identical slope) and δY s ≡ 0 resulted in a significant increase
in the residual sum of squares at the level of 5%.
Figure 5 shows the raw data and the original least squares curve fit of A(t, c). The

thickness of the line covers the range between the 2.5th and 97.5th percentiles of 1000
simulations, with the estimated parameters obtained from the full-model fit to illus-
trate the amount of variability generated by the stochastic process. Hence the amount of
variability caused by stochasticity in transitions between the subtypes of the cell popula-
tions was negligible compared to the experimental variability and, therefore, least squares
regression is the appropriatemethod for parameter estimation rather thanmaximum like-
lihood estimation. Next we give an interpretation of the two restricted model fits δY i ≡ 0
and δY i ≡ αXY i. Due to the Markov property, the sojourn time of a cell in state one
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Figure 5 Raw data andmodel fit. Intracellular LDH activity data of cultures exposed to propofol and least
squares curve fit of A(t, c). The thickness of the line covers the range between the 2.5th and 97.5th
percentiles of 1000 simulations under the estimated parameters.

(healthy) is exponentially distributed with parameter αXY (c), the sojourn time of a cell
in state two (stressed) is exponentially distributed with parameter δY (c) and the mean
waiting times for transitions are given by αXY (c)−1 and δY (c)−1, respectively. Since the
time-concentration activity model is symmetric in the transition rates αXY (c) and δY (c),
two interpretations of the estimates are possible.
For the restricted model δY i ≡ 0, one interpretation is that increasing the propofol

concentration from 10 to 100 μM reduces the mean waiting time for transition to the
stressed state by 50% from 14 days (a 95% confidence interval: [6.5, 29.7] days) to 7 days
(a 95% confidence interval: [3.3, 14.4] days), whereas the mean duration to cellular death
decreases more dramatically from 2.7 days (a 95% confidence interval: [1.0, 7.5] days)
to 6.5 hours (a 95% confidence interval: [2.4, 17.9] hours). Therefore, propofol affects
stressed cells more than it affects healthy cells. In the second interpretation, the roles of
δY (c) and αXY (c) are interchanged: increasing the propofol concentration from 10 to 100
μMwould reduce the mean waiting time for transition to the stressed state from 2.7 days
to 6.5 hours, whereas the mean duration to cellular death would reduce from 14 to 7 days.
For the restricted model δY i ≡ αXY i, the interpretations are analogous: one interpreta-

tion is that increasing the propofol concentration from 10 to 100 μM reduces the mean
waiting time for transition to the stressed state from 11.5 days (a 95% confidence inter-
val: [4.9, 26.9] days) to 6.3 days (a 95% confidence interval: [2.8, 13.7] days), whereas the
mean duration to cellular death decreases from 1.8 days (a 95% confidence interval: [0.7,
4.4] days) to 5 hours (a 95% confidence interval: [2.0, 12.2] hours). Hence, propofol affects
stressed cells more than it affects healthy cells. In the second interpretation, the roles
of δY (c) and αXY (c) are interchanged: increasing the propofol concentration from 10 to
100 μM would reduce the mean waiting time for transition to the stressed state from 1.8
days to 5 hours, whereas the mean duration to cellular death would decrease from 11.5 to
6.3 days.
From a biological point of view, it appears plausible that cells may die due to differ-

ent reasons. Exchange of the medium could cause death of untreated cells because the
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experimental conditions cannot be kept exactly constant. In addition, cells from the con-
trol culture could die due to aging processes. Hence, the restricted model δY i ≡ αXY i
appears to be more plausible biologically than the restricted model δY i ≡ 0. Xenobiotics
such as propofol challenge the homeostasis of the cells, which in turn triggers cellular
responses enabling the cells to adapt and survive. The cellular mechanisms of defense
include antioxidative and anti-inflammatory responses. Once the adaptive mechanisms
are overcome by the exposure to xenobiotics, cellular death ensues. Therefore, the first
interpretation of the estimates for both restricted models appears to be more plausible,
since adaptive mechanisms may take longer than cell death per se. However, the level of
cellular stress must be monitored in further experiments in order to validate or invalidate
the second interpretation.

Discussion
A Markov process which modeled the survival of brain cells to a chemical insult was
developed. We derived the distribution of cell numbers analytically with transition rates
as functions of concentration but constant in time. Assuming that changes in cell num-
bers are proportional to changes in intracellular LDH activities which were measured as
a surrogate, stochastic activity models accounting for two different normalization proce-
dures of activity data were derived. Activity data of untreated cultures were normalized
with respect to activities at time zero, whereas activity data of treated cultures were nor-
malized with respect to untreated cultures at the same time point. The transition rates
of the Markov process were assumed to be constant for time activity data and as linear
functions of concentration for time-concentration activity data. Simulation studies were
carried out to assess the performance of parameter estimation. LR tests were performed
to test hypotheses about the transition rates at a significance level of 5%. The observed
type I errors were between 1.1% - 8% and power was equal to 100%. For the time activity
model, maximum likelihood estimators performed better than least squares estimators in
terms of coverage probability and bias. For the time-concentration activity model, both
estimators performed similarly in terms of coverage probability and bias. We applied the
time-concentration activity model to an experiment in which brain aggregate cell cultures
had been exposed to propofol for up to 14 days to assess its in vitro CNS toxicity. Intra-
cellular LDH activity had been measured at two time points and allowed for a conclusion
about average transition times between 6.5 hours and 14 days for propofol concentrations
between 10 and 100 μM.
The primary model we derived describes the cell populations, consisting of healthy

and stressed cells, and the transitions between these subtypes and cell death. The actual
counts of cells in these two different states are not observable but their sum is reflected
by LDH activity measurements. As LDH activity measurements are highly variable, they
were normalized either to measurement at the start of the experiment (for the time activ-
ity model) or to the untreated control at the same time point (for the time-concentration
activity model). Although the two activity models deliver information only about the total
number of cells in the system, conclusions about the original cell kinetic model can be
drawn, with the limitation that not all transition rates can be identified. However, the
effect of the compound on the transition rates can be estimated.
The models presented here describe the fate of a brain cell population. Brain aggregates

consist of several types of brain cell populations. In the present approach, no distinction
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between the different cell types can be made on the basis of LDH activity measure-
ments. However, enzymes are known that are brain cell-type specific. Future research
will be needed to extend the present activity models to incorporate cell type-specific
enzyme activity data. Enzyme activities are measured in every flask containing hundreds
of brain aggregates. Due to the necessary mathematical assumption of independence
of the cells, all conclusions drawn from the modeling approach do not depend on the
actual number of brain aggregates and their size, but only on the total number of cells in
the flask.
The time-concentration activity model was applied to experimental LDH activity mea-

surements during exposure to propofol. Least squares estimates of the transition rates
were obtained, which in contrast to maximum likelihood estimates do not account for
systematic variation in the measurements. We observed that the proposed model vari-
ability differed considerably from experimental variability. This indicates that either the
model should account for further sources of variability or that variability is caused by
random independent measurement errors. For example the model could account for dif-
ferences in the initial number of cells x0 between different samples. However, when we
changed the value of x0 by a factor of ten, the model still predicted much less variability in
comparison to the observed variability. Hence, we believe that measurement error plays
the major role in the variability of the data and least squares parameter estimation is the
appropriate method to reflect this finding. Since stochasticity, due to transitions between
states, contributes little to the overall variability, it might be more productive in the long
run to use a deterministic approximation to the cell population model as the basis for
a nonlinear mixed effects model. This could incorporate variations in initial cell num-
ber, measurement error in LDH activity and differences in physical conditions between
replicates.
For the time-concentration activity model we assumed transition rates as linear func-

tions of concentration. This assumption was our first approach to incorporating concen-
tration into the model. It assumes that exposure to the compound under study starts
or augments an ongoing process of transition to the stressed state and eventual cell
death. A more general approach is to use transformations of concentration instead of
the concentration itself, such as log(c + 1), exp(c) −1,

√
c or c/(1 + c). In principle,

any biologically plausible dose-response relationship for the parameter can be easily
implemented as long as no additional unknown parameters are introduced and as long
as transition rates remain independent of the time course. Using the transformations
of concentration given above, we applied the time-concentration activity model to the
intracellular LDH activity measurements during exposure to propofol. All transforma-
tions have in common that maximum likelihood estimation failed due to death of all
control culture cells at day 14, i.e. P[X(t = 14, c = 0) + Y (t = 14, c = 0) =
0]= 1. In addition, one intercept parameter was estimated to be zero for each trans-
formation and the residual sum of squares was between 2.0146 - 8.6941. Generally, cell
kinetic models are very sensitive to alterations in the model parameters (see, e.g. Kopp-
Schneider [13]). The exponential transformation has too great an impact on the tran-
sition rates, whereas the remaining transformations lack impact on the transition rates
when high concentrations of propofol, such as 256 μM, are investigated. In summary,
A(t, c) with transition rates as linear functions of concentration explains the propofol
data best.
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The proposed stochastic modeling approach can be used to discriminate between dif-
ferent biological hypotheses about the effect of a compound on the transition rates. If
there is biological evidence for a subset of parameters to be identical or to be zero, then
both the full and the restricted nested model can be applied to the data. The two model
fits can be compared by making an extra sum of squares analysis to determine whether
there is a statistically significant difference between the error sum of squares in order to
accept or reject a simplified hypothesis.
The time-concentration activity model can be applied to data from experiments per-

formed to investigate the neurotoxicity of compounds. The effects of each compound
on the transition rates of the Markov process can thus be estimated. By comparing the
impact on the transition rates, the neurotoxic effects of the compounds can be compared
in a quantitative and mechanistic manner.
In future experimental research, propofol experiments will be redesigned and per-

formed with more measurement time points up to day 14. We will apply our models
to data from early measurement time points and extrapolate to late measurement time
points. The extrapolated and experimental outcome at late time points will be compared
in order to to assess whether our models are able to predict measurements correctly.
If the extrapolation corresponds adequately to the experimental data, then costs and
time-consuming long-term experiments could possibly be eliminated.
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