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Abstract

Background: It is a fascinating phenomenon that in genetically identical bacteria
populations of Bacillus subtilis, a distinct DNA uptake phenotype called the
competence phenotype may emerge in 10–20% of the population. Many aspects of
the phenomenon are believed to be due to the variable expression of critical genes:
a stochastic occurrence termed “noise” which has made the phenomenon difficult to
examine directly by lab experimentation.

Methods: To capture and model noise in this system and further understand the
emergence of competence both at the intracellular and culture levels in B. subtilis,
we developed a novel multi-scale, agent-based model. At the intracellular level, our
model recreates the regulatory network involved in the competence phenotype. At
the culture level, we simulated growth conditions, with our multi-scale model
providing feedback between the two levels.

Results: Our model predicted three potential sources of genetic “noise”. First, the
random spatial arrangement of molecules may influence the manifestation of the
competence phenotype. In addition, the evidence suggests that there may be a type
of epigenetic heritability to the emergence of competence, influenced by the
molecular concentrations of key competence molecules inherited through cell
division. Finally, the emergence of competence during the stationary phase may in
part be due to the dilution effect of cell division upon protein concentrations.

Conclusions: The competence phenotype was easily translated into an agent-based
model – one with the ability to illuminate complex cell behavior. Models such as the
one described in this paper can simulate cell behavior that is otherwise
unobservable in vivo, highlighting their potential usefulness as research tools.
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Background
The competence state exhibited by Bacillus subtilis is an example of a bacterial pheno-

type driven by changes in gene and protein expression states rather than changes in

genotype [1]. Competence is a DNA uptake mechanism that appears to be a cell sur-

vival strategy for either procuring new genetic information or obtaining DNA as food.

The emergence of competence is correlated with high cell density and nutrient limiting

conditions [1]. In those conditions, approximately 10–20% of a B. subtilis population

will express the competence phenotype [1]. The mechanism by which a small fraction

of the population becomes competent is presently attributed to the variable expression
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of specific genes, i.e., genetic “noise.” “Noise” in gene expression at present is

poorly understood.

The competence phenotype in B. subtilis is driven by bistable expression of the comK

transcription factor [2], which is involved in a feedback loop that regulates its own

expression and controls the downstream expression of competence genes, as shown

in Figure 1. Bistability refers to a mechanism consisting of two stable genetic regula-

tory states, in this case ‘ON’ or ‘OFF’ [3-5]. Accumulation of ComK protein (the

ON state) enables downstream transcription of the DNA transport genes [6] that

lead to the observed competence phenotype. Since comK is a “switch” that drives a

key phenotypic state, its expression is highly regulated [7] at both the transcript and

protein levels (Figure 1). The ability of a bistable switch to transition from one state

to another seems to be governed by random variations in biochemical reactions

[2,8,9], as we see here with the variable expression of competence regulatory genes.

Stochastic intracellular molecular interactions and environmental inputs like chan-

ging nutrients and cell density are known to initiate phenotype switching and are

sources of noise [3,10-12]. Yet, the precise molecular interactions driving variable gene

expression are difficult to capture in a typical laboratory environment. To educate our-

selves about the molecular interactions involved in the competence phenotype, and to

speculate if simple temporal and spatial molecular interactions also contribute to gen-

etic noise, we developed a virtual model of a simplified B. subtilis cell in a cell colony-

like environment.

A variety of mathematical modeling methods have been employed in an attempt to

understand the nature of the competence switching process [2,13-15]. These models

have addressed the stochastic nature of competence by modeling noise in the system

with varying degrees of specificity, using pre-defined noise terms and the Gillespie

stochastic modeling algorithm [16]. However, to model noise, a stochastic process, we
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Figure 1 Competence gene regulatory network. Significant quantities of ComK will activate downstream
competence genes. ComK expression is regulated pre-transcription by repressor proteins and regulated
post-translation by degradation by the MecA/ClpC/ClpP protease complex, where ComS competes with
ComK to bind to the MecA adapter protein. Increased ComS production will then decrease degradation of
the ComK protein. ComK is also upregulated by binding to its own promoter to enhance its further
expression through an autoregulatory loop. The transcription regulator DegU is shown in yellow.
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felt that employing a modeling technique that is itself inherently stochastic may offer

additional insights about the nature of competence.

We decided to employ an alternative modeling technique – agent-based modeling

(ABM). We hypothesized that the randomly interacting agents of an ABM would be

suitable for modeling the genetic noise observed in the competence switch. In our

ABM, agents simulate large molecules like proteins, RNAs, and DNAs. Agents interact

with each other and their environment based on a set of well-defined rules, either

literature-based or biologically intuitive.

Recently, ABMs have been used with great success to model phenomena in bacteri-

ology such as biofilm development [17-21], the transmission dynamics of antibiotic

resistance [22], and antibiotic resistance mechanisms in Staphylococcus aureus [23].

We recently reported the use of ABMs as applied to the chemotactic switching sys-

tem in Escherichia coli [24].

Here we report the ABM we designed to mimic the B. subtilis competence pheno-

type. The model was tuned to simulate a colony of B. subtilis cells where competence

emerged in 10–20% of the population. We make the following observations and predic-

tions about genetic “noise”: a) random spatial-temporal interactions lead to competence,

b) daughter cells which inherit portions of the competence machinery are more likely

to exhibit the competence phenotype, and c) dilution events like cell division inhibit

competence emergence until stationary phase. The resulting model’s source code is

openly available for exploration at http://www.giddingslab.org/software, for use with

the open-source modeling platform Repast Simphony version 1.2 [25].
Model implementation
Modeling environment and overview

A multi-scale ABM mimicking the biology of the competence switch was developed

using Repast Simphony version 1.2 [25], a Java based, open-source, ABM framework

that facilitates model development. Figure 2 gives a conceptual overview of the model.

The bottom layer of the model, the intracellular model, is an ABM of the B. subtilis cell

simulating the intracellular competence regulatory network in a 3-D environment fo-

cused on the regulation and production of ComK and ComS proteins (Figure 1). At the

top layer of the model, the culture model, the B. subtilis cell ABM acts as an agent in

this layer simulating bacterial chemotaxis, cell division and death, nutrient consump-

tion, and ComX peptide consumption and production. The nutrient layers depicted in

the figure demonstrate the nutrient and ComX peptide simulation in the 2-D grid en-

vironment of the culture model. Essentially, we have built an ABM-within-ABM, where

the ABM of the bottom layer is an agent in the top layer.

At simulation start, agents were randomly placed in a grid-like environment. Agents

can only occupy one cell in the grid at a time and their movement is limited to neigh-

boring adjacent cell locations. Agents interact with the grid environment or other

agents by stochastically executing rules (Table 1).

Time in the model was represented as discrete updates to the state of all agents in

the model. A time step was completed when all agent rules had been attempted in a

random order. Rules for both the cellular and intracellular models are handled in this

manner, keeping both models on the same time scale.

http://www.giddingslab.org/software
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Figure 2 Multi-scale ABM of competence. This is a bottom-up ABM. The bottom layer represents the
intracellular ABM implementing the competence network, while the upper layer represents the cell culture
environment. The two colored layers in the cell culture environment represent the ComX quorum-sensing
pheromone and nutrient layers from which cell agents (blue and yellow) consume molecules. The yellow
cell agent indicates a cell exhibiting competence.
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Nutrients and the comX peptide were mathematically modeled using diffusion equa-

tions adapted to the ABM environment (Figure 2). The model uses continuous equations

due to the high concentrations of nutrients and eventual comX. Concentrations are moni-

tored in each cell of the grid environment and diffusion to adjacent cells is calculated by

the equations described below.
Table 1 Agents, the rules they execute, and the agents they interact with

Agent Rules Interacts with

Promoter transcription ComK, ComX, DegU, Repressor

Repressor move, bind Promoter

Ribosome move, bind, translation mRNA

mRNA move, death Ribosome

ComK move, bind Promoter, ComK, MecA

ComS move MecA

ComX move, bind Promoter

DegU move, bind Promoter

MecA move, bind ComK, ComS, ClpC/ClpP

ClpC/ClpP move, bind, death MecA

Culture Model diffusion Nutrients, ComX Peptides

Cell ABM move, shove, generatePeptide, consumePeptide,
consumeNutrients, life, death

Nutrients, ComX Peptides



Stiegelmeyer and Giddings Theoretical Biology and Medical Modelling 2013, 10:23 Page 5 of 21
http://www.tbiomed.com/content/10/1/23
Rule execution

In the model, agent movement and interactions with other agents are defined by rules.

Rule execution is stochastic and subject to meeting a probability threshold after a ran-

dom draw from the uniform distribution (see Parameter Estimation).

For example, if two molecules have been shown to bind biologically with a high affinity,

then their interaction probability in the model will be high. Hamoen et al. [26] reported

that ComK may bind to another ComK to form a homodimer. This is represented in the

model using an interaction probability ρ (Table 2), with the following rule executed when-

ever a ComK finds itself next to another ComK agent, listed as neighbor here:

if neighbor = ComK then

random = generate random number between 0 and 1.

if random < ρ then
neighbor now moves with ComK

end if

end if

If the probability threshold is not met, then the rule is not executed. The process is

repeated at each time step, until eventually the probability threshold is met and the

rule is executed.
Parameter estimation

The parameter space is quite large for this model and is divided into three types of param-

eter estimates: grid environment size, initial number of agents, and rule interaction prob-

abilities. The parameters were estimated using a random sweep parameter estimation

technique, where: (1) initial parameter estimates were made based on biological insight

(see next paragraph), (2) repeated simulations were then run where parameter values were

randomly changed, and (3) final parameter values were determined from simulations

which best mimicked experimentally obtained results, as reported by Maamar et al. [2].

Rule probabilities were initially estimated based on known interactions and then fit

as simulations were run. For instance, if two molecules had a high affinity, then a high
Table 2 Initial agent quantities

Agent Starting number at t0

Promoter 12

Repressor 2

Ribosome 80

mRNA 0

ComK 0–12

ComS 0–12

ComX 0–12

DegU 0–12

MecA 20

ClpC/ClpP 20

Cell ABM 20
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probability of interaction (e.g. 0.8) was estimated. For two molecules with a low affinity,

a low probability (e.g. 0.2) was estimated. As simulations were run, rule probabilities

were increased or decreased to speed up or slow down, respectively, a particular

molecular reaction.
Intracellular agent-based model

The intracellular model was designed to closely mimic the biology of the competence

regulatory network and is described as follows in terms of the biology. As stated previ-

ously, an abundance of ComK triggers the switch of a B. subtilis cell to exhibit the

competence phenotype. As such, the model was designed around the regulation of

comK at transcription and post-translation. Agents were translated from the biological

model to represent ComK, ComS, DegU and MecA proteins, the ComX peptide, ribo-

somes, comK and comS transcripts, repressors, comK and comS promoter sites, and the

ClpC/ClpP protease, as shown in Table 1. At startup of the model, a random number

of ComK, ComS, ComX, and DegU agents was generated from the value ranges given

in Table 2 for these agents. Any exceptions to this are described in Results. The agents

interact with one another and their environment in a 3-D grid of 40 × 40 × 40 cells.

Each agent’s behavior is defined by a set of rules, summarized in Tables 1 and 3 and de-

scribed further below.
ComK transcription and translation

ComK binds at its own promoter as a tetramer, acting as its own transcription factor

[6,26]. Random transcription of comK is a key factor in the build-up of large amounts

of ComK, which triggers transcription of the DNA transport (competence) genes

[2,27]. DegU binds to the comK promoter and strongly stimulates binding of ComK

dimers to the comK promoter [28,29]. More specifically, DegU binds in between the

two ComK dimer binding sites and may possibly facilitate tetramerization of ComK at

the comK promoter site by partial unwinding and bending of the DNA helix [29].

Transcription can also occur in the absence of ComK [30]. It is estimated that a

cell exhibiting competence has on average 50,000 ComK dimers during stationary

phase [2].

To simulate comK transcription in the intracellular model, agents representing

ComK, the comK promoter, and DegU are modeled. Binding of ComK agents to the

comK promoter agent is contingent upon what agents, if any, are already bound; in the

model, this is reflected in the creation of binding rule probabilities (Table 3) calculated

during the parameter estimation process. If no agents are bound to the promoter agent

at the time a ComK dimer encounters it, the lowest binding probability is used. If DegU

is already bound to the promoter agent, a higher probability of binding is used. Finally,

the highest probability is used for binding the second ComK dimer if DegU and an-

other ComK dimer are present.

Transcription probabilities follow in a similar fashion (Table 3). Transcription occurs

at a very low probability when no ComK is bound – its probability increases with the

addition of one or two bound ComK molecules. Activators and repressors (described in

comK Transcriptional Regulation) disassociate upon successful completion of transcrip-

tion. After the transcription rule is executed, an mRNA agent is generated, which will



Table 3 Interacting agents, rule execution probabilities, and behavior

Rules Interacting agents Probability Resulting action

bind Repressor-Promoter 0.5 Repressor + Promoter

DegU-Promoter 0.5 DegU + Promoter

ComX-Promoter 0.5 ComX + Promoter

ComK-Promoter 0.5 ComK + Promoter

ComK-Promoter-DegU 0.8 ComK + Promoter + DegU

ComK-ComK 0.8 ComK + ComK

Ribosome-mRNA 0.9 Ribosome +mRNA

ClpC/ClpP + MecA-ComK 0.6 ClpC/ClpP +MecA + ComK

ClpC/ClpP + MecA-ComS 0.7 ClpC/ClpP +MecA + ComS

ClpP/ClpC-MecA 0.5 ClpC/ClpP +MecA

consumePeptide Cell 0.8 New ComX

death mRNA 0.0001 Remove mRNA

ClpC/ClpP + MecA + ComK/ComS 0.5 Remove ComK orRemove ComS

Cell 0.0001 Remove Cell

dissociation Repressor 0.0001 Repressor-Promoter

DegU 0.0001 DegU-Promoter

generatePeptide Cell 0.8

Life Cell 0.8 New Cell if not starving

Cell 0.0001 Remove Repressor if starving

Move Cell 0.5 chemotaxis

Move ComK, ComS, ComX, DegU, MecA, ClpC/ClpP, mRNA, Ribosome, Repressor Random walk, see text

Shove Cell -

transcription Promoter 0.0001 New mRNA

Promoter + ComK dimer 0.001 New mRNA

Promoter + ComK tertramer 0.5 New mRNA

Promoter + ComX 0.5 New mRNA

translation Ribosome +mRNA 0.5 New ComK orNew ComS

Agent-agent represents unbound neighboring agents, while agent + agent represents bound agents moving together.
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persist until it randomly degrades as defined by its “death” rule. Since the comK tran-

script has a strong Shine-Delgarno ribosome initiation sequence, the binding and trans-

lation probability of the ribosome agent is very high if it encounters a comK transcript

(Table 3). Therefore, the presence of a single transcript is often enough to lead to the

production of several ComK proteins, as reported in Maamar et al. [2].
ComK transcriptional regulation

At present, there are three known comK transcriptional repressors: Rok, AbrB and

CodY. The comK promoter site allows simultaneous binding of AbrB and ComK [31].

The presence of AbrB acts to prevent binding of RNA polymerase, as does CodY [32].

In the model, all three repressors are represented by a generic repressor agent that

binds to the comK promoter agent. Nutrient limiting conditions down-regulate both

AbrB and CodY, thus repressor agents are removed from the model when the cell agent

reaches a starvation condition described below. Successful transcription and translation

events eventually lead to the build-up of ComK, triggering the feedback loop shown in

Figure 1 [2,27].
ComS transcription and regulation

ComS is a protein produced in response to quorum sensing (cell density) [33,34]. Tran-

scription of comS occurs in response to the quorum-sensing signaling pathway initiated

by the ComX peptide. ComX is produced by the cell at a constant rate during growth

and accumulates in the cell medium, reflecting cell density [1,35]. For the purposes of

the cell model, ComX is the post-translationally modified and cleaved extracellular end

product absorbed by the cell. ComX initiates the activation of several proteins, which

in turn initiate transcription of comS [1]. The model represents this process by utilizing

only a ComX agent. When the ComX agent binds to the comS promoter, comS is acti-

vated. The interaction probability given in Table 3 controls this rule, which represents a

simplified version of the actual activation pathway. In reality, ComX is not the actual

comS transcription factor. In addition, regulation of the quorum-sensing pathway is

modeled by assuming a repressor agent acts at the comS promoter site, as shown in

Table 2.
ComK and ComS post-translational regulation

The MecA/ClpC/ClpP protease complex degrades both ComK and ComS proteins.

There are approximately 300 MecA/ClpC/ClpP molecules in a cell [2]. MecA, an

adapter protein, binds with either ComK or ComS, targeting the proteins for degrad-

ation by ClpC/ClpP [36]. ComS competes with ComK for binding with MecA, with

ComS having a higher affinity than ComK [37]. If ComK is bound to MecA upon

encountering ComS, ComK disassociates, targeting ComS for degradation instead.

Because ComK is positively auto-regulated, protection from degradation by ComS

results in an explosive increase in ComK synthesis [36,37]. In this fashion, the up-

regulation of ComS due to quorum sensing leads to an increased accumulation of

ComK, and the cell transitions to the competence state. Thus, in the model, when

ClpP/ClpC +MecA +ComK-bound agents encounters a ComS agent, ComK is released

and ComS is bound.
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This system was represented by implementing the interaction probabilities shown in

Table 3. Since ComS has a stronger affinity to the adapter protein MecA, a higher bind-

ing probability is used for association with ComK during execution of the binding rule.
Intracellular model rules

Move rule

The move rule simulates a random walk of an agent through the 3-D landscape to

imitate molecular diffusion and Brownian motion. Each successful execution of the

rule results in a one-step move of an agent to a randomly selected neighboring cell

on the grid. In the 3-D grid of the intracellular model, there are 26 possible adjacent

neighboring cells into which an agent could attempt to move. If the randomly selected cell

is occupied, then the agent remains in place.

Bind rule

This rule is used for molecules that bind with other molecules when encountering an-

other in a neighboring cell during the course of the random walk. For each agent, the

bind rule searches for other agents at adjacent grid positions. When there is an adjacent

agent for which a binding rule is defined, the two bind by moving together if the rule

probability is met. An exception occurs when a MecA agent already bound to ComK

encounters ComS – in this instance, ComK dissociates in favor of ComS. Agents that

bind with one another are provided in Table 3 along with their associated rule probabil-

ities determined during the parameter estimation process.

Transcription rule

The transcription rule is executed by the promoter agent and results in the production

of mRNA agents. The success of this rule depends on what is already bound to the pro-

moter agent, to match the biology described above and as specified in Table 3.

Translation rule

The ribosome agent executes the translation rule to generate ComK agents or ComS

agents depending on the type of the mRNA agent to which it is bound (Table 3).

Death rule

Both the mRNA and ClpP/ClpC agents implement a death rule. For the mRNA agent,

the death rule represents the random degradation of mRNA that occurs in the cell and

is executed when unbound. In the case of the ClpP/ClpC protease complex, the death

rule initiates the removal/death of the bound ComK or ComS agent. Table 3 lists the

rule probabilities.
Culture agent-based model

In the cell culture model, agents interact with one another and their environment in a

2-D grid of 40 × 40 cells. Rules are executed in a random order for each iteration of the

model, and probabilities calculated during the parameter estimation process determine

whether or not a rule executed, as shown in Table 3.
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Cell culture agents

There is technically only one agent type in the cell culture model, a cell ABM

whose internal workings are described above. In the culture model, the cell ABM

acts as an agent with the rules specified in Table 1. It interacts with its environ-

ment by consuming nutrients, and with other cell agents through production and

consumption of the ComX pheromone. Nutrients and the ComX peptide are

modeled by diffusion equations due to their high concentrations. Due to the way

Repast Simphony is structured, the culture plate itself acts as a layer of immobile

agents to allow for the execution of the diffusion rule. Consumption of either nutrients

or ComX peptides by the cell agent are fed to the internal cell models, leading to the

reduction of repressor agents or the increase of ComX agents, respectively. When

more than 20 ComK agents were generated, the cell was considered to have reached

competence (shown as a change in color in Figure 2). This threshold is an estimated

parameter and was set to this small value to limit the consumption of computational

resources.

Cell growth equation

The cell agent implements a growth function to control cell growth, division, and

death. The growth function is based on the Logistic Map function: mn+1 = μmn-μm
2
n/k,

where μ = 0.0058 is the growth rate [38], m represents the energy of the cell, and k is

the maximum energy [39]. mn is the value of the energy function at iteration n. In the

culture ABM, m0 was initialized to 5 and k was set to 16. The μmn term of the equation

signifies an energy gain that occurs when consuming nutrients. The μm2
n/k term signi-

fies a decrease in energy, as it is assumed that basic metabolism within the cell con-

sumes energy. The calculation of the growth function is split across two rules that are

described further below: move and consumeNutrients. The life rule uses the value of

the equation to determine whether the cell had accumulated enough energy to divide

or not. In the move rule, energy is reduced by μm2
n/k. If there are no nutrients at the

agent’s location, there is no energy increase.

Once nutrients reach a low level (<1) such that cell agents could no longer consume

them, the energy level steadily decreases instead of increasing via the move rule. At this

stage, the cell growth equation is altered and energy is reduced by d/(k/2), where d is

the death rate, d = 0.002.
Cell culture rules

Diffusion rule

The cell culture executes essentially one global rule, the diffusion rule. This rule

executes the Repast Simphony diffusion algorithm on both the nutrient and pep-

tide value layers, based on Rucker’s diffusion equation for Cellular Automata [40].

For each cell in the grid, the difference between the current cell value and the

weighted average of neighboring cells is calculated. The resulting value is then

multiplied by the diffusion constant and added to the current cell value, thus

ensuring that the concentrations within the grid cells move down the concentration

gradient. The diffusion constant determined during the parameter estimation

process is 0.1.
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Move rule

The cell agent executes a move rule that simulates bacterial chemotaxis so the cell

agent moves towards the most favorable nutrient conditions. If nutrients are available,

the cell agent remains at its location. If not, the cell agent randomly selects a free

neighboring location with a higher concentration of nutrients. The energy reduction

portion of the cell growth equation is implemented when this rule is executed due to

the assumption that there is a metabolic cost to a cell’s energy at each iteration.

The move rule also determines when nutrients can no longer be consumed at the cell

agent’s current location, and thus disables repressor agents within the cell ABM. A ran-

domly selected repressor agent is removed from the model if a probability threshold

(0.001) determined during the parameter estimation process is met.

Consumption rules

The consumePeptide and consumeNutrients rules cause the consumption of one

molecule from the grid location of the cell agent. When a ComX peptide is con-

sumed, it is added as an agent to the cell ABM. When a nutrient is consumed, a gain

in energy occurs, as described above. The consumeNutrient rule is executed at every

iteration, while the consumePeptide rule is executed every 50 iterations, if a probabil-

ity of 0.8 is met.

GeneratePeptide rule

The generatePeptide rule produces one molecule of the ComX peptide, which is added

to the concentration at the current grid location. This rule is an approximation of the

constant production of the ComX peptide described in the literature [1]. Unlike the

other rules, the generatePeptide rule is executed every 100 iterations and a ComX pep-

tide is generated with a probability of 0.8. This number of iterations was selected dur-

ing the parameter estimation process to ensure a gradual production of the peptide.

The ComX peptides produced in this manner are independent of the ComX agents

residing within the cell ABM agent.

Life rule

The life rule determines whether the cell is ready to divide when the energy exceeds a

predefined threshold of 15, which is one fewer than k, the maximum energy (see

growth equation parameters above). Cells that exhibit the competence state do not

divide. During the division process, a new cell ABM is created and added to the grid in

a neighboring, adjacent grid location. The daughter cell receives half the energy of the

parent cell, thereby reducing the parent’s energy by half. The daughter cell will follow

intracellular model startup and agent initialization as described in previous sections

and in Table 2. However, some of the initial agent quantities are handled differently.

To model inheritance, an arbitrary plane is randomly chosen which bisects the parent

cell ABM through its center. ComK, ComS, ComX and mRNA agents ‘above’ the plane

remain in the parent cell and agents ‘below’ the plane become a part of the daughter

cell. The daughter cell is then placed in a randomly selected grid location adjacent to

the parent cell. If that location is occupied, then the shove rule is executed. The simula-

tion assures that the associated genes (promoter agents) are equally distributed between

mother and daughter to represent the non-stochastic genome segregation in real cells.
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The life rule is also responsible for determining the death of a cell agent. The effect

of this rule is shown during the death phase of the bacterial growth curve. If the cell

agent’s energy becomes very low (< 0.5) and the probability threshold of 0.0001 is met,

then the cell agent ‘dies’ and is removed from the model.

Shove rule

The shove rule is intended to displace cell agents one step to an adjacent, randomly selected,

neighboring position if more than one cell agent occupies its current location. As each

agent executes this rule, a one step displacement of cell agents ripples through a group of

adjacent cell agents until there is room for all cell agents in the culture model grid.

Death rule

This rule models the random die-off of cells with a high metabolism when nutrients

become insufficient. This rule is responsible for the slight dip observed in the growth

curve during stationary phase, Figure 3a. The death rule executed every 50 iterations

instead of every iteration to limit the death rate. The cell agent ‘dies’ when a probability

threshold of 0.0001 is met and when the cell’s energy is within 0.5–7.5 (half the energy

threshold needed for division).

Results
Intracellular model

To predict possible mechanisms of the noise that drives competence expression, we

developed a 3-D intracellular ABM to represent the key molecular players in
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Figure 3 Bacteria growth curve generated by the model. a) Bacteria growth curve generated by the model
with distinct phases labeled corresponding with known bacterial growth phases: 1-lag phase, 2-exponential
growth phase, 3-stationary phase, and 4-death phase. b) This is a view of the cell culture model where nutrient
counts are shown in green and cells in blue. Dark patches show regions where nutrients have become
depleted due to consumption by cellular agents. c) Agents are shown interacting inside the intracellular model.



Random Walk

Figure 4 Agent movement follows random walk. Movement of agents based on Brownian motion and
simulated by a random walk. An agent will randomly select an adjacent cell and move to that
new location.
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competence switching in B. subtilis, and to mimic their interactions (Figure 1). In the

ABM, we explicitly represented proteins, genes, transcripts, and ribosomes as agents

that could move and interact in a simulated cellular environment. To realistically

model the bottom-up behavior of the system, the model included the transcription

and translation of genes to proteins. Agent movement was based on Brownian motion

simulated by a random walk (Figure 4). When agents encountered other agents in a

simulation, they interacted stochastically according to behaviors defined by rules

discussed in the Model Implementation section (Tables 1, 2, 3). As it is known that

proteins can localize to specific areas within a bacteria cell [41], the bacteria cell model

represents the portion of the cell where the DNA localizes. We assumed for the pur-

poses of this model that the proteins of interest diffused randomly in this region until

captured by a protease or bound as a transcription factor. We also assume that the

volume of this region remains constant. The experiment began with an initial run of

20 intracellular models to reduce the consumption of computational resources.

At model start-up, agents were placed at random locations within the simulated 3-D

grid environment, Figure 3c. Several simulations were run to assess outcomes given dif-

ferent initial configurations.
Cell culture level modeling

One goal of the study was to leverage the intracellular model into a multi-scale model

of cell culture level interactions, to examine the effects of signaling and competition for

nutrients on the outcome of competence. The cell-level model consisted of whole cell

agents representing a cell’s interaction with external environmental factors such as

nutrients and the quorum-sensing pheromone ComX. Agents were placed randomly
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in a 2-D grid environment (Figure 3b), much like the random placement of agents in

the 3-D intracellular tier (Figure 3c).

In this multi-scale model, external environmental conditions influenced the intracel-

lular conditions and cell-level outcomes, and intracellular conditions fed back upon the

environment and other agents within it. For all multi-scale simulations, the initial intra-

cellular model quantities of ComK, ComS, and ComX agents were randomly deter-

mined from thresholds as explained in Model Implementation. There were no comK

mRNA agents placed at the start of a model run, but these agents were randomly gen-

erated via transcription during a simulation.
Competence

Successful execution of transcription and translation rules eventually led to the build-

up of ComK, triggering the feedback loop shown in Figure 1 [2,27]. As competition

between ComK and ComS proteins is vital in determining the competence state, their

production was monitored. Considerably fewer molecules were used in the simula-

tions compared to actual biology [42] due to limitations in computational resources.

As a result, a cell was considered to be in the competence state when it had more

than 20 ComK proteins – a value determined during the parameter search stage that met

the 10–20% competent cells criterion. In reality, approximately 50,000 ComK dimers have

been observed in a competent cell [2].
Competence outcome at the intracellular level: the impact of random spatial-temporal

agent arrangement

Initial simulations of the intracellular model were run repeatedly outside of the full

model environment to test if spatial arrangement of molecules might contribute to the

resulting competence state. Intracellular model simulations were run with identical pa-

rameters and concentrations of agents (Table 2, maximum values for ComK, ComS,
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Figure 5 Identical initial parameters result in two distinct phenotypes. This figure shows two
simulations of the intracellular model with the only difference between them being the random spatial
placement of agents in the 3-D grid. a) ComS production exceeded ComK and competence did not occur.
b) In a small percentage of simulations (see text), ComK production exceeded ComS and drove its own
positive feedback loop resulting in competence.
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ComX and DegU were used in these simulations), the sole difference between each run

being the random spatial placement of the agents before the simulation started. We ran

the simulation 100 times to obtain statistics regarding the overall rate of competence

emergence.

Figure 5a and b show the ComK and ComS population sizes through time in two

separate runs of intracellular simulations. Figure 5a shows a system that remained non-

competent and Figure 5b shows a system that reached the competence state. Notably, the

two simulations resulted in different outcomes for both the ComK and ComS proteins.

We repeatedly observed that simulations with identical initial parameters and population

sizes resulted in significantly different outcomes, suggesting that the initial arrangement

of molecules indeed has a strong impact on competence expression. Given the parameter

settings, the over-production of ComK was observed in approximately 3–5 out of 100

simulations (Figure 5b) and the production of ComK outpaced repressor protein activity

[43]. Though 3–5% is a lower rate of competence expression than the 10–20% that is

typically seen in the bacteria, the model was run without explicit simulation of cell

growth, division, or starvation conditions that influence a higher density of compe-

tence emergence.

Another outcome of the simulations was that the chance encounter of a single comK

mRNA transcript with a ribosome before it was degraded would produce a ComK pro-

tein. This agrees with prior in vivo results indicating that an increased probability of

competence switching can be driven by fluctuation of the ComK protein by a few

ComK mRNA molecules [2]. On average, one mRNA was observed at any given time

in the model comparied to > 20 during growth phase and on average 1 mRNA during

stationary phase in vivo [2]. So cell fate in the ABM was determined simply by the loca-

tion of the molecule and its chance encounter with a ribosome. These results provide

evidence that a random, spatial arrangement of molecules may be a major contributor

to the variable comK gene expression (noise) underlying the competence phenotype,

and could lead to experiments that further decode the enigma of competence expression.
Competence outcome at the cell culture level: the impact of nutrient limitation

It has been previously shown that nutrient limitation and cell culture density increase

the propensity of B. subtilis cells to enter the competence state [1]. In our intracellular

model, only a small fraction of the simulations ended in the competence state since the

model did not include limitations comparable to real-life conditions. However, within

actual cell cultures, once stationary phase is reached and nutrients become limited, a

much higher fraction of cells emerge with the competence phenotype - as many as

20%. We sought to determine what bottom-up assumptions drove this number by run-

ning simulations of the complete model – intracellular ABMs acting as agents in the

culture model.

At each simulation run, the culture model was seeded with 20 intracellular ABMs

placed in random locations in the 2-D grid environment. Each of the 20 initial intracel-

lular models began with quantities of ComK, ComS, ComX, and DegU determined by a

random draw from a uniform distribution from within a defined threshold, and with 0

mRNA agents. Cells grew and divided, with division resulting in a random partitioning

of molecular contents among the progeny. All cells were tracked throughout the
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simulation, and progeny progressed from 20 initial cells to a maximum of 877 cells in

one simulation, with 137 (15.6%) showing competence at simulation termination.

Since individual simulations would often result in distinct outcomes, we ran the

model repeatedly to obtain average statistics for competence-switching behavior. In six

simulations, the initial seed of 20 randomly placed cells produced an average of 867

cells. We limited the available “plate size” and nutrient concentration for culture growth

to limit the computing to feasible time spans. For each of the cells produced, a complete

intracellular model was running, which meant that a full simulation running on a fast

desktop computer took approximately two months or more to complete. Improved paral-

lelism will reduce run times in the future.

Figure 3a shows the growth curve for an example multi-scale simulation, with the

resulting count of competent cells as they switched to the competence phenotype. As

with all of the simulations, it resulted in a classic bacterial growth curve with the stand-

ard phases of bacterial culture: lag phase, exponential growth phase, stationary phase,

and death phase (see Additional file 1 for a movie of lag through stationary phase). The

simulations also demonstrated an emergence of competence comparable to actual bac-

terial cultures: an average of 16.3% competent cells emerged in our simulations by the

end of stationary phase, in line with stationary growth phase in vitro rates of 10–20%

[1]. After cell division ceased due to nutrient limitation, comK transcripts and protein

quantities increased the likelihood of competence transition. Execution halted within

the death phase of the growth curve after approximately 43,000 iterations.
Competence outcome at the cell culture level: epigenetic heritability

Nutrient limitation and cell density does not, however, explain why those particular

10–20% of cells that express competence do so. Following from the result showing that

initial spatial distribution of molecules may affect the outcome of the intracellular

model, we postulated that some level of epigenetic heritability might exist in compe-

tence switching. The rationale is that if a parent cell has an increased quantity of ComK

compared to the average, it might be expected that as the cell divides, the resulting pro-

geny may also have elevated ComK levels. Evidence for this type of heritability in the

biological system was presented by Veening et al. [44]. The precursor to competence –

accumulation of ComK – may lead to an earlier switch than would occur by random

chance alone, a result which would be clearly identifiable in our cell culture model.

Each of the initial models was started with quantities of ComK, ComS, ComX, and

DegU determined by a random draw from a uniform distribution within a defined

threshold (Table 2). Cells would grow and divide, with division resulting in a random

partitioning of molecular contents among the progeny. Figure 6 shows the lineage fol-

lowing a single cell, with ComK protein and transcript levels denoted at each division.

Two daughter cells that initially inherited non-zero ComK levels exhibited the compe-

tence phenotype significantly earlier than cells that inherited minimal or no ComK. Of

the 37 progeny in the lineage shown, six (16%) eventually switched to the competent

state, with the first two transitions occurring along the lineages that had elevated levels.

In the simulation overall, a cell exhibited competence on average after 4074 ± 2258 iter-

ations after dividing if it had inherited nonzero ComK. Otherwise, a cell exhibited com-

petence on average after 7780 ± 3870 iterations without inheriting. The difference was
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statistically significant (p < 0.0001), leading us to believe that inheritance contributes to

the emergence of competence. This result was consistent from simulation to simulation.
Discussion
Our interest in phenotype switching derives from studies of antimicrobial-tolerant

bacterial phenotypes [46]. These are non-inherited phenotypes that confer tolerance

towards many known antibiotic drugs. In bacterial populations, cells exhibiting tolerant

phenotypes exist as a small fraction of the population, with the quantity determined in

part by growth conditions. For example, stationary phase growth induces an increase in

the fraction of phenotypically drug-tolerant cells [47]. However, at the present time, little

is known about the mechanisms underlying antimicrobial tolerance in bacteria. So, to

explore mechanisms that could explain variable gene expression and to further our
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knowledge of phenotypic bistable switching, we turned to competence switching in

B. subtilis, where the key molecular players are known and well-studied.

Our B. subtilis ABM is a reduced scale model tuned to reflect the bacteria biology

and the competence phenotype. Through the Cell Growth Equation (see Model Imple-

mentation section) the model closely approximates bacterial growth curves. In addition,

cells only turned competent in bulk once stationary phase was entered. Although quan-

tities of molecular agents modeled were a small fraction of the molecules in a live sys-

tem, the model was able to approximate a real system. We have found similar results

in a separate effort modeling chemotaxis in E. coli with an ABM, where preserving bio-

logical ratios of molecules was more important than preserving absolute quantities to

produce biologically realistic results [24]. However, in the case of this model we found

that chance, random interactions between agents had the most effect on the behavior

of the model.

In our model, spatial-temporal interactions – not molecular quantities or agent rule

execution probabilities – may be the key contributor to the emergence of the compe-

tence phenotype, as transcription and translation occur due to chance encounters by

the molecules involved. Though it is not yet possible to verify these simulations in vivo,

the biological system likely shares similar properties where the apparent randomness of

the competence transitions is derived directly from the randomness of spatial distribu-

tion in competence-related molecules. Noise in a biological system is typically thought

of as a series of events, but our results show it is possible that random spatial arrange-

ment of competence-determining molecules may be its major contributing factor.

In addition to random spatial arrangements, random encounters between key agents

also appeared to be important in the emergence of competence. It is interesting to note

that changing the quantities of the initial number of agents in the model had more of

an effect on the model outcome than the rule probabilities themselves. If there are

greater numbers of an agent, then there is a higher chance for encounters between

agents to occur. During the parameter estimation process, it was observed that changes

in the probability values did not greatly impact model outcomes, although higher prob-

abilities did speed up certain reactions (e.g. translation), which resulted in the produc-

tion of more agents. This seems logical considering that the rule probabilities do not

come into effect until two agents encounter one another, which can occur more fre-

quently as the quantities of agents increase. If there are a large number of agents, there

are more chances for them to encounter one another. As parameters have been

reported to lack sensitivity in many biological models [48], our parameterization

method is somewhat un-formalized as we focused more on looking for biological inter-

pretations of our model after it had reached a life-like representation of the compe-

tence switch.

The cell division trees that monitored quantities of ComK displayed an obvious pat-

tern of inheritance. Cells that inherited higher amounts of ComK transcripts and pro-

teins from the parent cell tended to, in turn, pass on higher quantities to their children

cells. However, the model also suggests what may be a basic but important facet of the

emergence of competence: that dilution of competence-determining molecules during

cell division may act to regulate the emergence of competence. Except for the lineages

that switched to the competent state early due to inheriting elevated levels of the ComK

protein, the remaining competent cells only became so after nutrient limitation and
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repressor agents inhibited cell division long enough for sufficient quantities of ComK

agents to accumulate. The quantities of molecules inherited in this pathway acted in an

epigenetic fashion upon subsequent phenotypic outcomes. This explains why competence

in B. subtilis typically emerges during stationary phase when nutrients are limited, due to

build-up of elements like ComK in the competence gene regulatory network.

The model may therefore reveal an important feature of how the growth stage regu-

lates competence by diluting the mRNA and proteins essential to switching to the com-

petent state. Although we have not verified this experimentally, Roostalu et al. [49]

reported fluctuations in a reporter protein after cell division that supports the theory

that cell division acts as a dilution event for the competence phenotype. During expo-

nential growth phase, not enough time would pass between cell divisions to allow

ComK to build up to sufficient levels, so competence would not occur. While we can-

not know whether this is the complete explanation for how competence is limited to

stationary phase in B. subtilis cultures, it appears to be a sufficient explanation to guide

further experiments.
Conclusions
This study suffers from the same limitations as any model-based research, in that all

models are only representations of a biological system. Nevertheless, the design of the

model facilitates a thought experiment to represent and clarify the workings behind

very complex cell behavior. This discrete model of the competence phenotype provides

a readily comprehensible view into each cell’s behavior and provides the ability to monitor

the variation of molecular concentrations involved in regulating competence. The

resulting model is biologically intuitive, with ready translation from biological facts or

hypotheses into the model and back. As we used this model to educate ourselves on

the mechanisms of the competence phenotype, we see great potential in ABMs as

educational tools in the future because they are straightforward to build, visualize,

and comprehend.

Additional file

Additional file 1: Movie of Cell Culture Model. This movie shows the cell culture ABM initially seeded with 20
cells (blue). Green indicates nutrient-rich cells. Cells grow and divide as they consume nutrients. The formerly
nutrient-rich cells darken as nutrient concentrations decrease. Cells move following the nutrient gradient as
nutrients are depleted. When cells die, nutrients are released into the environment. The movie halts during
stationary phase.
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