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Abstract

Background: As microtubules are essential for cell growth and division, its
constituent protein β-tubulin has been a popular target for various treatments,
including cancer chemotherapy. There are several isotypes of human β-tubulin and
each type of cell expresses its characteristic distribution of these isotypes. Moreover,
each tubulin-binding drug has its own distribution of binding affinities over the
various isotypes, which further complicates identifying the optimal drug selection. An
ideal drug would preferentially bind only the tubulin isotypes expressed abundantly
by the cancer cells, but not those in the healthy cells. Unfortunately, as the
distributions of the tubulin isotypes in cancer cells overlap with those of healthy
cells, this ideal scenario is clearly not possible. We can, however, seek a drug that
interferes significantly with the isotype distribution of the cancer cell, but has only
minor interactions with those of the healthy cells.

Methods: We describe a quantitative methodology for identifying this optimal
tubulin isotype profile for an ideal cancer drug, given the isotype distribution of a
specific cancer type, as well as the isotype distributions in various healthy tissues,
and the physiological importance of each such tissue.

Results: We report the optimal isotype profiles for different types of cancer with
various routes of delivery.

Conclusions: Our algorithm, which defines the best profile for each type of cancer
(given the drug delivery route and some specified patient characteristics), will help to
personalize the design of pharmaceuticals for individual patients. This paper is an
attempt to explicitly consider the effects of the tubulin isotype distributions in both
cancer and normal cell types, for rational chemotherapy design aimed at optimizing
the drug’s efficacy with minimal side effects.
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Background
Microtubule-targeting anti-mitotic agents are among the most successful drugs used

for cancer treatment [1]. Unfortunately, since microtubules are essential for healthy as

well as cancer cells, these drugs have many serious side effects [2]. However the exis-

tence of tubulin in multiple isotypic forms [3] presents an opportunity to design drugs

that target primarily the isotypes expressed in cancer cells, but not the isotypes

expressed in healthy cells, thereby suggesting a drug that is effective against cancer,
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with minimal side effects. This possibility has not been explored, nor has this line of

attack been formalized, until now. This paper addresses the task of quantitatively cha-

racterizing the ideal binding affinity profile for such a drug, in a way that can be used

for any family of existing or future tubulin-binding agents.

Microtubules, which are cylindrical polymers composed of α/β-tubulin heterodimers,

are involved in a wide range of cellular processes, such as the maintenance of cellular

morphology and the active transport of cellular components throughout the cytoplasm

[4,5]. An essential role for microtubules is the formation of the mitotic spindle, which

produces the mechanical force required to separate the chromosomes [6]. A failure

within this mitotic spindle apparatus leads to mitotic arrest and eventually apoptosis,

resulting in cell death – which is desirable for cancer cells, but not for healthy tissues.

As such, microtubules have become the target for a large number of anti-mitotic agents

that act by either promoting or inhibiting microtubule polymerization by binding at

specific sites on the exposed surface of α/β-tubulin heterodimers. Although there are

multiple distinct binding sites on a tubulin heterodimer, β-tubulin is the main binding part-

ner for all major microtubule-targeting drug families; hence we will focus on β-tubulin

exclusively [7]. There are also several binding sites on β-tubulin; Figure 1 shows their loca-

tion and residue differences between isotypes below. All microtubules inhibitors, including

vinblastine, suppress microtubule dynamics [1] However, recent studies have found the role

of microtubule dynamics in mitosis is a casual link [8] and microtubule inhibitors also act

by multiple mechanisms like microtubule detachment (vinblastine, colchicine), or by

hyperstabilizing microtubule organizing centers (paclitaxel) [9]. Some anti-tubulin drugs

(e.g. vinca alkaloids) are especially effective since a few drug molecules can bind to the end

of a microtubule and “poison” it by freezing its dynamic behavior – a behavior that is cri-

tical for microtubule function, especially in mitosis [10]. Our model exploits the fact that

the binding affinity, measurably depends on the tubulin isotype involved.
Figure 1 Surface map of conserved residues in all human β-tubulin isotypes. A solvent accessible
surface was drawn onto the α/β tubulin heterodimer obtained by Löwe et al. [18]. An alignment of all
human β-tubulin isotypes provided a score of overall homology at each amino acid position from 0–100%.
This figure shows an α/β tubulin heterodimer, with the α-tubulin surface colored white and the β-tubulin
surface colored blue and red. Individual surface residues within the β-tubulin monomer were colored to
indicate the overall degree of homology ranging from light blue for 100% to bright red for 0–9%, with
shades of red from brighter to paler illustrating those residues that are 10–39%, 40–79% and 70–99%
homologous respectively. Two representations illustrate the paclitaxel bound interior of the microtubule and a
90° rotation about the y-axis to show the exterior of the microtubule. Figure reproduced from Huzil et al. [7].
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Since essentially every cell in our bodies contains microtubules [6], drugs that affect

microtubules have the potential to seriously disrupt healthy tissues, causing adverse

side effects. The challenge is to design a drug that affects primarily cancer cells, while

not significantly affecting healthy cells. Fortunately, this may be possible: tubulin

protein (both α-tubulin and β-tubulin) is encoded by multiple genes. These isotypes are

evolutionarily conserved, and may be functionally distinct [11]. Each tissue in the

human body has its own characteristic distribution of these isotypes, and moreover, the

expression levels of tubulin isotypes in cancer cells can differ from those in the origi-

nating normal tissues [12-14]. In fact, differences in the distribution of the βIII isotype

in tumor samples have been correlated with patient treatment outcomes [15].

More recent work on the significance of specific tubulin isotypes vis-a-vis chemothe-

rapy agents supports those earlier studies, especially in regard to tubulin βIII and βV

[16,17]. Importantly, the various β-tubulin isotypes differ in both the geometrical and

biochemical properties of their respective drug binding sites, suggesting the design of

anti-mitotic drug compounds with different affinities for different tubulin isotypes,

allowing them to target a specific β-tubulin isotype over the others (see Figure 2)

[7,18]. Although the numbers of residues that differ in each of the key binding sites are

not great (see Tables 1 and 2 as well as Figure 1 for specific comparisons in several

investigated examples), the overall effect on the binding affinity may be substantial, due

to a simultaneous distal rearrangement of the protein structure (see Figure 2). Earlier

calculations for specific families of drug compounds confirm these predictions [19,20].

Moreover, work is underway to quantify how these, sometimes minor, structural diffe-

rences in the target translate into major changes in the binding affinity that result in

the preferences for ligands to bind to specific tubulin isotypes. As this aspect is still

under development for various tubulin-binding ligands, only fragmentary data are avail-

able. For example, Rowinsky et al. [2] measured the affinity of three vinca alkaloids

(vinblastine, vincristine and vinorelbine) to brain tubulin isotypes (primarily βII and

βIII plus a mixture of βI & βIV). Other studies examined the affinity of nocodazole [21]

and colchicine [22] to tubulin isotypes, even though these drugs are not being used in

cancer chemotherapy. Table 3 summarizes calculations, performed elsewhere [23], on

two novel chemotherapy agents: peloruside A (PELA) and laulimalide (LAU) with re-

spect to the β-tubulin isotypes, which illustrate how different isotypes of tubulin have

different affinities for the same drugs. Further examples involving derivatives and ana-

logues of these compounds [19] all indicate binding specificity and selectivity for these

families of compounds. Similar conclusions have been recently reached for numerous

colchicine derivatives [20]. This suggests it may be feasible to select chemotherapy

compounds on the basis of their affinities for tubulin isotypes, which is the basis of the

method we propose in this paper.

There are many challenges with this framework; the Discussion section below sum-

marizes many of these issues, and presents ways to address them.

Methods
The ideal situation would obviously be to use a drug (a so-called “silver bullet”) that binds

only to some specific tubulin isotype found exclusively in cancer cells. Unfortunately,

there is no such isotype or any such drug. Instead, we will characterize the binding affinity

profile for a hypothetical drug that has strong binding affinities for the β-tubulin isotypes
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Figure 2 Morphological differences in the drug binding pockets of β-tubulin isotype. Visualization of
the morphological differences in the binding pockets of β-tubulin isotypes for five selected drugs: (A)
laulimalide, (B) peloruside A, (C) paclitaxel, (D) colchicine, and (E) vinblastine. α-Tubulin is shown in green,
β-tubulin is shown in blue, the drug is shown in red, the drug binding pocket is shown in grey, and residue
differences are shown in yellow. The paclitaxel complex is based on PDB:1JFF, the colchicine complex is
based on PDB:1SA0, and the vinblastine complex is based on PDB:1Z2B.
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that tend to be expressed in a given type of cancer, but relatively low binding affinities for

the β-tubulin isotypes that tend to be expressed in healthy cells.

Our goal is to characterize the ideal binding affinity profile for a β-tubulin-targeting

drug, given the expression levels of β-tubulin isotypes in healthy tissues and in cancer

cells. To quantify the algorithm, we need to resolve four key issues:

A. Obtaining the expression levels of β-tubulin isotypes in various types of cells, both

cancerous and healthy.

B. Quantifying the “damage” a drug will cause to a cell type, given both the binding

affinities of the drug for the various β-tubulin isotypes, and the cell type’s β-tubulin

isotype distribution. We define damage (used synonymously with injury) as the

percentage of cells killed by the given dosage of the chemotherapeutic compounds.



Table 1 Residue changes between β-tubulin isotypes in the binding sites for well-known
drugs

Isotype Residue changes in the paclitaxel binding site

βIII S275A

βVI V23M S25G D26E S275A R276Q

Isotype Residue changes in the colchicine binding site

βIII C239S A315T T351V

βV C239S A315T T351V

βVI V236I C239S A315T T351V

Isotype Residue changes in the vinblastine binding site

βIII T218A

Residue changes between tubulin isotypes compared to βI tubulin with respect to the interactions with three well-
known spindle poisons: paclitaxel, colchicine and vinblastine. Only residue differences in the respective binding sites
are shown.
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C. Deciding on the relative importance of “protecting” each type of healthy tissue.

D. “Scoring” each proposed drug profile, in terms of its ability to both attack a given

cancer type while protecting the important healthy tissues – we will use this

scoring function to define which profile is optimal.

We consider 8 isotypes of human β-tubulin denoted as T = {βI, βIIa, βIIb, βIII, βIVa,

βIVb, βV, βVI}. Leandro-García et al. [12] recently addressed issue A, by determining

the expression levels of the mRNA for the corresponding genes {TUBB, TUBB2A,

TUBB2B, TUBB3, TUBB4A, TUBB4B, TUBB6, TUBB1} in various healthy tissue and
Table 2 Residue changes between β-tubulin isotypes in the binding site for peloruside A
and laulimalide

Isotype Residue changes in the peloruside/laulimalide binding site

βIIa C200S V292M A295S

βIIb V292M A295S

βIII V292M

βIVa V292M

βIVb V292M

βV V292M K296R

βVI V292M K296R M298T

Isotype Residue changes in the peloruside/laulimalide binding site

βIII N331A V332I

βIVa N331S

βV N331A V332I

βVI P304L H306R M329L N331S

Isotype Residue changes in the peloruside/laulimalide binding site

βIII N334S

βIVa N334S

βV N334S

βVI N334T K335R Y339C

Residue changes between β-tubulin isotypes with respect to the interactions with two novel spindle poisons, peloruside
A and laulimalide, divided into three distinct regions that contribute to the interactions between the protein and
the ligands.



Table 3 Binding energy differences for peloruside A and laulimalide as a function of the
β-tubulin isotypes

βI βIIa βIIb βIII βIVa βIVb βV βVI

PELA −22.6 −20.3 −10.6 −7.9 −18.2 −2.1 −22.0 0

LAU 0 0 −30.0 0 0 −21.9 −34.9 0

Binding energy differences in (kcal/mol) for peloruside A (PELA) and laulimalide (LAU) as a function of the β-tubulin
isotypes. These values are based on molecular dynamics calculations [19].
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tumor samples, which is known to correlate with protein level [24], and so quantifies

the importance of each isotype to each cell type. (Of course, our use here of mRNA,

and not protein expression, means this is just an approximation; see the Discussion

section.)

Each cell type’s isotype profile q cð Þ ¼ qcI ; q
c
IIa;…; qcVI

� �
corresponds to these values.

We view each profile as a probability tuple, as each entry is non-negative, and the 8

values in the tuple sum to 1.

Each (either already existing or proposed) drug d also has an associated profile of

binding affinity values over these 8 isotypes, denoted as r dð Þ ¼ rdI ; r
d
IIa;…; rdVI

� �
,

which quantifies the effect of drug d on the β-tubulin isotypes. Again, this is a probabil-

ity 8-tuple, summing to 1. Each ri
d corresponds to how well the drug d binds to the i-th

isotype, which is often written ΔGi(d) [23]. For a given type of cancer c, we want a drug

d that is very damaging to c; we quantify this as a real value D(r(d), q(c)) that measures

how much drug d damages cancer c. We define this using the simple dot product:

Ddot r; qð Þ ¼ rTq ¼ ∑
i∈I

riqi ð1Þ

While we focus on this linear model mainly for pedagogical reasons, we will see it
also corresponds to log IC50; see Equation (5) in the Discussion section.

Our model deals with these drug molecules that bind only to β-tubulin (across vari-

ous type of cells), but have no off-target interactions, i.e. no interactions with other

proteins. However, these drug molecules have statistical preferences for different

isotypes of tubulin, depending on the structure, that dictates the resultant affinity. Ex-

amples of colchicine derivatives, peloruside A, laulimalide, mentioned above, have been

described in detail elsewhere [19,20].

To maximize the damage to the cancer cells c, we want a drug d so that D(r(d), q(c))

is as large as possible. At the same time we prefer drugs that do not damage the healthy

tissues – that is, for each type of healthy tissue th, we want the quantity D(r(d), q(th)) to

be small, to restrict the effect of the drug d on the isotypes expressed by th. The third

challenge listed above (issue C) is quantifying this tradeoff: how much should we pro-

tect the healthy cells, while still damaging the cancer cells. We address this by using a

set of weighting values {wh}, where each wh is used as a cutoff for the damage allowed

to healthy tissue th – i.e., we will only consider a drug d if its distribution of tubulin

isotype affinities, r = r(d), satisfies the constraint

D r; q thð Þð Þ ≤ wh ð2Þ

for each healthy tissue th, we will eliminate any drug that violates this constraint for

any healthy tissue th.
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Each wh weight reflects the importance of the protection of tissue th to the patient’s

survival (i.e., how much drug toxicity is tolerable), as well as the absorption of this drug

into the cells of this type, which depends on the route of drug delivery and the binding

affinities. In particular, we compute the weight wh = w(th; c, a, p) associated with

healthy tissue th when dealing with cancer c, where the drug is delivered using route of

administration a ∈{IV (intravenous infusion), local (intratumoral injection), oral, inhal-

ant} to a person characterized by p, which includes gender g ∈ {male, female}, as well as

other factors. (We include “inhalant” here, even though we realize there are currently

no inhalant-based cancer chemotherapy treatments, even for lung cancer. However,

there are preclinical trials involving aerosols of nanoparticles containing genotoxic

agents [25]. Our analysis may suggest that anti-mitotic agents be tested for inhalant

delivery for lung cancer and other cancers of the respiratory tract.) While the specific

weights used here are somewhat arbitrary at this stage, note that our model allows

these values to depend on the specific patient (for example dictated by co-morbidities

and the health status) and the stage of the disease, as well as a doctor’s decision about

the desired aggressiveness of the treatment regimen. Our approach is simple and robust

enough to adapt to any selection of weight values.

Figure 3 shows the weighting values wh = w(th; c, a, p) for different combinations of

route of administration a and tissue th, as encoded by the color at each position. It does

not show patient characteristics here, but note that it includes gender-specific organs

only when considering patients of the associated gender – e.g., we will only show testis

when dealing with male patients, and only show placenta when considering females.

Otherwise this gender-specific organ is simply ignored in the constrained optimization.

Again, these are simplified examples, intended to illustrate that the method can be fur-

ther adapted to specific cases and situations.

The basic idea is to mildly protect every healthy organ present (which depends on

the patient’s gender) for all methods except local delivery; in the case of local delivery,

the tumor site (labeled “Target Organ” in Figure 3) is heavily protected, but the re-

quired protection for all other organs is weakened; the associated weight wh is elevated

by 20% over that baseline. The weights for brain and heart are relatively small values

for all delivery routes, as they are vital organs and so must be further protected. Since

drug compounds are metabolized in the liver, and the kidney accumulates foreign sub-

stances for excretion, these two organs will be more exposed to the drug and so they

must receive even better protection (i.e., they are assigned smaller weights). The colon

and small intestine are further protected in the case of oral delivery due to their direct

exposure to the drug. Figure 3 does not show the weights for inhalant delivery as we

consider it a “local” route of administration, with lung as its (additional) target organ.

Again, the specific choice of values for the weights is somewhat arbitrary at this stage,

due to the novelty of the method proposed. Once empirical data are available from

tests, these numbers can be set accordingly. This versatility and robustness is a feature

of our method.

However, our model explicates the need to protect specific organs from serious adverse

side effects; this is consistent with the known side-effects of anti-tubulin drugs used in

cancer chemotherapy [26]. One of the main toxicities of the vinca alkaloids is constipa-

tion, due to damage to the colon. (Other problems are neuropathy and neutropenia, due

to damage to nerve and blood cells, respectively – cells not included in the current



Figure 3 Weighting values for tissues. Weights used as cutoff values for the damage allowed to healthy
tissues, for various combinations of tissues and routes of drug delivery. Our model rules out any potential
drug that would cause too much damage to any health tissue. This maximum damage is based on a value
wh = w(th; c, a, p) for each healthy tissue th, applied using administration “a” to a person characterized by
“p”, who has cancer type “c”; see the constraint, Equation (4). This figure encodes these basic wh values, for
each the tissue th (vertical axis) and administration “a” (horizontal). The bottom right shows the legend for
the colors. (The text discusses how these weights are modified based on personal characteristic “p”).
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analysis due to the lack of quantitative data. Hopefully, tubulin expression information for

these and other cell types will become available in the near future.) Similarly, both pacli-

taxel and docetaxel often lead to neurotoxicity and neutropenia (again, due to damage to

nerve cells and blood cells, respectively).

Figure 3 also presents various patient-specific characteristics. For example, if a patient is

in a weakened state of health, we might want to tighten all protection levels to 75%, mean-

ing we require the drug to be uniformly “gentler” on every cell type, even if this means the

drug is not as aggressive on the cancer; we call this approach “conservative”. Alternatively,

a robust person might be able tolerate more drug toxicity; hence the “aggressive” personal

characteristic where the weights are set to 150% of normal values. These patient-specific

characteristics could be assessed by the doctor based on the patient’s medical history and

current exam results. While the specific values of the weights chosen here are only for

illustration purposes, note they can be adjusted for individual patients – this is a strength

of our method.

The final challenge (issue D) is defining how to use this information – cancer type c,

set of healthy tissues {th}, weights {wh} (which recall depend on the cancer type c, route

of administration, and patient characteristics), and profile function q(.) – to evaluate a

particular profile. Here, we define the optimal tubulin isotype profile (OTIP) as

OTIP c; q :ð Þ; whf gð Þ ¼ argmaxr D r; q cð Þð Þf g;
such that ∀h : D r; q thð Þð Þ ≤wh

ð3Þ
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where the index h ranges over the healthy tissues. That is, we want to inflict as much

damage on the cancer cells, while insuring that the damage to each healthy tissue th is

below the tissue-specific threshold wh.

If we are only interested in killing the cancer cells (i.e., if we only consider the first

part of Equation (3)), then the OTIP for a tumor just puts all of the weight on only the

single isotype with the highest expression in the cancer type c – i.e., argmax{qi | q(c) =

[qI, …, qVI]}. However, as we are constraining the optimization to cap the damage to

the healthy cells (while also trying to maximize the damage to the cancer cells), we typ-

ically arrive at a different drug profile – one that often involves two or more isotypes

that have only moderate affinity. Note finally that Equation (3) is easy to solve, as

everything (both the constraints and the optimization formula) is linear [27-29].
Results
As an example of interpreting Figure 4, the first row deals with Larynx Squamous

Cell Carcinoma, Poorly Differentiated (Larynx SCC PD). The adjacent colorful horizon-

tal bars is the isotype profile for this tumor, followed by “IV”, indicating intravenous

administration. The following row (in the matrix of squares) quantifies the protection

level required for the various healthy tissues, for this type of cancer with this delivery:

small boxes for liver and kidney to means that the drug is not permitted to cause too

much damage to these organs; then larger-sized boxes for heart and brain, meaning

these organs can tolerate more damage; and yet larger boxes for the remaining organs

(from tonsil through lymph node, and testis to prostate), meaning these can take yet

more damage. The entries for breast, ovary and placenta are blank (i.e., no constraints),

for this male patient. The colorful bar to the right is the OTIP profile – i.e., the affin-

ities of the drug that optimizes Equation (5): 25% βIIA, 21% βIII and 54% βV tubulin.

The final black bar shows that this drug will be “0.29-damaging” for this cancer.
Larynx squamous cell carcinoma

The top two rows in Figure 4 correspond to the cancers Larynx Squamous Cell Carcinoma

Poorly Differentiated (Larynx SCC PD) and Larynx Squamous Cell Carcinoma Well Differ-

entiated (Larynx SCC WD); the adjacent horizontal bars present the isotype profiles for

these two tumors. We see slight differences, where Larynx SCC PD expresses more βIIa

tubulin than Larynx SCC WD, but less βIII tubulin. Continuing left-to-right, the next entry

is IV, indicating we are considering intravenous delivery of the drug. The following matrix

of squares shows the protection weights, which quantify the protection for healthy tissues.

In the PD row, we see that heart and brain have intermediate-sized boxes, but liver and

kidney each have relatively small squares, which mean the drug is not permitted to cause

too much damage to these organs. Then each tissue from tonsil through lymph node has a

very large box, which means these organs are permitted to accept a relatively increased

amount of damage. The entries for breast, ovary and placenta are blank (meaning no con-

straints), as we are considering a male patient. The second row in this matrix (Larynx SCC

WD) is identical to Larynx SCC PD, as we are considering the same cancer site, and the

same delivery method and same type of patient. To the right of the matrix is the OTIP

profile – i.e., the profile of the drug that optimizes Equation (3). For Larynx SCC PD, the

optimal drug’s affinity profile is 25% βIIA, 21% βIII and 54% βV tubulin; the subsequent



Figure 4 Optimal tubulin isotype profiles. Each row of the central matrix corresponds to a particular
cancer-context i = (c, a, p) – that is, the type of cancer c (with the associated distribution q(c), shown by the
horizontal bar on the left whose component regions are colored based on isotypes), how the drug is
delivered a, as well as patient characteristics p, when relevant – e.g., we used a “+” symbol to indicate extra
protection for a particular organ. Each column corresponds to a particular type of healthy tissue th (with its
name on the bottom, just below its associated profile q(th)). The size of the box at position (i, th) – for
cancer-context i = (c, a, p) and healthy tissue th – corresponds to the value of wh = w(th; c, a, p), specifying
the constraints on the damage to th. (Larger squares correspond to larger wh values, which means the
associated organ can tolerate more damage, and so requires less protection.) The right side shows the
isotype distribution for the optimal drug, and the black bars (farthest right) show how much this optimal
drug damages the associated cancer.
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black bars (on the far right) show that this drug will be “0.29-damaging” for this cancer.

(The damage scale is a unit-less relative measure where higher values indicate the ideal

drug profile will be more damaging to the cancer.) Notice the Larynx SCC WD row has

the same three isotypes listed, but with very different proportions; in this case the optimal

profile is 0.28-damaging for this cancer.

Among the drugs used for cancer of the larynx [26] (including cisplatin, 5-fluorouracil,

carboplatin, and gemcitabine), both paclitaxel and docetaxel work by binding tubulin, not-

ably with strong binding to βIIa and βIIb tubulin, then with less strength to βIII and βIV

tubulin [30]. While our analysis suggests that these drugs might not be ideal, they are

nevertheless affecting two of the four relevant isotypes.
Clear cell renal carcinoma

The next three rows are all Clear Cell (CC) Renal Carcinoma, but with different delivery

methods: normal IV (row 3), Conservative-IV (row 4) and Aggressive-IV (row 5). Here,

we see the difference caused by the delivery method, as each Conservative-IV square is

slightly smaller than the normal-IV squares, which means the Conservative-IV drug is

allowed to do much less damage to each of the healthy cells – i.e., in this case it is (rela-

tively) more important to protect the healthy tissue than to damage the cancer. So while

the optimal target drug profile for IV administration is simply pure βI tubulin affinity, the

Conservative-IV version of the drug profile “dilutes” this with 27% βV tubulin. As
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expected, we see that the Conservative-IV drug application method is slightly less

damaging to this cancer (0.39-damaging) than the normal IV drug administration (0.42-

damaging). The Aggressive-IV version has license to do even more damage to healthy

cells than does IV. However, its ideal drug targets the same pure βI tubulin that the IV

method prefers, and so this too is 0.42-damaging. Of course, we are not claiming that one

should change policies on the basis of such a small change. We will later see more signifi-

cant differences for other pairs of possible treatments.

Unfortunately cytotoxic drugs, such as tubulin-targeting agents, have been of little

use in renal cancer therapy, with response rates below 15%. Of those agents, vinca alka-

loids (which primarily target βII tubulin [31]) have been extensively used. It appears

that the failure of these drugs is mainly due to the lack of efficacy and not due to side

effects. Consequently, our recommendation would be to develop drugs with a strong

affinity for βI tubulin, as well as some interactions with βV tubulin.
Colon adenocarcinoma

The next three lines also deal with one type of cancer but several different types of

delivery – Colon Adenocarcinoma (Colon AC), with IV, local and oral delivery. The

ideal drug profiles for these three cases all involve the same two isotypes (βI and βIII)

as targets, but in different proportions, as they need to protect the healthy organs

differently.

While there are currently no tubulin-binding agents included in the standard therapy

for Colon Adenocarcinoma, our analysis suggests targeting βI and βIII.
Breast infiltrating ductal carcinoma

The next four rows are all Breast Infiltrating Ductal Carcinomas (Breast IDC); the first

three are ER + (with three different delivery methods) and then the fourth is ER − (IV

delivery). Here, we see squares for breast, ovary and placenta, as this patient is female.

We again see different ideal profiles for these four cases, involving various distributions

of βI and βIII, with effectiveness ranging from 0.33-damaging to 0.45-damaging.

Standard chemotherapy for breast cancer, however, currently involves the use of pac-

litaxel or docetaxel by IV infusion, which bind most to βIIa, βIIb, then to βIII and βIV

tubulin [30]. Derry et al. [30] stated that the effects of taxanes on microtubules are

assessed indirectly via their influence on microtubule dynamics, which is correlated

with their binding affinity for tubulin, although subtle issues of distal structural effects,

transport and intermediate binding sites may cloud the issue somewhat. Here, our ana-

lysis suggests seeking a variant that instead binds mostly to βI and slightly to βIII.
Non-small-cell lung cancer

The next two rows deal with Non-Small-Cell (NSC) Lung Cancer; here we consider In-

halant as well as IV delivery methods. The only difference is in how much we need to

protect the lungs; this in turn leads to a fairly different optimal profile: while both in-

volve βIIa and βIII, the IV delivery also involves the βI isotype, which does not appear

when dealing with the inhalant delivery. Note that inhalant has a better “cancer dam-

age rate”, suggesting this is a better drug delivery method for NSC Lung Cancer.
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This is consistent with the standard chemotherapy for NSC Lung Cancer, currently

involving the use of paclitaxel (which targets βIIa and βIII). Note that paclitaxel also

targets βIIb and βIV; our analysis suggests trying a novel drug that does not involve

these additional targets.
Ovary serous carcinoma

The two Ovary Serous Carcinoma (Ovary SC) rows differ based on how much we need

to protect the healthy ovary and placenta cells. Both involve targeting βI and βIII tubu-

lin. As expected, the additional constraints reduce the “kill rate” to the cancer cells.

Docetaxel is currently used to treat ovarian cancer, and it is administered through IV

infusion. In analyzing 11 ovarian cancer samples (7 untreated, and 4 paclitaxel-resistant),

Kavallaris et al. [32] found the 4 paclitaxel-resistant samples showed an increase in the

expression of tubulin isotypes βI (3.6-fold), βIII (4.4-fold) and βIV (7.6-fold). Our analysis

using OTIP explicitly identified two of these isotypes as specific targets for chemotherapy

which is intriguing, especially in view of the fact that paclitaxel exhibits the greatest affi-

nity for βII and not βI. Consequently, it would be logical to attempt directing chemothe-

rapy for this type of cancer towards a βI-targeting agent. Obviously, whenever possible in

ovarian cancer, it would be best to remove the ovaries altogether rather than attempt to

spare part of it. However, if the patient involved has inoperable ovarian cancer, our stra-

tegy should be useful in minimizing side effects. Additionally, side effects on nerves or

bone marrow should also play a significant role in deciding on the best strategy for

chemotherapy selection.
Prostate adenocarcinoma

Finally, we consider three types of drug delivery routes (with a personalization) associ-

ated with Prostate Adenocarcinoma (Prostate AC); Figure 4 shows the resulting optimal

profiles and kill-rates. The “optimal” profile for targets involves tubulin isotypes βIIa,

βIII and βV. This may at first appear paradoxical since the profile of isotypes expressed

in prostate adenocarcinoma, as shown in Figure 4, includes isotypes βI, βIIa, βIVb and

βV but not βIII. Note, however, that our method attempts to simultaneously maximize

damage to cancer cells and minimize damage to healthy tissue, possibly with specific

protection to certain tissues of significance. Moreover, affinity for one isotype does not

completely exclude other isotypes. Having said this, due to its systemic action, chemo-

therapy is not commonly used to treat prostate cancer.
Discussion
The present paper proposes an in silico method of designing a personalized chemothe-

rapy for several types of cancers, designed to maximize the drug’s damage to the cancer

cells while simultaneously minimizing the adverse side effects to healthy tissues. Our

immediate goal is to propose a novel methodology for identifying the most appropriate

drug. This required resolving four key issues to define our OTIP optimization model;

we can consider other variants for all four of them. This Discussion section summarizes

some such variants, then lists some challenges with our framework, and finally, some

further advantages and extensions.
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Issue A: Obtaining expression levels of β-tubulin isotypes in various types of cells

First, if we later get more accurate measurements of the β-tubulin isotype expression

distributions for the various cancer types and/or the healthy tissues, we can just plug

them into the profiles q(.). Second, as noted earlier, the numbers presented here are

based on mRNA levels [12]; while they are generally correlated with protein levels, this

is only an approximation.

Issue B: Quantifying the “damage” a drug will cause to a cell type

In general, D(r(d), q(c)) measures the cytotoxicity of a drug d with tubulin-binding r(d),

on a cell c with profile q(c). Our linear model (Equation (1)) is partially motivated by

the

log IC50(c,d) for a given cell line c, which utilizes the binding free energy between

each tubulin isotype i and the drug, d, written ΔGi(d):

D r dð Þ; q cð Þð Þ α −
1
RT

logIC50 c; dð Þ ¼ ΔG dð Þh ic ¼
X8
i¼1

qi cð Þ ΔGi dð Þ; ð5Þ

where qi(c) (often written Pi
c ) continues to represent the relative abundance of a par-

ticular tubulin isotype i in the cell line c, T is the temperature in Kelvin and R = 8.31 J/

(mol K) is the gas constant [23]. We use this very simple model to provide a framework

for our methodology. Of course, it does not incorporate many other important issues,

such as A or B or many of the other issues listed by Ganguly et al. [9].

Notice it is straightforward to modify our framework to consider yet other “damage”

models – indeed, we formulated the task using the abstract D(r, q) notation, to make it

easy to “plug in” appropriate formulas that relate the drug binding affinity profile r to

the cell’s isotype profile q. It can be extended to incorporate known interactions with

other proteins (e.g., paclitaxel’s known interactions with apoptosis effectors), provided

these interactions have been properly modeled. We anticipate further researchers will

be able to use their own D(r, q) functions, within our framework.

As one specific example, we can replace Equation (3) with the (negative of the)

Kullback–Leibler divergence [33-35]

DKL r; qð Þ ¼ − ∑
i∈T

ri log
ri
qi
; ð4Þ

which is always non-positive, and is 0 iff r = q. Here, if we ignore the constraints of

avoiding too much damage to healthy cells, then the associated OTIPKL optimization

(using this DKL rather than Ddot) for a tumor will be identical to the tumor’s profile –

i.e., the profile for the OTIPKL drug r will match the profile of a cell type c. This is in

contrast with the current OTIP algorithm (based on Ddot(r, q) ), which selects the

isotype with the highest expression level. This demonstrates how these two measures

embody different assumptions about the best way to disrupt the functionality of the

β-tubulin isotypes: disrupting the most abundant isotype versus disrupting all isotypes

proportionally.

Issue C: Deciding on the relative importance of “protecting” each type of healthy tissue

Similarly to the situation surrounding issue A, we may later be able to use more precise

biological knowledge to improve the way we assign the {wh} weighting values – i.e.,
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finding a better way to decide the relative importance of protecting each type of healthy

tissue). This could be generic, for all patients, or it could be specific to a particular pa-

tient – i.e., this would be the basis of completely personalized medicine.

Issue D: “Scoring” each proposed drug profile

Finally, Equation (3) is a constrained optimization task, which rejects a proposed drug

if it violated any constraints. Alternatively, we could instead just consider a “total cu-

mulative score”, which is the tumor damage minus the weighted sum of the damage to

the various healthy cells – i.e., of the form

OTIPsum c; q :ð Þ; vhf gð Þ ¼ argmaxr D r; q cð Þð Þ−∑
h
vhD r; q chð Þð Þ

� �
; ð6Þ

which here is using weights vh over the healthy cells, which differ from wh in that it

uses larger vh values for cell types that need more protection (recall this would mean

we decrease wh).

In all cases, it is an empirical question to determine which actual “setting” of these

four issues is truly the best one – i.e., which leads to the best results, in terms of (aver-

age) mortality and morbidity of the patients.

We close this section by discussing ways to address several possible limitations of our

framework, followed by some further advantages and extensions.

General issues with targeted drugs

Some issues are problems inherent in any targeted drug (whether identified by OTIP or

not.) For example, as cancer is a very complex disease with equally complex drug resist-

ance mechanisms, any cancer chemotherapy drug, including the ones suggested here,

can fail in part because a tumor is heterogeneous and can transform to a new lineage.

There are also many factors that complicate both the design and delivery of tumor-

suppressing chemotherapy, such as the presence of efflux pumps, multi-drug resistance,

p53 mutations, off-target interactions, angiogenic vasculature, mitotic slippage, heterogen-

eity of the tumor cells, their higher mutability, alterations in tubulin isotype expression

over time and the potential to develop drug resistance [36,37]. These complications mean

that producing an effecting drug (perhaps one that is OTIP-optimal) is not sufficient to

guarantee effective treatment.

Another set of issues are implicit within the OTIP framework. Following standard

practice, we implicitly assume a single (homogenous) type of cancer and deal only with

a single time point. There are obvious extensions possible for handling known hetero-

geneity, by dealing with the distribution of cancer subtypes. One might first approxi-

mate this by assuming the damage that a drug with profile r causes a distribution of

cancer cells is just a linear combination of the damage that r causes each individual

subtype of cell – using a formula analogous to Equation (8). We also know that cancer

can change over time. This may be because tubulin expression is altered by exposure to

drugs, which is thought to involve miRNA [38]. We may also need to re-weight over

time the tolerance of some of the healthy tissues, e.g., to deal with hepatotoxic side

effects of drugs that challenge the liver. It is easy to address this: after exposure to some

drugs, we could use a biopsy to determine the altered levels of tubulin expression in
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tumor cells, and then re-run OTIP on this new profile to recalculate the optimized

drug composition.

Estimating r(d) for drug d

This result of our OTIP analysis is a description of the β-tubulin isotype profile r of an

ideal drug. A remaining challenge, of course, is then synthesizing a drug d with this

profile – i.e., r(d) = r. A related goal is evaluating a given drug d – that is, computing

(or at least estimating) r(d).

The specific structural differences between isotypes means a given drug will bind

differently to various isotypes. Table 3 shows two specific cases of tubulin-binding

drugs, peloruside A (PELA) and laulimalide (LAU). Similar differences are expected to

exist for other families of compounds, including vinca alkaloids, taxanes, colchicines,

epothilones, etc., but to the best of our knowledge, no systematic analysis of these

effects exists in the literature. In the absence of sufficient experimental data sets that

show the binding rates of the various compounds to all tubulin isotypes, these diffe-

rences between isotypes can nevertheless be estimated computationally. We can predict

binding probabilities for each isotype using an Arrhenius-type formula, where the prob-

ability of drug d binding an isotype i, ri(d), is proportional to the exponential function

of the binding free energy [23], ΔGi(d) – that is

ri dð Þ ∼ exp −βΔGi dð Þð Þ: ð7Þ

Validation of the framework

While there is currently no way of evaluating the assumptions proposed in our paper,

there are at least three possible ways to address this issue in the future: (a) Obtain the

necessary experimental data to show that the assumptions are justified. Such data could

include measuring the drug efficacy values for each tissue type and drug delivery route,

assessing patient-to-patient variation of isotype distributions in different normal and

cancer impacted tissues, and validating tissue-specific “allowed damage” cutoffs. This,

however, requires a prolonged concerted effort in amassing information that may be

fragmentary and scattered throughout the literature. (b) Alternatively, we could show

that OTIP method is not overly sensitive to the various parameter choices. We are

currently working on this aspect. As this is a linear model, small perturbations that

retain feasibility will have small effects. Similarly small changes to constraints have

small effects, if at all. More precisely, small changes to inactive and active constraints

will have respectively no effect and linear effect on the optimal point [28]. (c) We could

apply this analysis to several families of available compounds and test them on various

normal and cancerous cell lines in cell culture assays. We are currently actively pur-

suing this approach.

Moreover, future investigators may be able to use animal models to examine the

ratios of tubulin isotypes, both mRNA and protein, in a wide range of normal tissues.

The advantage of a mouse model is that the tissue can be fresh enough to still preserve

the mRNA. The protein levels can be checked in, for example, bovine or porcine

tissues. We anticipate that the relative levels of the different isotypes are likely to be

somewhat invariant among mammals, for any given tissue. Therefore if, for instance,

liver has a certain ratio of isotypes in the mouse and the cow, then it is likely that
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humans do as well. In other words, if rodents and ungulates have the same ratios,

primates probably do also. This strategy can be exploited in designing animal trials for

drugs targeting specific types of cancers.
Generality of this framework

While this paper deals with tubulin isotypes, this same mathematical framework can be

applied to any other class of molecular target.

When multiple drugs from the same family of compounds have been derivatized to

obtain different binding affinities with respect to the different β-tubulin isotypes, we

may assume that they are non-interacting and combine to produce an additive effect

on the cells. Here, this OTIPsum model will allow us to easily consider a combination of

drugs (d1, d2), in proportions (α, 1 − α) for any α ∈ [0,1], using the obvious “cumulative

profile”,

r αd1 þ 1−αð Þd2ð Þ ¼ αr d1ð Þ þ 1−αð Þr d2ð Þ: ð8Þ

This means we can consider using a combination of drugs, taken in a proportion
reflecting the affinities for several resultant tubulin targets, as a more efficacious treat-

ment regimen that that offered by a single optimized drug entity. For example, instead

of a drug with a profile of 50% βI, 25% βII and 25% βIII, we could instead use a com-

bination of three drugs, each of which targets narrowly each of the three tubulin

isoforms, and taken in the proportion 50%, 25%, and 25%, respectively.
Conclusions
We can use this analysis as part of a rational drug design process, to predict the effects

of a specific drug, based on its known binding affinities for each tubulin isotype. For

example, many researchers have suggested that an effective cancer chemotherapy drug

is one that binds most strongly to the βIII isotype, as βIII is found in a wide variety of

cancers, but occurs infrequently in healthy cells [11,36]. This has motivated several

groups to design drugs that target the βIII isotype, including novel derivatives of pacli-

taxel and colchicine [20], both currently in preclinical testing and development. Our

OTIP framework extends this, by suggesting the profile for a drug that will bind

strongly to the β-tubulin isotypes of a given cancer, but only weakly to those of healthy

cells. This analysis can also use this analysis to help understand many other tubulin-

targeting drug families that are now under active investigation – including laulimalide,

peloruside A, noscapine, epothilones and discodermolide [1,39,40]. For example, recent

binding energy calculations show that laulimalide preferentially binds to the βV isotype

and peloruside A to the βI isotype [19]. While there is currently no detailed informa-

tion about the binding energies of other drugs for tubulin isotypes, the analysis in this

paper motivates the need for such determinations, as that binding information would

allow us now to use OTIP’s formulation to quantitatively predict the effectiveness of

these drugs, in terms of how much their β-tubulin isotype binding profile will damage

a given cancer type, versus damaging important healthy cells. Finally, this method could

be applied to other classes of biological targets, in addition to tubulin isotypes.
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