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Abstract

Estimation of leaf productivity in eelgrass (Zostera marina L.) is crucial for evaluating
the ecological role of this important seagrass species. Although leaf marking
techniques are widely used to obtain estimates of leaf productivity, the accuracy of
these assessments, has been questioned mainly because these fail to account for leaf
growth bellow the reference mark and also because they apparently disregard the
contribution of mature leaf tissues to the growth rate of leaves. On the other hand,
the plastochrone method is a simpler technique that has been considered to
effectively capture growth in a more realistic way, thereby providing more accurate
assessments of both above- and below-ground productivities. But since the actual
values of eelgrass growth rates are difficult to obtain, the worth of the plastochrone
method has been largely vindicated because it produces assessments that
overestimate productivity as compared to estimates obtained by leaf marking.
Additionally, whenever eelgrass leaf biomass can be allometrically scaled in terms of
matching leaf length in a consistent way, the associated leaf growth rates can be
also projected allometrically. In this contribution, we used that approach to derive an
authentication of the plastochrone method and formally demonstrate that, as has
been claimed to occur for leaf marking approaches, the plastochrone method itself
underestimates actual values of eelgrass leaf growth rates. We also show that this
unavoidable bias is mainly due to the inadequacy of single-leaf biomass assessments
in providing a proxy for the growth of all leaf tissue in a shoot over a given interval.
Moreover, the derived formulae give conditions under which assessments of leaf
growth rates using the plastochrone method would systematically underestimate
matching values obtained by leaf marking procedures. And, assessments of leaf
growth rates obtained by using the present data show that plastochrone method
estimations underestimated corresponding proxies obtained allometrically (27%), or
through leaf marking (35%). Allometric projection is recommended as a simpler and
more effective procedure to reduce the bias in eelgrass leaf productivity estimations
that associates to the use of plastochrone methods.
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Introduction
Eelgrass (Zostera marina) is a cosmopolitan seagrass species that plays an important

role in shallow and nearshore ecosystems. This temperate macrophyte is distributed in

Northern Hemisphere habitats from the Arctic Circle to the Tropic of Cancer [1],

where it provides a nursery for fish and as a substrate for attached algae and epi-

fauna [2,3]. By fixing large amounts of carbon through photosynthesis, eelgrass

plays an important trophic role, sustaining detrital food chains and other secondary

producers [4]. Eelgrass also helps in the remediation of contaminated sediments

[5] by filtering and retaining nutrients from the water column [6] and contributing

to the stabilization of sediments [7]. Moreover, eelgrass meadows reduce erosional

forces by stumping wave energy, thus promoting the stabilization of adjacent

shorelines [8,9].

The variability in eelgrass biomass constitutes a dynamic link between its structural

and trophic roles, because changes in the amount of organic carbon that can be fixed

modulate the structure of the habitat for the associated biota. These organisms are af-

fected in different ways when changes in biomass occur seasonally or unpredictably

[10]. Therefore, accurate measurements of the standing crop and productivity of eel-

grass constitute an important input for evaluating the ecological functions and values

of this significant seagrass species [11].

Several methods have been developed to measure seagrass growth and productivity

[12-14]. Procedures for measuring productivity in aquatic macrophytes have included

the assessment of changes in biomass over a growing season, as well as the quantifica-

tion of oxygen production or incorporation of 14C during photosynthesis. But the ac-

curacy of these methodologies was questioned early on [15-18]. Growth in seagrasses

occurs through the expansion of modules formed by rhizome segments, which have

bundles of attached leaves and roots. Because every leaf produced corresponds to the

production of a rhizome node, it is reasonable to assume that seagrass growth and

leaf formation are equivalent processes [19]. This conspicuous feature has encour-

aged efforts to estimate the growth of eelgrass, as well as that of other seagrasses

with ribbon-like leaves, by measuring leaf growth. Leaf growth in seagrasses can be

estimated by using the leaf marking technique which was originally proposed as a

way of avoiding the underestimation of growth when using oxygen metabolism

measurements [16,18]. Leaves were marked above the sheath with a small staple at

the height of a reference frame placed above the sediment, and then recovered

after a period of 2–4 weeks. The new growth in each leaf between the reference

frame and the staple was then weighed. The ratio of this weight to the number of

days of growth determined the leaf growth rate. Because this procedure is consid-

ered to give consistent estimations [19,20] it has been used and modified by sev-

eral authors (e.g. [21-23]).

For assessment of growth in Zoostera marina in particular, workers have marked

blades using felt-tip pens, staples and hypodermic needles [4,24-26], with the reference

level being either the leaf tip [25,27] or a point at the top of the sheath [12,24,26,28].

However, Brouns [29] asserted that this technique only estimates blade production and

is not suitable for measuring total production. The reliability and accuracy of the leaf-

marking method has been also questioned by others; for example, because it does not

account for new leaf growth within the sheath below the reference mark [24], or it
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might inflict damage to tissues [19], or fail to account for leaf maturation processes

[11,13,30], or that it requires destructive dry-weight measurements.

Based on the observation that the production of every seagrass leaf is associated with

the production of a rhizome node, Patriquin [31] envisioned that seagrass root and rhi-

zome production can be also estimated by determining the time interval for the forma-

tion of new leaves and by counting the associated leaf scars. The time elapsed between

the appearance of two consecutive leaves has been termed a plastochrone interval or

plastochrone index [32,33]. For eelgrass, Jacobs [4] used the average weight of the third

leaf on sampled shoots as a substitute for the leaf biomass gained by a shoot over a

plastochrone interval and divided this leaf biomass surrogate by the value of the

plastochrone interval to assess growth rates of leaves. Gaeckle and Short [11] endorsed

the method of Jacobs [4] and used the weight of a mature leaf to represent all growing

leaf tissue in a shoot over a given a plastochrone interval to calculate eelgrass growth,

calling the leaf-biomass to plastochrone ratio the plastochrone method for eelgrass

leaf-growth assessments. And Gaeckle and Short [11] concluded that leaf marking re-

sults in lower estimates of leaf growth than the plastochrone-based method, as asserted

by Brouns [29], and they considered that this approach both fully captures growth and

is also simpler and non-destructive.

But despite the advantages of plastochrone methods, their use has not been yet for-

mally substantiated. In the present research we attempt to fill this gap by using allomet-

ric models and a discrete mathematical formulation for the increment in biomass

gained by an eelgrass leaf over a time interval to derive an equation which expresses

the mean shoot leaf-growth rates in terms of a factor of the leaf biomass to

plastochrone ratio plus a remainder, and explore their analytical implications. And, we

extend aforementioned result to provide a formal device aimed at obtaining the abso-

lute deviations between leaf growth-rate assessments estimated by using the conven-

tional leaf-marking technique and those obtained by using the plasthochrone method.

We also corroborate the derived formulae using both simulation and real data. Finally,

we stress the advantages of using allometric methods in eelgrass research and discuss

the findings of this study.

Data and related calculations
The data used for this study were collected in a Z. marina meadow in Punta Banda Estu-

ary, located near Ensenada, Baja California, Mexico. Form March 1999 to July 2000 we

visited the site biweekly. At each sampling time using the Kentula and McIntire technique

[26] approximately 40 shoots were marked, and those previously marked were retrieved.

On all the shoots collected, the sheaths were peeled off and the leaf contents were sepa-

rated. We measured the lengths of each of the retrieved leaves and the associated leaf-

length increments gained over the marking interval. The matching biomasses were

obtained by direct dry weight determinations. The associated in situ values for the mean-

shoot leaf growth over the marking interval were estimated directly by dividing total leaf

production in the marked shoots retrieved by the number of days elapsed.

Matching estimations, produced by the leaf marking method, were obtained by

subtracting leaf production within the sheath to the in situ rates. Total leaf productivity

in retrieved shoots was also determined indirectly by the allometric approach described

in equation (12a) below, and also by applying the plastochrone method.



Echavarría-Heras et al. Theoretical Biology and Medical Modelling 2013, 10:34 Page 4 of 15
http://www.tbiomed.com/content/10/1/34
A formal derivation of the plastochrone method
In this section we show how, using allometric models for the representation of eelgrass

leaf biomass in terms of length, we can provide a formal substantiation of the

plasthocrone method for leaf-growth assessments. With that aim, we use the index s to

label a generic Zostera marina shoot and let n(s) stand for the number of leaves it

holds. This number includes wholly formed leaves attached to the sheath and those de-

veloping inside this structure. We let ljs(t) stand for the length of j-th leaf in the

addressed shoot, and use Δt to denote a positive amount of time. Thus, the symbol Δljs
(t, Δt) stands for the increment in length attained by the leaf ljs(t) along the interval

[t, t +Δt], i.e.

Δljs t;Δtð Þ ¼ ljs t þ Δtð Þ−ljs tð Þ ð1Þ

Correspondingly, the symbol ωjs(t) with 1 ≤ j ≤ n(s) denotes the dry weight at a time t

of the j-th leaf in the considered shoot. Also, we will let Δωjs(t, Δt) denote the gain in

dry weight for ljs(t) occurring along the interval [t, t + Δt], i.e.,

Δωjs t;Δtð Þ ¼ ωjs t þ Δtð Þ−ωjs tð Þ ð2Þ

Let’s denote by means of the symbol Lgs(t, Δt) the mean leaf growth rate attained by
a shoot s during the interval [t,t +Δt]. We then have the mean shoot leaf-growth rates

Lgs t;Δtð Þ ¼
X
j

Δωjs t;Δtð Þ
Δt

ð3Þ

Similarly the symbol Lg(t, Δt) represents the average of the Lgs(t, Δt) values taken

over the number of shoots collected at a time t + Δt, i.e.,

Lg t;Δtð Þ ¼
X

s
Lgs t;Δtð Þ

N t þ Δtð Þ ð4Þ

Where N(t + Δt) is the number of shoots collected at a time t +Δt. In what follows

the calculated values for the Lg(t, Δt) rates will be referred to as in situ mean leaf-

growth rates.

Assuming that there are parameters α and β such that ωjs(t) and ljs(t) are linked

through the allometric equation

ωjs tð Þ ¼ αljs tð Þβ ð5Þ

then a related expression for the leaf biomass increment Δωjs(t, Δt) can be derived [34]

and this becomes

Δωajs t;Δtð Þ ¼ αljs t þ Δtð Þβ δjs t;Δtð Þ ð6Þ

with

δjs t;Δtð Þ ¼ 1− 1−
Δljs t;Δtð Þ
ljs t þ Δtð Þ

� �β
 !

ð7Þ

And, since we have
0≤Δljs t;Δtð Þ≤ljs t þ Δtð Þ ð8Þ
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we must also have,

0≤δjs t;Δtð Þ≤1 ð9Þ
Since the result of equation (6) is derived from equation (5) we must formally have
Δωjs t;Δtð Þ ¼ Δωajs t;Δtð Þ ð10Þ
Nevertheless, for applications to a given data set, when calculating, the leaf biomass

increments of equation (6) we must rely on estimates for the parameters α and β, hence

the associated uncertainties will set,

Δωjs t;Δtð Þ ¼ Δωajs t;Δtð Þ þ Rwa
js t;Δtð Þ ð10aÞ

where Rwa
js t;Δtð Þ, is a residual term.

Correspondingly we will denote by means of the symbol Lgas(t, Δt) the allometric sur-

rogate of the Lgs(t, Δt) rates of equation (3). That is,

Lgas t;Δtð Þ ¼
X
j

Δωajs t;Δtð Þ
Δt

ð11Þ

Again we must formally have,
Lgs t;Δtð Þ ¼ Lgas t;Δtð Þ ð11aÞ

and, as it was elaborated in equation (10) when estimates of the allometric parameters

are used to calculate the Δωajs(t, Δt) proxies we must have,

Lgs t;Δtð Þ ¼ Lgas t;Δtð Þ þ Rwa
s t;Δtð Þ; ð11bÞ

where Rwa
s t;Δtð Þ is the involved estimation error.

Averaging the Lga(t, Δt) values over the number of shoots collected at time t + Δt,
one gets allometrically projected values Lag(t, Δt) for the in situ leaf growth rates Lg(t, Δt)
of equation (4), these are

Lga t;Δtð Þ ¼
X

s
Lgas t;Δtð Þ

N t þ Δtð Þ : ð12aÞ

Furthermore we must formally have,

Lg t;Δtð Þ ¼ Lga t;Δtð Þ þ Ba t;Δtð Þ ð12bÞ
where the term Ba(t, Δt) stand for the pertinent approximation bias. Again, only in the

case in which both equations (10) and (11a) hold we will have that the Lg(t, Δt) rates of
equation (4) and their allometric representations Lga(t, Δt) are equivalent, this setting Ba

(t, Δt) = 0. In what follows the result of equation (12a) will be called “allometric method

for the projection of eelgrass leaf growth rates” or simply as “allometric method”.

Now let p(t, Δt) denote the value of the leaf plastochrone interval calculated using the

leaf marking data resultant for the interval [t, t +Δt] [4], and let’s assume that the biomass

of the third leaf on each retrieved shoot provides a substitute for all growing leaf tissue in

that shoot along a time interval of size p(t, Δt) [4,11]. Then, in accordance with our con-

vention, the biomass of this leaf will be denoted by means of ω3s(t, Δt), and let’s also rep-

resent the resulting leaf biomass to plastochrone ratio, using the symbol Lgps(t, Δt) that is,

Lgps t;Δtð Þ ¼ ω3s t;Δtð Þ
p t;Δtð Þ ð13Þ
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this equation is the formal representation of the plastochrone method, which is consid-

ered to yield the mean rate of growth for all the leaves on a retrieved shoot s and over the

interval [t, t +Δt] [4,11,14]. Then, averaging the shoot rate values Lgps(t, Δt) over the

number of shoots collected at a time t +Δt one obtains the proxy values Lgp(t, Δt) pro-
duced by the plastochrone method and corresponding to the in situ leaf growth rate

values Lg(t, Δt), they are,

Lgp t;Δtð Þ ¼
X

s
Lgps t;Δtð Þ

N t þ Δtð Þ : ð14aÞ

Again by letting Bp(t, Δt) stand for the associated bias we have,
Lg t;Δtð Þ ¼ Lgp t;Δtð Þ þ Bp t;Δtð Þ ð14bÞ
Now, assuming that equation (10) holds then from equations (11) and (13) one obtains
Lgs t;Δtð Þ ¼ Cap
s t;Δtð ÞLgps t;Δtð Þ þ Rap

s t;Δtð Þ; ð15Þ

where the factor Cap
s t;Δtð Þ is given by,

Cap
s t;Δtð Þ ¼ δ3s t;Δtð Þp t;Δtð Þ

Δt
; ð16Þ

and Rap
s t;Δtð Þ is a positive remainder defined through,

Rap
s t;Δtð Þ ¼

X
j

δjs t;Δtð Þωjs t þ Δtð ÞI j; 3ð Þ
Δt

ð17Þ

with,

I j; 3ð Þ ¼ 0 if j ¼ 3
1 otherwise

�
ð18Þ

Since ωjs(t, Δt) is positive and we have also observed that δjs(t, Δt) does not simultan-

eously vanish for all values of the index j in a retrieved shoot, we must have,

Rap
s t;Δtð Þ > 0: ð19Þ

Also, from inequality (9) and equation (16) we obtain,

0≤Cap
s t;Δtð Þ≤ p t;Δtð Þ

Δt
ð20Þ

Then, since depending on the order relationship that p(t, Δt) and Δt satisfy, the ratio
of p(t, Δt) to Δt can take any positive value, and since as given by equation (16) Cap
s

t;Δtð Þ depends continuously on δ3s(t, Δt), p(t, Δt) and Δt it can formally take any posi-

tive value. For instance we could set Cap
s t;Δtð Þ ¼ 1 , which according with equation

(16) leads to the equivalent equation

δ3s t;Δtð Þ ¼ Δt
p t;Δtð Þ ð21Þ

which taking into account inequality (9) could be only satisfied whenever the order re-

lationship Δt ≤ p(t, Δt) holds.
Moreover, from equations (4), (13) and (15) one obtains,

Lg t;Δtð Þ ¼ Cap t;Δtð ÞLgp t;Δtð Þ þ Bap t;Δtð Þ ð22Þ
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where

Cap t;Δtð Þ ¼
X

s
Cap

s t;Δtð ÞLgps t;Δtð ÞX
s
Lgps t;Δtð Þ ð23Þ

and

Bap t;Δtð Þ ¼
X

s
Rap
s t;Δtð Þ:

N t þ Δtð Þ ð24Þ

so, inequality (19) implies,

Bap t;Δtð Þ > 0; ð25Þ
and using inequality (20) and equation (23) we get,

0≤Cap t;Δtð Þ≤ p t;Δtð Þ
Δt

: ð26Þ

Again, since Cap
s t;Δtð Þ varies continuously and Lgps(t, Δt) does not vanish and de-
pends continuously on both ω3s(t, Δt) and p(t, Δt) from equation (23) we conclude that

Cap(t, Δt) varies continuously and takes all the positive values within the range set by

inequality (26).

From equation (22) we can formally infer that the equivalence of Lg(t, Δt) and Lgp

(t, Δt) would occur whenever the constrains Bap(t, Δt) = 0 and Cap(t, Δt) = 1 simultan-

eously hold. Moreover from equation (23) we have that Cap(t, Δt) = 1 is equivalent to

the equation,

X
s

Cap
s t;Δtð Þ−1� �

Lgps t;Δtð Þ ¼ 0 ð27Þ

which will be satisfied whenever Cap
s t;Δtð Þ ¼ 1 and which according to the elaboration

sustaining equation (21) can only occur whenever the order relationship Δt ≤ p(t, Δt)
holds. Indeed from inequality (20) we have,

−1≤Cap
s t;Δtð Þ−1≤ p t;Δtð Þ−Δt

Δt
; ð28Þ

then if we assumed that Δt > p(t, Δt) the factor ( Cap
s t;Δtð Þ−1Þ in equation (27) would

not change signs, and since Lgps(t, Δt) is positive for all values of t equation (27) could

not be satisfied. But even though, as we have elaborated above, whenever Δt ≤ p(t, Δt),
the statement Cap(t, Δt) = 1 Cap(t, Δt) = 0 could be formally satisfied, inequality (25)

implies that the equation Bap(t, Δt) = 0 could not be satisfied, precluding the equiva-

lence of Lg(t, Δt) and Lgp(t, Δt). As a result, when projecting the Lg(t, Δt) rates by

means of the Lgp(t, Δt) proxy values, we can anticipate a systematically positive or

negative bias. This direct bias has been denoted by means of Bp(t, Δt), (cf. eq. 14b) and
from equation (22) it is given by

Bp t;Δtð Þ ¼ Cap t;Δtð Þ−1ð ÞLgp t;Δtð Þ þ Bap t;Δtð Þ ð29Þ

Then, since as given above Bp(t, Δt) approaches the positive value Bap(t, Δt) whenever
Cap(t, Δt) approaches one, and since Bp(t, Δt) varies continuously and does not changes

signs, it must remain positive in all its variation range, then as a result Lg(t, Δt) values
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will be systematically underestimated by their Lgp(t, Δt) surrogates. Moreover, using in-

equality (26) we can find bounds for the variation of Bp(t, Δt) that is, we have

BLap t;Δtð Þ≤Bp t;Δtð Þ≤BLap t;Δtð Þ þ p t;Δtð Þ
Δt

Lgp t;Δtð Þ ð30Þ

where

BLap t;Δtð Þ ¼ Bap t;Δtð Þ−Lgp t;Δtð Þ ð31Þ

This result shows that the minimum possible value that Bp(t, Δt) can attain is BLap

(t, Δt) and that whenever the inequality p(t, Δt) ≥ Δt holds the upper bound for its vari-

ation range will increase from the value Bap(t,Δt). Moreover this order relationship will

induce wider variation ranges for Bp(t, Δt) relative to the complementary case p(t, Δt)
<Δt, therefore substantiating the claim by Short and Duarte [14] who stated that for an

efficient application of the plastochrone method the length of the observation period

Δt must exceed the value p(t, Δt) of the leaf plastochrone interval.

Derivation of a formal relationship between leaf marking and plastochrone
method assessments of eelgrass leaf growth rates
We now show that the addressed allometric framework can also be used to obtain a

formal connection between leaf marking technique assessments and those obtained by

means of the plastochrone method. With that aim let’s now denote by means of the

symbol Lgms(t, Δt), the estimations of the Lgs(t, Δt) rates of equation (3) which are

obtained by means of the leaf marking technique. Lets also denote by means of Lgm(t, Δt)
the average of the Lgms(t, Δt) values over the number of shoots collected at time t +Δt
that is,

Lgm t;Δtð Þ ¼
X

s
Lgms t;Δtð Þ
N t þ Δtð Þ : ð32aÞ

And, if Bm(t, Δt) denotes the related approximation bias we formally have
Lg t;Δtð Þ ¼ Lgm t;Δtð Þ þ Bm t;Δtð Þ: ð32bÞ

Now, defining the ratio

λjs t;Δtð Þ ¼ Δljs t;Δtð Þ
ljs t þ Δtð Þ ð33Þ

then, since Δl is positive and bounded above by ljs(t +Δt),we have,

0≤λjs t;Δtð Þ≤1 ð34Þ

and, from equations (6) and (33) we get,

Δωajs t;Δtð Þ ¼ α Δljs t;Δtð Þ� �β 1− 1−λl t;Δtð Þð Þβ
λl t;Δtð Þβ

 !
ð35Þ

which rearranging leads to

Δωajs t;Δtð Þ ¼ β Δljs t;Δtð Þ� �α þ Rma
js λ; t;Δtð Þ ð36Þ
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where

Rma
js λ; t;Δtð Þ ¼ βljs t þ Δtð Þα 1− 1−λl t;Δtð Þð Þβ−λjs t;Δtð Þβ

� �
ð37Þ

Hence, Δωajs(t, Δt) can be split into two components: a term β(Δljs(t, Δt))
α; the allo-
metric expression of the biomass of the leaf length increment Δl, plus a remainder, Rma
js

λ; t;Δtð Þ. The term β(Δljs(t, Δt))
α, can be linked to the contribution of new leaf material

to growth. And, since Rma
js λ; t;Δtð Þ , depends on the whole leaf length span ljs(t + Δt),

this residual term can be taken as the contribution of mature leaf material to growth.

Moreover, formally we must have

Lgms t;Δtð Þ ¼
X
j

β Δljs t;Δtð Þ� �α
Δt

ð38Þ

and assuming that equation (10) holds, equations (3) and (36) imply

Lgs t;Δtð Þ ¼ Lgms t;Δtð Þ þ Rma
s t;Δtð Þ; ð39Þ

where

Rma
s t;Δtð Þ ¼

X
j

Rma
js λ; t;Δtð Þ

Δt
ð40Þ

therefore, equations (15) and (39) yield,

Lgms t;Δtð Þ ¼ Cap
s t;Δtð ÞLgps t;Δtð Þ þ Rmp

s t;Δtð Þ ð41Þ

where

Rmp
s t;Δtð Þ ¼

X
j

δjs t;Δtð Þωjs t þ Δtð Þ I j; 3ð Þ−1ð Þ þ λjs t;Δtð Þβ
� �

Δt
ð42Þ

then, averaging over the number of shoots collected at time t +Δt we have that the

Lgm(t, Δt) and Lgp(t, Δt) rates are related through,

Lgm t;Δtð Þ ¼ Cap t;Δtð ÞLgp t;Δtð Þ þ Bmp t;Δtð Þ; ð44Þ
where

Bmp t;Δtð Þ ¼
X
s

Rmp
s t;Δtð Þ
N t þ Δtð Þ ð45Þ

then as it was the case in equation (22), whenever the inequality,

Bmp t;Δtð Þ > 0 ð46Þ
holds, the result of equation (44) implies that the Lgm(t, Δt) assessments will be

underestimated by the Lgp(t, Δt) values.

Corroboration of derived results using the present data
Using the present leaf data, we calculated the values for in situ leaf growth rates Lg(t, Δt)
by means of equation (4). The concomitant Lgm(t, Δt) estimations produced by the

leaf-marking technique were also obtained. Using the formula in Jacobs [4], we pro-

duced biweekly estimations of plastochrone-interval values. Plastochrone method

proxies Lgp(t, Δt) for the in situ leaf growth rates Lg(t, Δt) were also calculated. The

model of equation (5) was identified as consistent with the present data set, producing
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a coefficient of determination of 0.82. The values of the fitted parameters were

α = 0.00002 and β = 1.3 similar to those previously reported for this site [34,35].

We then used these parameter values and associated leaf data to produce allometric estima-

tions Lga(t, Δt) for the in situ leaf-growth rates using equation (12a). An analysis of variance

found significant differences between mean annual leaf-growth rates among methods

(F= 17.95 df : 3, 112, p < 0.001) and an a posteriori Tukey test found non-significant differ-

ences among in situ values and those produced by the leaf marking method (p = 0.89),

among in situ values and those obtained through the allometric method (p= 0.08), and

among leaf marking values and those produced by using the allometric method p= 0.29.

The Tukey test also showed that the mean annual leaf-growth rate obtained through the

plastochrone method is statistically different from that linked to the in situ values, that calcu-

lated from leaf-marking data, and the one obtained from allometric projections (p < 0.001).

Figure 1a provides a direct comparison of measured Lg(t, Δt) leaf growth rates and

those calculated, by using the Lgm(t, Δt), Lga(t, Δt) or Lgp(t, Δt) methods. It is shown

that all these proxies produced positive bias in approximating the values for in situ Lg

(t, Δt) rates, but Bm(t, Δt) was smaller relative to Ba(t, Δt) and at the same time this bias

was found to be smaller than Bp(t, Δt). Moreover, since the bias term Bmp(t, Δt) was also
found to be positive, then equation (44) implies that the values of the plastochrone-

method proxies Lgp(t, Δt) underestimate the Lgm(t, Δt) values obtained by means of the

leaf-marking technique. Differences on the root mean squared error (RMSE) values on

Table 1 suggest that while the leaf marking and allometric proxies could be expected to

produce consistent projections of observed eelgrass leaf growth rates, the plastochrone

method instead shows a relatively smaller reproducibility of the named rates.
Figure 1 Comparison of observed and calculated leaf growth rates.



Table 1 Root mean squared error (RMSE) and concordance correlation coefficient (p̂)
values for comparison of observed leaf growth rates and corresponding proxies
calculated by the leaf- marking, allometric or plastochrone methods

Criteria Leaf marking Allometric Plastochrone

RMSE 0.00021283 0.000586175 0.001700075

ρ̂ 0.9895 0.9831 0.5286

95% Confidence interval (0.9776, 0.9951) (0.9638, 0.9921) (0.2010, 0.7498)
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Moreover, an analysis of Lgm(t, Δt) versus Lg(t, Δt) values found a statistically significant

regression through the origin; Lg(t, Δt) = 1.040 Lgm(t, Δt), r2 = 0.98, p < 0.001 (Figure 1b),

also when we analyzed Lga(t, Δt) versus Lg(t, Δt) the same regression model was found

highly consistent; Lg(t,Δt) = 1.163 Lga(t,Δt), r2 = 0.96, p < 0.001 (Figure 1c). Meanwhile,

when we compared Lgp(t, Δt) versus Lg(t, Δt) no regression through the origin could be

fitted. Instead only a poor fit; Lg(t, Δt) = 0.779 Lgp(t,Δt) + 0.002, r2 = 0.26, p < 0.003 could

be produced (Figure 1d). Additionally, values of the Lin [36] Concordance Correlation

Coefficient ( ρ̂Þ for reproducibility of the Lg(t, Δt) rates by the methods addressed here

(Table 1), reveal that both the leaf marking ( ρ̂ ¼ 0:9895Þ and allometric ( ρ̂ ¼ 0:9831Þ
methods performed better than the plastochrone method ( ρ̂ ¼ 0:5286Þ . Indeed we can

observe that the bias Ba(t, Δt), produced by the allometric method of equation (12a)

is relatively smaller than that linked to plastocrone method assessments. Since the

allometric approach is a simpler technique than leaf marking procedures [34,35],

allometric projection is recommended as an effective method to reduce the bias as-

sociated to plastochrone method assessments.

Discussion
Allometric scaling models of the form Y = αXβ, where Y is a response and X is an

explanatory variable, are commonly used in biological research. In this formulation, α

is positive and is known as the normalization constant, while β is called the scaling

exponent. From an empirical standpoint these allometic models have been fitted to

many pairs of biologically traits X and Y in a highly consistent way, providing reliable

methods for estimating variables that are difficult to quantify by using other variables

that can be easily and directly measured. Empirical scaling models can be viewed as

static relationships in which both the allometric exponent and the normalization constant

take values that pertain to a particular data set. But beyond a purely empirical advantage,

allometric approaches have demonstrated that prediction is not an unachievable aim in

ecology. Indeed, allometric methods can be successfully used to predict roles and charac-

teristics of organisms [37,38]. The predictive realm of allometric laws, moreover, is not

circumscribed only to individual properties of organisms but can also apply to energy

flows in whole ecosystems [39]. For example, the consistency of allometric relationships

between body size and metabolism, which span 27 orders of magnitude in body mass for

living organisms in both aquatic and terrestrial ecosystems, has provided a basis for the

development of the metabolic theory of ecology [40].

The benefits of allometric methodologies in seagrass research were stressed by

Duarte [41], who exemplified the use of static allometric models to grasp the implica-

tions of differences in plant size for productivity. For eelgrass in particular, Hamburg

and Homann [28] and Echavarria-Heras et al. [35] used empirical allometric methods
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for the assessment of aboveground biomass. But allometric methodologies in eelgrass

research are not limited only to empirical approaches for nondestructive appraisals of

leaf biomass, but have also been used to formally substantiate empirical paradigms

employed in eelgrass research [42]. They demonstrated that allometric scaling can pro-

vide criteria for evaluating the suitability of the leaf-biomass-to length ratio as a para-

digm for nondestructive leaf biomass evaluations. And from a theoretical standpoint, it

has also been established that allometric models can be linked to a paradigm for the in-

direct assessment of leaf growth rates in terms of simple measurements of leaf length

or area [34].

It has been considered that conventional leaf-marking techniques produce biased es-

timations of eelgrass leaf-growth rates [11]. One fundamental objection states that,

since these methods measure leaf growth by accounting only for the biomass of all the

pieces of leaf material that have developed during the period between the marking and

recovery of shoots, any leaf material produced below the reference point is not cap-

tured, and thus that portion of leaf production is missed. But even though the marking

point could be placed on the sheath itself, as a way to avoid this inconvenience, the

modified method still relies on newly produced leaf tissue, which is considered to be

immature and flaccid. These tissues have a lower weight-to-length ratio than mature

leaves [11], resulting in an underestimation of leaf growth.

The plastochrone method for eelgrass leaf growth rate estimations [4,11] was pro-

posed in order to avoid the lack of representativeness of the leaf marking techniques.

Unlike the leaf-marking techniques, the plastochrone method has been considered to

produce simple, direct, nondestructive and unbiased estimations of eelgrass growth.

Nonetheless, the reliability of this method has been largely vindicated at an empirical

level, and practitioners have justified its application by asserting that this paradigm fully

captures the growth pattern of eelgrass, in which new plant parts are incrementally

produced while young tissue is simultaneously maturing.

The implementation of the plastochrone method is centered on the idea that the bio-

mass of a single leaf representing mature tissue on a shoot, divided by the leaf

plastochrone interval, provides a reliable substitute for the contribution of the shoot to

the mean growth rate of leaves. But so far, a mechanistic explanation is still missing as

to how a single leaf can capture the contribution to growth produced by all the leaves

in a shoot over a given observation period. This is where allometric approaches can

contribute to the formal substantiation of the method. Indeed, equation (15) was

obtained by starting from the basic balance equation (3), then representing the contri-

butions to growth of all the individual leaves on a shoot using the allometric represen-

tation of equation (6); and finally, by averaging over the number of retrieved shoots, we

obtained equation (22). This equation relates the observed values of eelgrass leaf-

growth rate Lg(t, Δt) in a direct dynamical way to their proxy plastochrone method

values Lgp(t, Δt), thereby providing a formal authentication for this paradigm.

The balance equation (3) shows, moreover, that any fixed value of Lgs(t, Δt) links all
individual contributions to leaf growth in an essential way, with the biomass gained by

a particular leaf being lost by the remaining ones. Hence, a single leaf would capture all

the leaf biomass gained by a shoot over a given growing period, if and only if the bio-

mass of the residual leaves in the shoot remained static, which is unsupported by the

observed growth mode of eelgrass. This is indeed what inequality (19) properly
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expresses, and its validity formally explains that we can expect a downhill bias when

plastochrone method calculations are used as proxies for observed leaf growth rates.

This was in fact corroborated with the present data; the values obtained for the derived

formulae confirmed that the plastochrone-method proxies underestimated the leaf-

growth rates observed.

Likewise, the gains obtained from the use of allometric approaches are also shown by

equation (37), which provides a device for the estimation of the contribution of leaf

maturation processes to growth. But using the present theoretical settings, we can also

address the controversy between the leaf marking and plastochrone methods for leaf-

growth assessments. Indeed, equation (44) relates leaf-growth rate estimations obtained

by means of the leaf marking technique to those obtained through the plastochrone

method. And, the derived formulae set conditions under which it could be expected

that plastochrone method approximations of eelgrass leaf-growth rates would systemat-

ically underestimate matching values obtained by using leaf-marking procedures.

Indeed the condition set by inequality (46) was verified for the present data; then as a

consequence, the plastochrone method proxies underestimated similar values obtained

by means of leaf-marking methods. That is the inequality Bp(t, Δt) > Bm(t, Δt) holds

through time, as shown in Figure 1. Further, using the present allometric framework,

we formalized the claim of Short and Duarte [11] who stated that, for an efficient appli-

cation of the plastochrone method, the length of the observation period Δt must exceed

the leaf plastochrone interval p(t, Δt). And, although this condition was satisfied for the

present data, we obtained Ba(t, Δt) < Bp(t, Δt) when approximating observed values.

That is, the bias produced by the allometric method of equation (12a) was found to be

smaller than that linked to plastocrone-method estimates. Furthermore, for this data

the order relationship Bm(t, Δt) < Ba(t, Δt) < Bp(t, Δt) was maintained through time. It

can be also observed from Figure 1 and from the high value of the associated Lin [36]

Concordance Correlation Coefficient ( ρ̂Þ for reproducibility of the Lg(t, Δt) rates

through Lgm(t, Δt) values (Table 1), that the contributions of leaves within the sheath,

and of leaf maturation processes to growth, were not significant enough to reduce the

effectiveness of the leaf marking technique.

And although a larger bias is associated with allometric projections than with leaf-

marking techniques, the allometric approach is recommended over the plastochrone

method because it is simpler and more precise (Table 1). Moreover our results support

the conjecture that, taking into account the contribution to growth of all the leaves on

an eelgrass shoot, as is done in both the leaf-marking technique and the allometric

method provides a better proxy than the weight of a single leaf, as traditionally done in

plastochrone method assessments. To this, we add that the lack of representativeness

of this single-leaf-weight surrogate could explain the deviations shown in Figure 1.

Most methods used to assess leaf productivity in eelgrass have been vindicated at an

empirical level. In particular, the plastochrone method has been favored over leaf-

marking techniques because it is supposed to eliminate the alleged downhill bias linked

to these assessments. This study confirms that a formal interpretation of assessment

procedures is a crucial step in appraising their reliability, and we have shown how allo-

metric methods can pave the way to achieve this important step. Formally, the

plastochrone method will unavoidably produce biased estimations of the actual eelgrass

leaf growth rate values. Empirical corroboration validated this inference, endorsing the
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view that allometric scaling relationships are not circumscribed only to empirical de-

scriptions of the linkage between variables. Rather, they can be used to produce theor-

etical tools aimed towards the clarification of relevant issues in eelgrass research.
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