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Abstract

Background: The interest in cell membrane has grown drastically for their important
role as controllers of biological functions in health and illness. In fact most important
physiological processes are intimately related to the transport ability of the membrane,
such as cell adhesion, cell signaling and immune defense. Furthermore, ion migration is
connected with life-threatening pathologies such as metastases and atherosclerosis.
Consequently, a large amount of research is consecrated to this topic. To better
understand cell membranes, more accurate models of ionic flux are required and also
their computational simulations.

Results: This paper is presenting the numerical simulation of a more general system
modelling ion migration through biological membranes. The model includes both the
effects of biochemical reaction between ions and fixed charges. The model is a
nonlinear coupled system. In the first we describe the mathematical model. To realize
the numerical simulation of our model, we proceed by a finite element discretisation
and then by choosing an appropriate resolution algorithm to the nonlinearities.

Conclusions: We give numerical simulations obtained for different popular models of
enzymatic reaction which were compared to those obtained in literature on systems of
ordinary differential equations. The results obtained show a complete agreement
between the two modellings. Furthermore, various numerical experiments are
presented to confirm the accuracy, efficiency and stability of the proposed method. In
particular, we show that the scheme is unconditionally stable and second-order
accurate in space.

Keywords: Reaction-diffusion system, Electromigration, Nonlinear coupled system,
Finite element method, Nernst-Planck equations, Numerical analysis, Enzyme kinetics,
Substrate suicide, Cooperative phenomena, Computational simulation

Background
Cell membrane is the biological membrane separating the intracellular environment from
the extracellular one. The cell membrane surrounds all cells and it’s selectively permeable,
permitting the free passage of some substances and restricting the passage of others, thus
controlling the flux of substances in and out of the cell. All diseases are problems of reg-
ulating the passage of materials at the level of the cell. Consequently, to understand the
cause of a disease, we need to understand the alterations that take place at the cellular
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level. Thanks to mathematical modeling, cell biology phenomena may be expressed by
ordinary differential equations or systems of partial differential equations.
An important class of models in cell biology, is the class modeling ion transport through

biological membranes. This transport phenomena occurs in most living cells and some
biochemical processes. The first models in the literature included one ordinary differ-
ential equation for each ion concentration. All this models were based on the implicit
assumptions that chemical concentrations are uniform in space. This assumption is rea-
sonable when the region of space where the reaction occurs is confined and very small.
Also this models assumed that the electric field is constant inside the membrane.
Despite that the constant electrical field assumption has the advantage of leading to

a simple mathematical analysis, all cells maintain a difference in electrical charge across
their membrane. This difference in charge give rise to a voltage difference, or electrical
potential. Furthermore, there are numerous situations in which chemical concentrations
are nonuniform in space. In this sense, we need to establish and compute more accurate
mathematical models of ions electromigration through biological membranes.
In this paper, we present the numerical simulation of a more realistic model of ions

electromigration through biological membranes. This model is more general than those
in literature of membrane transport as it extends them in four topics: 1) it’s a multidimen-
sional model, 2) it doesn’t rely on the constant electrical field assumption, 3) it consider
both the temporal and spatial dependence, 4) it includes different reaction kinetics terms.

Introduction
In this paper we consider a class of models of ions migration through biological mem-
branes. Such migrations exist for most living cells and some biochemical processes. The
motion of ions is supposed due to diffusion and to the effect of the electrical field.
Furthermore ions can undergo reactions. So the ions concentrations satisfy the Nernst-
Planck equations, including a kinetic reaction terms and the potential is given by Poisson
equation. The model is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ci
∂t

− di�Ci − midiv(Ci∇φ) = Fi(C1, . . . ,CNs) in QT , for i = 1, . . . ,Ns

− ε�φ =
Ns∑
i=1

ziCi − f in QT

di
∂Ci
∂υ

+ miCi
∂φ

∂υ
= 0 in

∑
T
, for i = 1, . . . ,Ns

φ(t, x) = 0 in
∑

T

Ci(0, x) = Ci,0(x) on �

φ(0, x) = φ0(x) on �

(1)

where QT = ]0,T[ × �,
∑

T = ]0,T[ × ∂�, T > 0; � is an open regular set of R2 which
represent the biological cell and ∂� represent the cell membrane.
For each i, Ci is the concentration of the i species which has diffusion coefficient di,

mobilitymi and valency zi. φ is the electrical potential, f is the fixed charges concentration
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and the Fi are reaction terms. We suppose that Fi depends continuously on the Cj ’s and
φ, and that f is a bounded function. We suppose that di is a positive constant for each i.

for all i = 1, . . . ,Ns Ci,0 ∈ L2(�) and satisfy Ci,0 ≥ 0 (2)

Further information about the modelling of the problem and its mathematical analysis,
can be found in [1].
In the biophysical literature, the early works on these models were interested in the

stationary case of passive migration (i.e., without reaction); see [2,3]. In all these works
two popular simplifications were considered, namely the Goldman hypothesis where
the electrical field is supposed to be constant inside the membrane and the electroneu-
tral hypothesis where the neutrality at each point of the membrane is assumed; see
for example [3]. Mcgillivray [4] recognized that these models are the limit of the full
equations when the ratio

√
ε = λ

l of the Debye length to the membrane thickness goes to,
respectively, infinity or zero. Usually enzymes are held to biological membranes and ions
undergo biochemical reactions when crossing the membrane. Valleton [5] did a general
biophysical study of coupling of electromigration diffusion with biochemical reactions.
In this paper we present a numerical simulation of such systems, for a large class of

reaction kinetics, including the usual biochemical kinetics as the Michaelis-Menton one
(a mathematical analysis of the one dimensional and stationary case was done by [6]
then we did the mathematical analysis of the multidimensional unsteady case [1]). This
article is organized in the following way. The next section is devoted to finite element
discretisation of the mathematical model. Then, we present applications, results and
numerical experiments showing the accuracy, efficiency and stability of the proposed
method. Finally, conclusions are drawn in the last section.

Finite element discretisation
In order to show the numerical formulation of the problem, let V = L2(0,T ;H1(�)) be
the space of approximate solutions and W = H1(�) be the space of tests functions. Let
Wh be a finite element space of Lagrange P1 included in W and Vh = L2(0,T ;Wh) be
the finite dimensional subspace of V. Now we introduce the function Zh = (Zi,h)1≤i≤Ns

defined by

Zi,h = Ci,h exp
(
mi
di

(φh)

)
for i = 1, . . . ,Ns

Moreover, we consider

pi,h = exp
(
mi
di

φh

)
and qi,h = 1

pi,h
The Faedo-Galerkin formulation for the problem is given by, finding Zi,h ∈ Vh for i =
1, . . . ,Ns and φh ∈ Vh such that φh = 0 in ∂� :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

• for every wh ∈ Wh a.e. t ∈] 0,T[ and for 1 ≤ i ≤ NS,
d
dt

∫
�
qi,hZi,hwh + ∫

�
diqi,h∇Zi,h∇wh = ∫

�
F̃i(Zh)wh

Zi,h(0) = qi,h(0)Ch
i,0,

• for all vh ∈ Wh such that vh = 0 in ∂� and a.e. t ∈] 0,T[
ε
∫
�

∇φh∇vh = ∫
�
(
Ns∑
j=1

zjqj,hZj,h − f )vh

φh(0) = φh
0 on �

(3)
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where F̃i(X1, . . . ,XNs) = Fi(q1,hX1, . . . , qNs,hXNs) and Ch
i,0, φh

0 are the projections of
Ci,0, φ0 onWh.
Let (yj)1≤j≤m the mesh nodes, (	j)1≤j≤m the canonical basis of Wh, we consider the
following two sets of index

Y0 = {
j ∈ [1 : m] , yj ∈ ∂�

}
Y = [1 : m] − Y0

We represent the solutions as Zis,h(t, x) =
m∑
j=1

αZis ,j(t)	j(x) for is = 1, . . . ,Ns and

φh(t, x) =
m∑
j=1

αj(t)	j(x) with αj(t) = 0 for j ∈ Y0. Then we set ξZis = ξZis (t) =
(αZis ,j(t))1≤j≤m for is = 1, . . . ,Ns and ζφ = ζφ (t) = (

αj(t)
)
1≤j≤m.

Now let’s consider an uniform subdivision of [0,T], we define a time step dt = T
N , for

N ≥ 1. We pose then:

tn = ndt, 0 ≤ n ≤ N

Let’s note ξZn
is
the approximation of ξZis (tn) and ζφn the approximation of ζφ(tn), then we

used an implicit scheme for the discretization of the time derivative. By the method of
finite elements see [7], we arrive at the following formulation of the problem: Find the
vectors nodal concentrations ξZn+1

is
=

(
αZn+1

is ,j

)
1≤j≤m

for every 1 ≤ is ≤ Ns and nodal

potential ζφn+1 =
(
αn+1
j

)
1≤j≤m

with αn+1
j = 0 for j ∈ Y0 such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
dt

(
Ais,ζφn+1 ξZn+1

is
−Ais,ζφn ξZn

is

)
+Ris,ζφn+1 ξZn+1

is
=Sis,ζφn+1(ξZn+1

1
,. . ., ξZn+1

Ns
) for is=1,. . .,Ns

εQY×Y
(
ζφn+1

)
Y =

Ns∑
is=1

(
zisMis ,ζφn

)
Y×Y

(
ξZn

is

)
Y

− βY

ξZ0
is

= ξZis (0), ζφ0 = ζφ(0)

Let Th the mesh generation of � containing nel finite elements. For a finite element
ek ∈ Th, let be Tek = {k1, k2, k3} where k1, k2, k3 are the numbers of degrees of free-
dom of ek and Nek

kl are interpolation functions. We have 	i/ek = Nek
ks , 	j/ek = Nek

kl where
s, l ∈ {1, 2, 3} if and only if

(
i, j

) ∈ Tek × Tek .
Where Ais,ζφn =

(
ais,nij

)
1≤i,j≤m

, Ris,ζφn =
(
ris ,nij

)
1≤i,j≤m

, Sis,ζφn+1

(
ξZn+1

1
, . . . , ξZn+1

Ns

)
=(

sis,n+1
i

)
1≤i≤m

for is = 1, . . . ,Ns, Q = (qij)1≤i,j≤m, Mis,ζφn =
(
mis,n

ij

)
1≤i,j≤m

, β =
(βi)1≤i≤m (XY×Y means the extracted matrix from X by keeping lines and columns with
numbers belonging to Y )

ais,nij =
nel∑
k=1

∫
ek
exp

(
−mis
dis

m∑
l=1

αn
l 	l |ek

)
	j |ek

	i |ek =
nel∑
k=1

ais,n,ekij

where

ais,n,ekij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
ek
exp

⎛⎝−mis
dis

3∑
p=1

αn
kpN

ek
kp

⎞⎠Nek
kl N

ek
ks if

(
i, j

) ∈ Tek × Tek

0 if i or j /∈ Tek

ris ,nij =
nel∑
k=1

dis
∫
ek
exp(

−mis
dis

m∑
l=1

αn
l 	l |ek ))∇	j |ek

∇	i |ek =
nel∑
k=1

ris,n,ekij
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where

ris,n,ekij =

⎧⎪⎨⎪⎩ dis
∫
ek exp

(
−mis
dis

3∑
p=1

αn
kpN

ek
kp

)
∇Nek

kl ∇Nek
ks if

(
i, j

) ∈ Tek × Tek

0 if i or j /∈ Tek

sis,n+1
i =

nel∑
k=1

∫
ek
Fis

⎛⎝exp
(

−m1
d1

m∑
l=1

αn+1
l 	l |ek

) m∑
j=1

αZn+1
1 ,j	j |ek

, . . . ,

exp
(

−mNs

dNs

m∑
l=1

αn+1
l 	l |ek

) m∑
j=1

αZn+1
Ns ,j	j |ek

⎞⎠	i |ek =
nel∑
k=1

sis,n+1,ek
i

where

sis ,n+1,ek
i =

⎧⎪⎨⎪⎩
∫
ek Fis

(
exp

(
−m1
d1

3∑
p=1

αn+1
kp Nek

kp

)
3∑

l=1
αZn+1

1 ,klN
ek
kl , . . . , exp

(
−mNs
dNs

3∑
p=1

αn+1
kp Nek

kp

)
3∑

l=1
αZn+1

Ns ,klN
ek
kl

)
Nek
ks if i ∈ Tek

0 if i /∈ Tek

qij =
nel∑
k=1

∫
ek

∇	j |ek
∇	i |ek =

nel∑
k=1

qekij

where

qekij =
{ ∫

ek ∇Nek
kl ∇Nek

ks if
(
i, j

) ∈ Tek × Tek

0 if i or j /∈ Tek

mis,n
ij =

nel∑
k=1

∫
ek
exp

(
−mis
dis

m∑
l=1

αn
l 	l |ek

)
	j |ek

	i|ek =
nel∑
k=1

mis,n,ek
ij

where

mis,n,ek
ij =

⎧⎪⎨⎪⎩
∫
ek exp

(
−mis
dis

3∑
p=1

αn
kpN

ek
kp

)
Nek
kl N

ek
ks if

(
i, j

) ∈ Tek × Tek

0 if i or j /∈ Tek

βi =
nel∑
k=1

∫
ek
f Nek

ks =
nel∑
k=1

β
ek
i

where

β
ek
i =

⎧⎪⎨⎪⎩
∫
ek
f Nek

ks if i ∈ Tek

0 if i /∈ Tek

Finally, finding ξZn+1
is

=
(
αZn+1

is ,j

)
1≤j≤m

for every 1 ≤ is ≤ Ns and ζφn+1 =
(αn+1

j )1≤j≤m with αn+1
j = 0 for j ∈ Y0 such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
Ais ,ζφn+1 + dtRis ,ζφn+1

)
ξZn+1

is
= Ais ,ζφn ξZn

is
+ dtSis ,ζφn+1

(
ξZn+1

1
, . . . , ξZn+1

Ns

)
for is = 1, . . . ,Ns

εQY×Y
(
ζφn+1

)
Y =

Ns∑
is=1

(
zisMis ,ζφn

)
Y×Y

(
ξZn

is

)
Y

− βY

ξZ0
is

= ξZis (0), ζφ0 = ζφ(0)

We have a nonlinear term due to Sis,ζφn+1 (ξZn+1
1

, . . . , ξZn+1
Ns

) , we have dealt with according
to the model and thus to the expression of Sis,ζφn+1 .
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Results and discussion
In this section we present three numerical applications of ions electro-migration through
biological membranes. The models of the basic enzyme reaction, the suicide substrate
reaction and the cooperative reaction, are numerically simulated.

Result 1 : Enzyme kinetics (basic enzyme reaction)

To understand where some of the more complicated reaction schemes come from, we
consider a reaction that is catalyzed by an enzyme. Enzymes act as remarkably efficient
catalysts (generally proteins), by accelerating the conversion of some other molecules
called substrates into products via lowering the free energy of activation of the reaction,
but they themselves remain unchanged by the reaction. Thus, they are important in the
regulation of biological processes, for example as activators or inhibitors. One of the most
basic enzymatic reactions, first suggested by Michaelis and Menten [8], implies a sub-
strate S reacting with an enzyme E to form a complex SE which in turn is converted into
a product P and the enzyme. This is represented schematically by

S + E
k1�
k−1

SE k2→ P + E (4)

here k1, k−1 and k2 are constant parameters associated with the rates of reaction. We
denote the concentrations of the reactants by

C1 = [E] , C2 = [S] , C3 = [P] , C4 = [ES] .

Then the law of Mass Action applied to (4) leads to one equation for each reactant
and hence a system of nonlinear equations. The usual approach to these equations is to
assume that the initial stage of the complex C4, formation is very fast after which it is
essentially at equilibrium, then we get C4 in terms of C2,

C4 = C1,0C2
C2 + KM

, kM = k−1 + k2
k1

The basic enzyme reaction model becomes then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C1
∂t

− d1�C1 − m1div(C1∇φ) = 0 in QT
∂C2
∂t

− d2�C2 − m2div(C2∇φ) = −k2C1,0C2
C2+KM

in QT
∂C3
∂t

− d3�C3 − m3div(C3∇φ) = k2C1,0C2
C2+KM

in QT

−ε�φ =
3∑

i=1
ziCi − f in QT

di
∂Ci
∂υ

+ miCi
∂φ

∂υ
= 0 in

∑
T , for i = 1, 2, 3.

φ(t, x) = 0 in
∑

T
C1(0, x) = C1,0, C2(0, x) = C2,0, C3(0, x) = 0 on �

φ(0, x) = φ0(x) on �

(5)

Algorithm of resolution

Before stating the resolution algorithm, we introduce the function Zh = (
Zi,h

)
1≤i≤3

defined by

Zi,h = Ci,h exp
(
mi
di

(φh)

)
for i = 1, 2, 3
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Moreover, we consider

pi,h = exp
(
mi
di

φh

)
and qi,h = 1

pi,h
We used the following algorithm to calculate φh and Zi,h then we calculate Ci,h by using
the reverse relation:

Ci,h = exp
(−mi

di
φh

)
Zi,h

• Initialize: for i = 1, 2, 3,

Z0
i,h = Ci,0(0, x)pi,h(0, x),

q0i,h = exp
(−mi

di
φh(0, x)

)
• Loop over n

At step n :

• Calculate φn+1
h solution of

ε

∫
�

∇φn+1
h ∇vh =

∫
�

(
z1qn1,hZ

n
1,h + z2qn2,hZ

n
2,h + z3qn3,hZ

n
3,h − f

)
vh

• Calculate qn+1
1,h , qn+1

2,h , qn+1
3,h by:

qn+1
i,h = exp

(−mi
di

φn+1
h

)
• Calculate Zn+1

1,h solution of

∫
�

qn+1
1,h Zn+1

1,h − qn1,hZ
n
1,h

dt
wh + d1

∫
�

qn+1
1,h ∇Zn+1

1,h ∇wh = 0

• Calculate Zn+1
2,h solution of:

Loop over k untill
∥∥∥Zn+1,k+1

2,h − Zn+1,k
2,h

∥∥∥
L2(�)

< eps

∫
�

qn+1
2,h Zn+1,k+1

2,h − qn2,hZ
n
2,h

dt
wh+d2

∫
�

qn+1
2,h ∇Zn+1,k+1

2,h ∇wh = −
∫

�

k2C1,0qn+1
2,h Zn+1,k+1

2,h

kM + qn+1
2,h Zn+1,k

2,h
wh

where eps is the stopping criterion.

• Calculate Zn+1
3,h solution of

∫
�

qn+1
3,h Zn+1

3,h − qn3,hZ
n
3,h

dt
wh + d3

∫
�

qn+1
3,h ∇Zn+1

3,h ∇wh =
∫

�

k2C1,0qn+1
2,h Zn+1

2,h

kM + qn+1
2,h Zn+1

2,h
wh

Numerical results

Here we present changes in substrate, product and enzyme concentrations. The cell is
represented by an ellipse with semi-major axis a=2 and semi-minor axis b=1. The dif-
fusion coefficient of the ions are d1 = 10−3m2.s−1, d2 = 2.10−3m2.s−1 and d3 =
5.10−3m2.s−1. The constants of reaction are kM = 9.10−5 M, k2 = 1, 4.104 s−1
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and k1 = kcat = k2
kM = 1, 55.108 M−1.s−1. The charge number of the ions are z1 = 1, z2 =

0 and z3 = 1. The electric charge density is f = 0.1C. The initial conditions are C1,0 =
1μM, C2,0 = 800 μM, C3,0 = 0 and φ0 = −80mV ; the stopping criterion is eps = 10−4.
The time step of the simulation is dt = 10−3s.
Shown in Figure 1 is the spatial distribution of substrate concentration through the cell

at both initial and final time (t=0 and T=200 ms).
Figure 2 presents the spatial distribution of the product concentration through the cell

at both initial and final time (t=0 and T=200 ms).
In Figure 3, one sees the time evolution of the substrate and the product concentrations

at the center of the cell. It can be seen that the substrate decrease curve is the mirror
image of the product appearance curve. By observing the early times, it’s obvious that
the substrate loss and product appearance change speedily with time but as time goes on
these rates diminish, to reach zero when all the substrate has been converted to product
by the enzyme.
The Figure 4 shows, as predicted, the enzyme concentration remaining constant over

time.
Two simplifications of these equations have been quite popular in the literature while

computing membrane reactions, firstly the Goldman hypothesis where the electrical field
is supposed to be constant inside the membrane and secondly considering a system of
ordinary equations depending only on time and not the space. The added value of this
work is not considering all of those simplifications which leads to a more realistic model
and more accurate numerical results. Moreover, the results obtained are in agreement
with the experimental results found in the literature [9].

Result 2 : Suicide substrate kinetics

An enzyme system of major experimental concern; see [10,11], is the mechanism-based
inhibitor, or suicide substrate system, represented by Walsh et al. [12],

E + S
k1�
k−1

X k2→Y k3→ E + P

Y k4→ Ei

(6)

where E, S and P stand for enzyme, substrate, and product, respectively;X and Y, enzyme-
substrate intermediates; Ei, inactivated enzyme; and the k ’s are positive rate constants.
In this system, Y has a choice of one of two pathways, namely, to E + P with rate k3

or to Ei with rate k4. The ratio of these rates, k3/k4, is called the partition ratio and is

Figure 1 The spatial distribution of the substrate concentration through the cell at initial time t=0
and final time T=0.2 s.



Alaa and Lefraich Theoretical Biology andMedical Modelling 2013, 10:51 Page 9 of 21
http://www.tbiomed.com/content/10/1/51

Figure 2 The spatial distribution of the product concentration through the cell at initial time t=0 and
final time T=0.2 s.

denoted by r. Each of these pathways are supposed to be irreversible over the timescale
of the reaction see [13]. S is known as a suicide substrate because it binds to the active
site of an enzyme—like a substrate—but the enzyme converts it into an inhibitor which
irreversibly inactivates the enzyme. Thereby, the enzyme ‘commits suicide’. In this way,
a suicide substrate can specifically target an enzyme for inactivation. Furthermore, sui-
cide substrates are particularly useful in drug administration, as they are not noxious in
their common form and only the designated enzyme can convert them to their inhibitor
form. For example, suicide substrates have been subject of investigation for use in the
treatment of depression (monoamine oxidase inhibitors, Seiler at al. [10]), epilepsy (brain
GABA transaminase inhibitors, Walsh [11]), and some tumors (ornithine decarboxylase
inhibitors, Seiler et al. [10]). Suicide substrate kinetics have been studied by Waley [13]
and by Tatsunami et al. [14], who had interest in the factor which determined whether
the substrate was exhausted before all the enzyme was inactivated. Waley proposed it was
rμ, where μ is the ratio of the initial concentration of enzyme to that of substrate, namely,
e0/s0. Tatsunami et al., on the other hand, found the determining factor to be (1 + r)μ.
When (1 + r)μ > 1 the substrate is exhausted, while for (1 + r)μ < 1, all the enzyme is
inactivated. When (1+r)μ = 1, both occur. The interest is when e0/s0 is not small, which
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Figure 4 Temporal evolution of the enzyme concentration at the center of the cell.

was in effect assumed since bothWaley [13] and Tatsunami et al. [14] used a quasi-steady
state approximation. The validity decreases for increasing values of e0/s0. We denote the
concentrations of the reactants by

C1 = [E] , C2 = [S] , C3 = [X] , C4 = [Y ] , C5 =[Ei] , C6 =[P]

The law of mass action applied to (6) leads to one equation for each reactant and hence a
system of nonlinear equations. We obtain the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C1
∂t

− d1�C1 − m1div(C1∇φ) = −k1C1C2 + k−1C3 + k3C4 in QT
∂C2
∂t

− d2�C2 − m2div(C2∇φ) = −k1C1C2 + k−1C3 in QT
∂C3
∂t

− d3�C3 − m3div(C3∇φ) = k1C1C2 − (k−1 + k2)C3 in QT
∂C4
∂t

− d4�C4 − m4div(C4∇φ) = k2C3 − (k3 + k4)C4 in QT
∂C5
∂t

− d5�C5 − m5div(C5∇φ) = k4C4 in QT
∂C6
∂t

− d6�C6 − m6div(C6∇φ) = k3C4 in QT

−ε�φ =
6∑

i=1
ziCi − f in QT

di
∂Ci
∂υ

+ miCi
∂φ

∂υ
= 0 in

∑
T , for i = 1, 2, 3, . . . , 6.

φ(t, x) = 0 in
∑

T
C1(0, x) = e0, C2(0, x) = s0, Ci(0, x) = 0 on �, for i = 3, . . . , 6.
φ(0, x) = φ0(x) on �

(7)

Algorithm of resolution

Before stating the resolution algorithm, we introduce the function Zh = (
Zi,h

)
1≤i≤6

defined by

Zi,h = Ci,h exp(
mi
di

(φh)) for i = 1, . . . , 6
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Moreover, we consider

pi,h = exp(
mi
di

φh) and qi,h = 1
pi,h

We used the following algorithm to calculate φh and Zi,h then we calculate Ci,h by using
the reverse relation:

Ci,h = exp(
−mi
di

φh)Zi,h

• Initialize for i = 1, . . . , 6

Z0
i,h = Ci,0(0, x)pi,h(0, x),

q0i,h = exp
(−mi

di
φh(0, x)

)
• Loop over n
At step n :
• Calculate φn+1

h solution of

ε

∫
�

∇φn+1
h ∇vh =

∫
�

( 6∑
i=1

ziqni,hZ
n
i,h − f

)
vh

• Calculate qn+1
1,h , qn+1

2,h , qn+1
3,h , qn+1

4,h , qn+1
5,h , qn+1

6,h by:

qn+1
i,h = exp

(−mi
di

φn+1
h

)
• Calculate Zn+1

1,h ,Zn+1
2,h ,Zn+1

3,h ,Zn+1
4,h ,Zn+1

5,h ,Zn+1
6,h solutions of:

– initialize Zn+1,0
i,h = Zn

i,h for i = 1, . . . , 6,

– Loop over k untill
6∑

i=1

∥∥∥Zn+1,k+1
i,h − Zn+1,k

i,h

∥∥∥
L2(�)

< eps

∫
�

qn+1
1,h Zn+1,k+1

1,h − qn1,hZ
n
1,h

dt
wh + d1

∫
�

qn+1
1,h ∇Zn+1,k+1

1,h ∇wh

=
∫

�

(
−k1qn+1

2,h Zn+1,k
2,h qn+1

1,h Zn+1,k+1
1,h + k−1qn+1

3,h Zn+1,k
3,h + k3qn+1

4,h Zn+1,k
4,h

)
wh∫

�

qn+1
2,h Zn+1,k+1

2,h − qn2,hZ
n
2,h

dt
wh + d2

∫
�

qn+1
2,h ∇Zn+1,k+1

2,h ∇wh

=
∫

�

(
−k1qn+1

2,h Zn+1,k+1
2,h qn+1

1,h Zn+1,k+1
1,h + k−1qn+1

3,h Zn+1,k
3,h

)
wh

∫
�

qn+1
3,h Zn+1,k+1

3,h − qn3,hZ
n
3,h

dt
wh + d3

∫
�

qn+1
3,h ∇Zn+1,k+1

3,h ∇wh

=
∫

�

(
k1qn+1

2,h Zn+1,k+1
2,h qn+1

1,h Zn+1,k+1
1,h − (k−1 + k2) qn+1

3,h Zn+1,k+1
3,h

)
wh

∫
�

qn+1
4,h Zn+1,k+1

4,h − qn4,hZ
n
4,h

dt
wh + d4

∫
�

qn+1
4,h ∇Zn+1,k+1

4,h ∇wh

=
∫

�

(
k2qn+1

3,h Zn+1,k+1
3,h − (k3 + k4) qn+1

4,h Zn+1,k+1
4,h

)
wh
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∫
�

qn+1
5,h Zn+1,k+1

5,h − qn5,hZ
n
5,h

dt
wh+d5

∫
�

qn+1
5,h ∇Zn+1,k+1

5,h ∇wh =
∫

�

k4qn+1
4,h Zn+1,k+1

4,h wh∫
�

qn+1
6,h Zn+1,k+1

6,h − qn6,hZ
n
6,h

dt
wh +d6

∫
�

qn+1
6,h ∇Zn+1,k+1

6,h ∇wh =
∫

�

k3qn+1
4,h Zn+1,k+1

4,h wh

Numerical results

Here we present changes in substrate, product, enzyme, inactivated enzyme and
the intermediate concentrations (X andY ). The cell is represented by an ellipse
with semi-major axis a=2 and semi-minor axis b=1. The diffusion coefficients
of the ions are d1 = 10−3m2.s−1, d2 = 2.10−3m2.s−1, d3 = 5.10−3m2.s−1, d4 =
10−3m2. s−1, d5 = 2.10−3m2.s−1, d6 = 4.10−6m2.s−1, the reaction parameters are k1 =
2 s−1, k−1 = 4 s−1, k2 = 12 s−1, k3 = 10 s−1 and k4 = 2 s−1. The charge number of the
ions are z1 = 1, z2 = 0, z3 = 1, z4 = 1, z5 = 1 and z6 = 0. The electric charge density is
f = 0.1C. The initial concentrations are e0 = 0.5μM and s0 = 0.5μM; and φ0 = −80mV .
The time step of the simulation is dt = 10−2s. The data employed for the reaction
parameters and initial concentrations were taken from Burke et al. [15].
Figure 5 plots the changes in the concentration distribution of substrate from initial

time to final time. One can see that in final time the substrate was totally exhausted. This
complete consumption of the substrate is in agreement with the prediction of Tatsunami
et al. [14] as (1 + r)μ = 6 > 1.
In Figure 6, one sees the evolution of substrate concentration over time at the center of

the specimen.
Figure 7 shows the evolution of inactivated enzyme concentration over time at the

center of the specimen.
Figure 8 shows the numerical solutions for intermediate concentrations of X and Y.
In Figure 9, is represented the graphic of the evolution of substrate and product at the

center of the cell, comparing that result with Figure 3 (Michaelis andMentenmodel), here
the two plots are asymmetric which is logical as we know that an amount of the substrate

Figure 5 Substrate concentration from initial time to final time.
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Figure 6 Evolution of substrate concentration over time at the center of the cell.

instead of being converted to product, is forming the inactivated enzyme (inactivating the
enzyme).
To illustrate, Figure 10 shows the decrease in the enzyme concentration unlike the

Michaelis Menten model (Figure 4); however, as the intermediate enzymes X and Y, van-
ish in few milliseconds, we see the loss in enzyme compensated by the production of the
inactivated enzyme: the enzyme commits suicide.
To highlight the accuracy of these results, we compared them first with the numer-

ical solutions and the approximate asymptotic solutions obtained both by Burke et al.
[15], they considered a system of ordinary differential equations depending on time as
they neglected the spatial aspect of the biochemical reaction, and they supposed that
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Figure 7 Evolution of inactivated enzyme concentration over time at the center of the cell.
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Figure 8 Evolution of the intermediate concentrations X and Y over time at the center of the cell.

the electrical potential inside the membrane remains constant. For the numerical solu-
tions Burke et al. [15] solved the system numerically, but for the approximate asymptotic
solutions they non-dimensionalise the same system, and used asymptotic methods and a
method detailed in Kevorkian and Cole [16]. Finally we compared our results with pre-
vious approximate methods of Tatsunami et al. [14] and Waley [17] which were based
on a pseudo-steady state hypothesis. This comparison shows that the results described
here are valid numerical solutions for the kinetics of suicide substrate system. The
solution for the substrate and inactivated enzyme are more accurate than those of pre-
vious approximations [14,17], especially in small time, which is by definition ignored
by any pseudo-steady-state approximate method. Furthermore, the method presented
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Figure 9 Evolution of substrate and product concentrations over time.
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Figure 10 Evolution of enzyme and inactivated enzyme over time at the center of the cell.

here is specially useful in estimating the intermediate (X and Y ) concentrations besides
incorporating the spatial and the electro-migration aspects of the phenomena.

Result 3 : Cooperative phenomena

An enzyme reaction is said to be cooperative if a single enzyme molecule, after binding a
substrate molecule at one site can then bind another substrate molecule at another site.
Such phenomena are quite common in living organisms. Another interesting cooperative
reaction is when an enzyme with several binding sites is such that the binding of one
substrate molecule at one site can affect the activity of binding other substrate molecules
at another site. This indirect interaction between distinct and specific binding sites is
called allostery, and an enzyme displaying it, an allosteric enzyme. When a substrate that
binds at one site increases the binding activity at another site then the substrate is called
an activator, otherwise (if it decreases the activity) it’s called an inhibitor.
As an example of cooperative phenomenon we consider the case when an enzyme has

two binding sites. A model for this consists of an enzyme molecule E which binds a sub-
strate molecule S to form a single bound substrate-enzyme complex X. This complex X
not only breaks down to form a product P and the enzyme E again, it can also combine
with another substrate molecule to form a dual bound substrate-enzyme complex Y. This
Y complex breaks down to form the product P and the single bound complex X. The
reaction mechanism is represented schematically by

S + E
k1�
k−1

X k2→ E + P

S + X
k3�
k−3

Y k4→ X + P
(8)

Here k′s are rate constants. We denote the concentrations of the reactants by

C1 = [E] , C2 = [S] , C3 = [X] , C4 = [Y ] , C5 = [P] .
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Then the law of Mass Action applied to (8) leads to one equation for each reactant and
hence the system of nonlinear reaction. We have then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C1
∂t

− d1�C1 − m1div(C1∇φ) = −k1C2C1 + (k−1 + k2)C3 inQT
∂C2
∂t

− d2�C2 − m2div(C2∇φ) = −k1C2C1 + (k−1 − k3C2)C3 + k−3C4 in QT
∂C3
∂t

− d3�C3 − m3div( C3∇φ) = k1C2C1 − (k−1 + k2 + k3C2)C3 + (k−3 + k4)C4 in QT
∂C4
∂t

− d4�C4 − m4div(C4∇φ) = k3C2C3 − (k−3 + k4)C4 in QT
∂C5
∂t

− d5�C5 − m5div(C5∇φ) = k2C3 + k4C4 in QT

−ε�φ =
5∑

i=1
ziCi − f in QT

di
∂Ci
∂υ

+ miCi
∂φ

∂υ
= 0 in

∑
T , for i = 1, . . . , 5

φ(t, x) = 0 in
∑

T
C1(0, x) = e0, C2(0, x) = s0, Ci(0, x) = 0 on �, for i = 3, 4, 5.
φ(0, x) = φ0(x) on �

(9)

Algorithm of resolution:

Before stating the resolution algorithm, we introduce the function Zh = (
Zi,h

)
1≤i≤5

defined by

Zi,h = Ci,h exp
(
mi
di

(φh)

)
for i = 1, . . . , 5

Moreover, we consider

pi,h = exp
(
mi
di

φh

)
and qi,h = 1

pi,h
We used the following algorithm to calculate φh and Zi,h then we calculate Ci,h by using

the reverse relation:

Ci,h = exp
(−mi

di
φh

)
Zi,h

• Initialize for i = 1, . . . , 5

Z0
i,h = Ci,0(0, x)pi,h(0, x),

q0i,h = exp
(−mi

di
φh(0, x)

)
• Loop over n

At step n :
• Calculate φn+1

h solution of

ε

∫
�

∇φn+1
h ∇vh =

∫
�

( 5∑
i=1

ziqni,hZ
n
i,h − f

)
vh

• Calculate qn+1
1,h , qn+1

2,h , qn+1
3,h , qn+1

4,h , qn+1
5,h by:

qn+1
i,h = exp

(−mi
di

φn+1
h

)
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• Calculate Zn+1
1,h ,Zn+1

2,h ,Zn+1
3,h ,Zn+1

4,h ,Zn+1
5,h solutions of:

– initialize Zn+1,0
i,h = Zn

i,h for i = 1, . . . , 5,

– Loop over k untill
5∑

i=1

∥∥∥Zn+1,k+1
i,h − Zn+1,k

i,h

∥∥∥
L2(�)

< eps

∫
�

qn+1
1,h Zn+1,k+1

1,h − qn1,hZ
n
1,h

dt
wh + d1

∫
�

qn+1
1,h ∇Zn+1,k+1

1,h ∇wh

=
∫

�

(
−k1qn+1

2,h Zn+1,k
2,h qn+1

1,h Zn+1,k+1
1,h + (k−1 + k2)qn+1

3,h Zn+1,k
3,h

)
wh

∫
�

qn+1
2,h Zn+1,k+1

2,h − qn2,hZ
n
2,h

dt
wh + d2

∫
�

qn+1
2,h ∇Zn+1,k+1

2,h ∇wh

=
∫

�

(
−k1qn+1

2,h Zn+1,k+1
2,h qn+1

1,h Zn+1,k+1
1,h + (k−1 − k3qn+1

2,h Zn+1,k+1
2,h )qn+1

3,h Zn+1,k
3,h

)
wh

+
∫

�

k−3qn+1
4,h Zn+1,k

4,h wh

∫
�

qn+1
3,h Zn+1,k+1

3,h − qn3,hZ
n
3,h

dt
wh + d3

∫
�

qn+1
3,h ∇Zn+1,k+1

3,h ∇wh

=
∫

�

(
k1qn+1

2,h Zn+1,k+1
2,h qn+1

1,h Zn+1,k+1
1,h − (k−1 + k2 + k3qn+1

2,h Zn+1,k+1
2,h )qn+1

3,h Zn+1,k+1
3,h

)
wh

+
∫

�

(
(k−3 + k4)qn+1

4,h Zn+1,k
4,h

)
wh

∫
�

qn+1
4,h Zn+1,k+1

4,h − qn4,hZ
n
4,h

dt
wh + d4

∫
�

qn+1
4,h ∇Zn+1,k+1

4,h ∇wh

=
∫

�

(
k3qn+1

2,h Zn+1,k+1
2,h qn+1

3,h Zn+1,k+1
3,h − (k−3 + k4)qn+1

4,h Zn+1,k+1
4,h

)
wh

∫
�

qn+1
5,h Zn+1,k+1

5,h − qn5,hZ
n
5,h

dt
wh + d5

∫
�

qn+1
5,h ∇Zn+1,k+1

5,h ∇wh

=
∫

�

(
k2qn+1

3,h Zn+1,k+1
3,h + k4qn+1

4,h Zn+1,k+1
4,h

)
wh

Numerical results

Here, we present the evolution of product and enzyme concentrations over time in both
positive and negative cooperativity. We used the same constant parameters as the previ-
ous example for the diffusion coefficients of the species and the same initial conditions.
The cell is represented by an ellipse with semi-major axis a=2 and semi-minor axis b=1.
To ensure cooperativity, the positive rate constants are chosen by the following reason-
ing: Suppose that the binding of the first substrate molecule is slow, but that with one
site bound, binding of the second is fast (this is large cooperativity). This can be mod-
eled by letting k3 → ∞ and k1 → 0 while keeping k1k3 constant, in which case K2 → 0
and K1 → ∞ while K2K1 is constant ( K1 andK2 were introduced as they appear in the
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Figure 11 Evolution of the product concentration in both positive and negative cooperativity.

expression of velocity reaction, this is discussed in details in the book by Keener and
Sneyd [18]), where

K1 = k−1 + k2
k1

K2 = k4 + k−3
k3

.

An enzyme can also exhibit negative cooperativity, in which the binding of the first
substrate molecule decreases the rate of subsequent binding. This can be modeled by
decreasing k3. We used for positive cooperativity K1 = 1000, K2 = 0.001 and K1 = 0.5,
K2 = 100 for negative cooperativity (this values were taken from [18]).
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Figure 12 Evolution of the enzyme concentration in both positive and negative cooperativity.
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Table 1 Convergence results for the basic enzyme reaction

Mesh size h1= 0.3 h2= 0.1 h3= 0.05

Error 268.10−7 72.10−7 45.10−7

Table 2 Convergence results for the suicide substrate reaction

Mesh size h1= 0.3 h2= 0.1 h3= 0.05

Error 93.10−3 22.10−3 56.10−5

Table 3 Convergence results for the cooperative reaction

Mesh size h1= 0.3 h2= 0.1 h3= 0.05

Error 49.10−4 28.10−4 93.10−5

In Figure 11, one sees that in positive cooperative reaction, the product concentration
is characterized by an “S-shaped” sigmoidal curve, which is different from other enzyme
reaction that exhibits a curve that tends to be hyperbolic. This results from cooperative
effects; in which the enzyme can bind more than one substrate molecule, but the binding
of one substrate molecule affects the binding of subsequent one.
In Figure 12, we plot the evolution of the enzyme concentration for both extreme

positive cooperativity and negative cooperativity.

The convergence test
The rate of convergence of the scheme is difficult to prove analytically. However, numer-
ical experimentation suggests that the scheme is second-order accurate in space. A
quantitative estimate of the convergence error was obtained by performing a number
of simulations for the same initial condition on a set of increasingly finer space meshes
and time steps. The initial conditions are constants. Let Th the mesh generation of �,
and h(Th) = max{diam(ek)|ek ∈ Th}, we take h = 0.3, h = 0.1 and h = 0.05. For
each mesh we integrate to time T with dt = hT

16 . Note that as we refine the space
step we also refine the time step. The error of the numerical solution was defined as

E (h) = dt ×
Ns∑
i=1

Nt∑
n=0

max
k

∥∥∥Zn,k+1
i,h − Zn,k

i,h

∥∥∥
L2(�)

The convergence of the basic enzyme reaction

In Table 1 is presented the error of convergence for different mesh sizes in the case of
basic enzyme reaction.

Figure 13 Snapshots of the product concentration in the basic reaction at T=0.5 with three different
time steps, shown in subfigures (a), (b) and (c). The time steps are given below each subfigure.
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Figure 14 Snapshots of the product concentration in the suicide substrate reaction at T=4 with three
different time steps, shown in subfigures (a), (b) and (c). The time steps are given below each subfigure.

The convergence of the suicide substrate reaction

In Table 2 is presented the error of convergence for different mesh sizes in the case of
suicide substrate reaction.

The convergence of the cooperative reaction

In Table 3 is presented the error of convergence for different mesh sizes in the case of
cooperative reaction.

Stability and accuracy tests
Now, let us give some information about the numerical stability of our algorithms. We
perform a numerical experiment with different time step dt, dt2 and dt

4 . These results sug-
gest that the scheme is indeed unconditionally stable as the solutions are quasi the same
for different time steps. To illustrate, we chose to represent the product concentration.

Stability of the basic enzyme reaction

In Figure 13, We display snapshots of the product concentration at time T=0.5 with three
different time steps dt=0.00025, dt=0.0005 and dt=0.001. We can see that the results are
quasi the same at the final time T.

Stability of the suicide substrate reaction

In Figure 14, we display snapshots of the product concentration at time T=4 with three
different time steps dt=0.0025, dt=0.005 and dt=0.01.We can see that the results are quasi
the same at the final time T.

Stability of the cooperative reaction

Figure 15 shows snapshots of the product concentration at time T=4 with three different
time steps dt=0.0025, dt=0.005 and dt=0.01.We can see that the results are quasi the same
at the final time T.

Figure 15 Snapshots of the product concentration in the cooperative reaction at T=4 with three
different time steps, shown in subfigures (a), (b) and (c). The time steps are given below each subfigure.
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Conclusion
In this paper, a new model simulating ions electro-migration through biological mem-
branes is proposed by using a more general mathematical model and a numerical
technique based on the finite element method. The results presented here demonstrate
that the model’s behavior agrees with the behavior of biochemical reactions as it’s con-
sistent with the physical interpretation of the phenomena. Moreover, after comparison
we can observe a complete consistency with literature findings [9,13-15,18]. A variety of
numerical experiments were presented to confirm the accuracy, efficiency, and stability of
the proposed method. In particular, the scheme was shown to be unconditionally stable
and second-order accurate in space.

Competing interests
The authors declare they have no competing interests.

Authors’ contributions
Both authors contributed to writing and improving the paper and approved the final manuscript.

Acknowledgements
We are grateful to the anonymous referee for the corrections and useful suggestions that have improved this article.

Received: 15 May 2013 Accepted: 27 August 2013
Published: 5 September 2013

References
1. Alaa N, Lefraich H:Mathematical analysis of a systemmodeling ions electro-migration through biological

membranes. Appl Math Sci 2012, 6:2091–2110.
2. Lakshminarayanaiah N: Transport Phenomena in Membranes. New York: Academic Press; 1969.
3. Mackey MC: Ion transport through biological membranes. In Lecture Notes in Biomathematics. Berlin: Springer

Verlag; 1975.
4. Mcgillivray AD: Nernst-Planck equations and the electroneutrality and Donnan equilibrium assumptions.

J Chemical Phys 1968, 48:2903–2907.
5. Valleton JM: Theorie des Systèmes en diffusion-electromigration-reaction, application aux Cinétiques

enzymatiques. PhD thesis.Université de Rouen; 1984.
6. Henry J, Louro B: Asymptotic analysis of reaction-diffusion electromigration system. Asymptotic Anal 1995,

10:279–302.
7. Ciarlet PG: The Finite Element Method for Elliptic Problems. Amesterdam-New York-Oxford: North-Holland Publishing

Company; 1978.
8. Michaelis L, Menten MI: Die kinetik der invertinwirkung. Biochem Z 1913, 49:333–369.
9. Marangoni GA: Enzyme Kinetics: A Modern Approach. Wiley: North America; 2002.
10. Seiler N, Jung MJ, Koch-weser J: Enzyme-Activated Irreversible Inhibitors. Oxford: Elsevier- Holland; 1978.
11. Walsh CT: Suicide substrates, mechanism-based enzyme inactivators: recent developments. Annu Rev

Biochem 1984, 53:493–535.
12. Walsh CT, Cromartie T, Marcotte P, Spencer R: Suicide substrates for flavprotein enzymes.Methods Enzymol 1978,

53:437–448.
13. Waley SG: Kinetics of suicide substrates. Biochem J 1980, 53:771–773.
14. Tatsunami S, Yago N, Hosoe M: Kinetics of suicide substrates. Steady-state treatments and computer-aided

exact solutions. Biochem Biophys Acta 1981, 662:226–235.
15. Burke MA, Maini PK, Murray JD: On the kinetics of suicide substrates. (Jeffries Wyman anniversary volume).

Biophys Chem 1990, 37:81–90.
16. Kevorkian J, Cole JD:Multiple Scale and Singular PerturbationMethods. New York: Springer Verlag; 1996.
17. Waley SG: Kinetics of suicide substrates. Practical procedures for determining parameters. Biochem J 1985,

227:843–849.
18. Keener J, Sneyd J:Mathematical Physiology. New York: Springer; 1998.

doi:10.1186/1742-4682-10-51
Cite this article as: Alaa and Lefraich: Computational simulation of a new system modelling ions electromigration
through biological membranes. Theoretical Biology andMedical Modelling 2013 10:51.


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Introduction
	Finite element discretisation
	Results and discussion
	Result 1 : Enzyme kinetics (basic enzyme reaction)
	Algorithm of resolution
	Numerical results

	Result 2 : Suicide substrate kinetics
	Algorithm of resolution
	Numerical results

	 Result 3 : Cooperative phenomena
	Algorithm of resolution:
	Numerical results


	The convergence test
	The convergence of the basic enzyme reaction
	The convergence of the suicide substrate reaction
	The convergence of the cooperative reaction

	Stability and accuracy tests
	Stability of the basic enzyme reaction
	Stability of the suicide substrate reaction
	Stability of the cooperative reaction

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

