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Abstract

Background: The response to endotoxin (LPS), and subsequent signal transduction
lead to the production of cytokines such as tumor necrosis factor-α (TNF-α) by
innate immune cells. Cells or organisms pretreated with endotoxin enter into a
transient state of hyporesponsiveness, referred to as endotoxin tolerance (ET) which
represents a particular case of negative preconditioning. Despite recent progress in
understanding the molecular basis of ET, there is no consensus yet on the primary
mechanism responsible for ET and for the more complex cases of cross tolerance. In
this study, we examined the consequences of the macromolecular crowding (MMC)
and of fractal-like kinetics (FLK) of intracellular enzymatic reactions on the LPS
signaling machinery. We hypothesized that this particular type of enzyme kinetics
may explain the development of ET phenomenon.

Method: Our aim in the present study was to characterize the chemical kinetics
framework in ET and determine whether fractal-like kinetics explains, at least in part,
ET. We developed an ordinary differential equations (ODE) mathematical model that
took into account the links between the MMC and the LPS signaling machinery
leading to ET. We proposed that the intracellular fractal environment (MMC)
contributes to ET and developed two mathematical models of enzyme kinetics: one
based on Kopelman’s fractal-like kinetics framework and the other based on
Savageau’s power law model.

Results: Kopelman’s model provides a good image of the potential influence of a
fractal intracellular environment (MMC) on ET. The Savageau power law model also
partially explains ET. The computer simulations supported the hypothesis that MMC
and FLK may play a role in ET.

Conclusion: The model highlights the links between the organization of the
intracellular environment, MMC and the LPS signaling machinery leading to ET.
Our FLK-based model does not minimize the role of the numerous negative
regulatory factors. It simply draws attention to the fact that macromolecular
crowding can contribute significantly to the induction of ET by imposing geometric
constrains and a particular chemical kinetic for the intracellular reactions.
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Introduction
Endotoxin tolerance (ET) is a phenomenon in which cells or organisms exposed to an

endotoxin (e.g., lipopolysaccharide [LPS]) at a low concentration enter a transient

unresponsive state and are unable to respond to further challenges with endotoxin [1].

Researchers have observed this phenomenon both in vitro and in vivo in animal

models as well as humans. ET is regulated at multiple levels, both transcriptionally

and post transcriptionally, by genetic and epigenetic mechanisms such as methylation

and noncoding RNA regulation [2]. However, the molecular basis for ET remains

unclear. In many aspects, ET resembles immunodepression, immunosuppression, and

immunoparalysis as reported in patients with sepsis or noninfectious systemic inflam-

matory response syndrome such as trauma, surgery, hemorrhagic shock [3], acute

pancreatitis [4,5] and acute respiratory distress syndrome [6]. Tumor necrosis factor

(TNF) is likely the best marker for ET as assessed because of its absence following

LPS challenge in endotoxin-tolerized animals in contrast with the sharp, rapid peak in

response of an initial injection of LPS [3,7]. Most investigators have tried to under-

stand these phenomena by examining the action of different inhibitors that are low

on the LPS signaling main reaction chain. Researchers have observed some important

differences between in vitro and in vivo models of ET and sepsis [8]. In the present

study, we sought to analyze these discrepancies and show that they at least partly

result from particularities of the chemical kinetics of enzymatic reactions in vivo.

LPS signaling (cytokine release induced by LPS stimulation) can be considered a

chain of enzymatic reactions. To find out something about ET, a close examination

of the enzymatic reaction mechanisms and rates may be useful. Chemical kinetics

entails the measurement of concentrations of reactants as a function of time with

the goal of understanding and characterizing the enzymatic reaction mechanism

[9,10]. However, much of the current cellular biochemistry paradigm is extrapo-

lated from studies assuming ideal reaction conditions in vitro: an infinite reaction

volume and dilute and homogenous solutions containing single enzymes and

substrates [11]. Despite the physiological features of intracellular environment,

biochemists commonly study the properties of macromolecules in these solutions

with a total macromolecular concentration in which crowding is negligible [12]. In

fact, most in vivo enzymatic reactions take place inside the cell, which is not an

ideal reaction environment. The main characteristics of the intracellular environ-

ment that are not present in vitro biochemical reactions are macromolecular

crowding and hindered diffusion by compartmentalization (heterogeneity) [11-13].

Diffusion of proteins in vivo is significantly lower than under dilute conditions.

The in vivo kinetic rate constants and even the structure of kinetic rate expression

can differ significantly from those in vitro tests [14]. For example, in the cytoplasm of

eukaryotic cells, diffusion of both large and small molecules is slowed down three to

four times [15]. Bimolecular reactions are governed by molecule collisions. In turn, the

frequency of these collisions depends on molecular mobility. Molecular crowding and,

especially, the cytoskeleton structure lead to a reduction in the diffusion rate, which

depends on the molecule size. Collision of molecules in diffusion-limited reactions

translates into reduced enzymatic reaction rates [14,16,17].

Anomalous molecular diffusion, which occurs in crowded systems, leads to time-

dependent reaction rate coefficients [14]. Simulating a crowded intracellular
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environment seems to be crucial to understanding the nature of living systems. Complica-

tions arise owing to cellular heterogeneity [15]. Authors have described other effects of

this type of macromolecular crowding on molecule diffusion (e.g., hydrodynamic interac-

tions, electrostatic forces) [18]. The excluded volume effect is probably the most import-

ant of them [12].

An emerging view of living cell cytoplasm is that it has a structured, organized

macromolecular assembly. This complex architecture has profound consequences for

cell function. A realistic picture of the cytoplasm looks very much like a network

composed of actin filaments, microtubules, intermediate filaments, and associated

proteins. A fractal view of the living cell cytoplasm is similar to the “structured” view

but also includes new, likely behavioral possibilities [19]. Aon and Cortassa [19] and

Forgacs et al. [20] suggested that the cytoplasm is organized as a percolation cluster,

or a type of random fractal. This hypothesis is based on imaging and quantification of

the fractal dimension of macromolecular associations in vitro and on published micro-

graphs describing the cytoskeleton in cells.

Investigators also have defined anomalous diffusion by using a random walker on

percolation clusters. The percolation theory deals with the number and properties of

clusters. Each position in a very large lattice-type structure is occupied randomly by a

molecule at probability p independent of the neighbors [21,22]. When p is higher than

the critical value pc, the cluster reaches from one side of the lattice to the other.

Anomalous diffusion in an inhomogeneous environment is observed when the

reaction space is increasingly occupied heterogeneously by obstacles until the relative

volume of obstacles nears the threshold [21,22]. In a living cell, the percolation lattice

is determined by the cytoskeletal organization. If p is close to pc, this may be a fine-

tuning mechanism of intracellular reaction velocity in that it modifies the enzyme

kinetics of intracellular reactions via changes in the fractal dimension of the

cytoplasm.

These particularities (specifically geometric constraints) are now accepted as having

important implications regarding the kinetics of intracellular enzyme reactions. In two

seminal studies Kopelman showed the classical reaction kinetics to be unsatisfactory

when the reactants were spatially constrained at the microscopic level by either walls

or phase boundaries [23,24].

Enzymatic reactions have exhibited well-studied chemical kinetics (Michaelis-Menten

model of enzyme kinetics) in vitro. In a two-reactant bimolecular reaction (A + B ➝

product) with a dilute and homogenous solution (in vitro conditions), the reaction rate is

k [A] [B], in which k is a constant and [A] and [B] are concentrations. Investigators have

used two mathematical approaches describing this particular type of reaction kinetics. 1)

According to Kopelman [24], for enzymatic reactions in nonhomogeneous (fractal)

environments, the reaction rate coefficients are not time-independent and are given by

kt−h; 0 ≤ h ≤ 1; t ≥ 1 , with a constant k. Thus, in diffusion-limited reactions, the

reaction rate is time-dependent. Kopelman called this fractal-like kinetics. 2) In com-

parison, according to Savageau [25], approximately equivalent results can be obtained

by using so-called power law kinetics, which is discussed below.

The consequences of fractal-like kinetics (owing to macromolecular crowding) on the

reaction rate are twofold. 1) In the beginning of the reaction, the reaction rate is higher

than expected according to the classical Michaelis-Menten model (for a short period,
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the reaction is more efficient). 2) Afterward, the reaction rate is slower than if it were

taking place in a homogenous environment.

The term fractal environment may create some confusion. We suggest that the term

anomalous diffusion, which is well accepted in the field of physics, is a more accurate

description of the intracellular enzymatic reaction conditions (or perhaps geometrical

constraints for in vivo reactions). However, we are interested in enzymatic reactions

in vivo, but the same model can be used for all chemical reactions if researchers agree

that the reactions result from collision of reactant molecules [16].

In the present study, we examined the consequences of fractal-like kinetics of intra-

cellular enzymatic reactions for the LPS signaling machinery. To do so, we tested our

hypothesis that this particular type of enzyme kinetics may explain ET and immuno-

suppression in septic patients. We discuss ET in light of these new findings and

attempt to take an integrated view of ET.

Mathematical models, simulations and results

Preliminaries

In previous studies, researchers examined ET in a simple model based on the Michaelis-

Menten-Hill model [4,8,26]. In the present study, we built mathematical models of ET

based on fractal-like kinetics according to Kopelman’s model of fractal-like kinetics and

Savageau’s power law model. First, in Kopelman’s version of fractal-like kinetics, the rate

coefficient is expressed as k1(t) = k1t
− h [23]. Our approach considers elimination of the

product of the reaction. In our version of Savageau’s model [25,27], time-dependent expo-

nents are considered. An enzymatic reaction occurring under dimensional restriction con-

ditions (in an intracellular environment) can exhibit noninteger orders. We hypothesize

that in a fractal environment, LPS challenge changes the order of the reaction [22]. If this

hypothesis is proven, it may partly explain the chemical framework of ET and

immunodepression in patients with sepsis.

Basic considerations leading to the mathematical models

TNF-α production is the result of a chain of enzymatic reactions with a number of

intracellular steps. According to Hemker and Hemker [28], this chain of enzymatic

reactions behaves like a single enzymatic step [28]. In our model, the chain is resumed

in a single reaction in a fractal environment, which led us to the Kopelman fractal-like

kinetics model or Savageau power law model with time-dependent exponents.

Also, the actors in an enzymatic reaction are well known to be the substrate, enzyme,

product, and substrate-enzyme complex. In our model for the LPS → TNF-α reaction,

we identified TNF-α as the product. Furthermore, we considered the endotoxin LPS to

be a trigger for the reaction, independent of TNF production, and we modeled it as a

given input. Specifically, we considered two possible situations: modeling of LPS as an

impulse (approximated by a smooth function) and as a constant function. Elimination

of LPS is not directly linked with the production of TNF-α.

The models we considered in this paper may explain ET through the fractal charac-

teristics of the intracellular reaction environment by establishing a link between the

reaction environment morphology and intracellular enzymatic reaction rate. ET consists

of two successive reactions. This makes the chemical modeling ET especially interest-

ing. Thus, in this approach, the first reaction (specifically, the first LPS challenge)
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influences the conditions for the second reaction (the second LPS challenge). Both

Kopelman’s fractal-like kinetics model and Savageau’s power law model with time-

dependent exponents can model this complex behavior.

We used the general Michaelis-Menten mechanism as follows: S þ E⇄
k
1

k−1
C→

k
2 E þ P , in

which S is the substrate, E is the enzyme, C is the substrate-enzyme complex, P is the prod-

uct and k1, k2, and k−1 are kinetic constants. We used the same notations for the corre-

sponding concentrations. Moreover, E0 is the initial enzyme concentration, ET is the total

enzyme concentration, S0 is the initial substrate concentration and P0 is the initial product

concentration.

Derivation of the mathematical models

Kopelman’s fractal-like kinetics model

The above considerations led us to the following (nondimensionalized) ODE model for

the TNF-α release under LPS stimulation:

dS
dt

¼ −A tð Þ k2ETS
S þ KMth

dP
dt

¼ k2ETS
S þ KMth

−γP
ð1Þ

in which t is the time, KM ¼ k−1þk2
k1

is the Michaelis-Menten constant and h is Kopelman's

exponent and γ is the elimination rate of TNF. Also, in the first equation, the function A(t)

models the LPS evolution. With this model we assessed two scenarios. In scenario 1, the

input LPS is an impulse. Specifically, we treated an impulse function as an approximation

of the Dirac measure. The first LPS challenge and the evolution of the product (TNF-α) is

considered in the interval of 0–60 (arbitrary time units), (Figure 1), whereas the second
Figure 1 Fractal like kinetics (model 1), scenario no.1, the LPS is an impulse; first LPS challenge.
Horizontal axes: time (a.u); vertical axes: concentrations (a.u). A = LPS, S = Substrate, P = Product (TNF-α).
See also Table 1.



Figure 2 Fractal like kinetics (model 1), scenario no.1, the LPS is an impulse; second LPS challenge.
Horizontal axes: time (a.u); vertical axes: concentrations (a.u). A = LPS, S = Substrate, P = Product (TNF-α).
See also Table 2.
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LPS challenge is considered in the interval 60–120, (Figure 2). The entire evolution of the

reaction in the interval 0–120 is depicted in Figure 3. This figure shows and compares the

responses of the product (TNF-α) corresponding to two LPS challenges and, accordingly,

to ET. The corresponding values of the product are shown in Tables 1 and 2.

In the second scenario, the input LPS is a time constant. The first LPS challenge and

the evolution of the product is considered in the interval 0–60 (Figure 4), whereas the
Figure 3 Fractal like kinetics (model 1); the LPS is an impulse; the first response (P1) is significantly
greater than the second response (P1). Horizontal axes: time (a.u); vertical axes: concentrations (a.u).
A = LPS, S = Substrate, P = Product (TNF-α).



Table 1 The values of the Product (TNF-α, a.u.) corresponding to the first LPS challenge;
model (1), scenario 1

Time 0 2.38 4.77 7.16 9.55 11.94 14.33 16.72 60

Prod. 0 0.807278 0.925658 0.815613 0.660639 0.519172 0.403355 0.311969 0.003085
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second LPS challenge is considered in the interval 60–120 (Figure 5). The entire behav-

ior of the product in the interval 0–120 is depicted in Figure 6. The values of the

product are shown in Tables 3 and 4.

All the simulations were performed using MATLAB (version 7.9.0; MathWorks, Natick,

MA). Regarding the coefficient values for all the simulations we performed, the data for

the enzymatic reactions were as follows:

S0 = ST = 1, ET = 1, P0 = 0, k1 = k− 1 = 10, k2 = 1,KM = 1.1 ([29]). Also, the exponent in the

fractal-like kinetics model (1) was h = 0.33. The elimination rate for TNF-α was γ = 0.11 and

the constant function for LPS was A(t) = 1. Finally, the impulse function for the LPS chal-

lenge was a cubic interpolation in MATLAB:

time = (0 10 20 30 40 50 60), A = (1/2 1 1/2 1/4 1/16 1/32 0), A = interp(time,A,

t,‘cubic’)

and, accordingly, on the time interval 60–120.

Savageau’s power law model

In Savageau’s power law model below, t is the time and is an exponent g describing the kin-

etic order of the enzymatic reaction. Like Savageau, we believe that the kinetic order de-

pends on the fractality of the environment. We therefore considered an enzymatic reaction

in a fractal environment using the following equations:

dS
dt

¼ −k1ESg þ k−1C

dC
dt

¼ k1ES
g− k−1 þ k2ð ÞC

dP
dt

¼ k2C

E þ C ¼ ET

or:

dS
dt

¼ −k1 ET−Cð ÞSg þ k−1C

dC
dt

¼ k1 ET−Cð ÞSg− k−1 þ k2ð ÞC
dP
dt

¼ k2C

To apply this model to the LPS → TNF-α reaction, we tested two hypothesis:
1) the endotoxin (LPS) acts as a trigger for the reaction, and 2) the product
Table 2 The values of the Product (TNF-α, a.u.) corresponding to the second LPS
challenge; model (1), scenario1

Time 60 62.38 64.77 67.16 69.55 71.94 74.33 76.72 120

Prod 0 0.38829 0.581141 0.630468 0.593811 0.518651 0.434147 0.355385 0.015161



Figure 4 Fractal like kinetics (model 1), scenario no.2, the LPS is a constant; first LPS challenge. Horizontal
axes: time (a.u); vertical axes: concentrations (a.u). A = LPS, S = Substrate, P = Product (TNF-α). See also Table 3.
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(TNF-α) is eliminated naturally. If γ is the rate of the elimination of TNF-α, the

system is:

dS
dt

¼ −k1 ET−Cð ÞSg þ k−1C

dC
dt

¼ k1 ET−Cð ÞSg− k−1 þ k2ð ÞC
dP
dt

¼ k2C−γP
Figure 5 Fractal like kinetics (model 1), scenario no.2, the LPS is a constant; second LPS challenge.
Horizontal axes: time (a.u); vertical axes: concentrations (a.u). A = LPS, S = Substrate, P = Product (TNF-α).
See also Table 4.



Figure 6 Fractal like kinetics (model 1), the LPS is a constant; the first response (P1) is significantly
greater than the second response (P1). Horizontal axes: time (a.u); vertical axes: concentrations (a.u).
A = LPS, S = Substrate, P = Product (TNF-α).
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Our main hypothesis is that at least in the case of an intracellular reaction, the expo-

nent g changes over the time. More precisely, g = 1 for the first LPS challenge and

increases to g > 1 before the second LPS challenge. The kinetic order of the reaction is

1 + g > 2, [25]. We emphasize that in our hypothesis, g increases as a direct conse-

quence of both the first LPS stimulation and the fractal environment. Some coeffi-

cients’ time dependence owing to the fractal environment is a feature of Kopelman’s

model of fractal-like enzymatic reactions [23]. The new value g > 1 remains valid in the

second LPS challenge but, if nothing important happens (in the reaction), after a

specific interval, the value of g will return to 1. With this hypothesis, we suggest the

following mathematical model for LPS → TNF-α release:

dS
dt

¼ −k1 ET−Cð ÞSg tð Þ þ k−1C

dC
dt

¼ k1 ET−Cð ÞSg tð Þ− k−1 þ k2ð ÞC
dP
dt

¼ k2C−γP

ð2Þ
Table 3 The values of the Product (TNF-α, a.u.) corresponding to the first LPS challenge;
model (1), scenario 2

Time 0 2.38 4.77 7.16 9.55 11.94 14.33 16.72 60

Prod 0 0.656728 0.650643 0.535076 0.420913 0.326525 0.252014 0.1941 0.001665



Table 4 The values of the Product (TNF-α, a.u.) corresponding to the second LPS
challenge; model (1), scenario2

Time 60 62.38 64.77 67.16 69.55 71.94 74.33 76.72 120

Prod 0 0.326552 0.463928 0.489183 0.456542 0.39911 0.335306 0.274702 0.002861
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The quasi-steady-state-assumption

Adding the quasi-steady-state assumption (QSSA), dC
dt ≅ 0 , to model (2) one gets C≅

k1ET Sg

k1Sgþk2þk−1
. Just like Kopelman's fractal-like kinetics model (equation 1), we introduce LPS

(denoted A(t)) as a trigger of the reaction. Also, introducing the Michaelis-Menten constant,

KM ¼ k−1þk2
k1

it results:

dS
dt

¼ −A tð Þk2 ETSg tð Þ

Sg tð Þ þ KM

dP
dt

¼ k2
ETSg tð Þ

Sg tð Þ þ KM
−γP

ð3Þ

The function A(t) models the LPS evolution during the reaction. In various simulations

using MATLAB we found that our model (3) is a good approximation of the model (2).

Therefore, the QSSA is a valid hypothesis for the ET phenomenon. We examined the same

two scenarios for Savageau model that we did for Kopelman’s model except that we started

with the case of a constant LPS, keeping the system autonomous.

In scenario 1, LPS is constant A(t) = 1 (Figures 7, 8, 9; Tables 5 and 6). We obtained the

following two results using system (3). First, if (S, P) is a solution of the system (3) with arbi-

trary positive parameters and the initial conditions S(0) = S0 > 0, P(0) = 0; the function P has

a unique extremum, which is a global maximum. Moreover, the function S is strictly
Figure 7 Power law (model 3), scenario no.1, the LPS is a constant; first LPS challenge. Horizontal
axes: time (a.u); vertical axes: concentrations (a.u). A = LPS, S = Substrate, P = Product (TNF-α). See also
Table 5.



Figure 8 Power law (model 3), scenario no.1, the LPS is a constant; second LPS challenge. Horizontal axes:
time (a.u); vertical axes: concentrations (a.u). A = LPS, S = Substrate, P = Product (TNF-α). See also Table 6.
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decreasing and lim t→∞S(t) = lim t→∞P(t) = 0 (the Poincare-Bendixon theorem can be ap-

plied [30]). Second, if (S1, P1) and (S2, P2) are the solutions of system (3) for g = 1 and g = 2,

respectively, with the initial conditions S1(0) = S2(0) = S0 > 0 and P1(0) = P2(0) = 0, then

P1 tð Þ−P2 tð Þ ¼ k2KMET e
−γ t

Z t

0

S1 uð Þ−Sg2 uð Þ� �
S1 uð Þ þ KM½ � Sg2 uð Þ þ KM

� � eγ udu
ð4Þ
Figure 9 Power law (model 3), the LPS is a constant; the first response (P1) is significantly greater
than the second response (P1). Horizontal axes: time (a.u); vertical axes: concentrations (a.u). A = LPS,
S = Substrate, P = Product (TNF-α).



Table 5 The values of the Product (TNF-α, a.u.) corresponding to the first LPS challenge;
model (3), scenario1

Time 0 2.38 4.77 7.16 9.55 11.94 14.33 16.72 60

Prod. 0 0.640502 0.655176 0.526657 0.402921 0.304402 0.229081 0.172155 0.000958
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and

S1−S
g
2 ¼ −

S1 þ KMð Þ Sg2 þ KM
� �

k2KMET

dS1
dt

−
dS2
dt

� �
ð5Þ

Proof: Using the second equation of the system (3), the following linear differential

equation is obtained by subtraction: d P1−P2ð Þ
dt þ γ P1−P2ð Þ ¼ k2KMET

S1−S
g
2

S1þKMð Þ Sg2þKMð Þ . By
integrating, one obtains (4). Formula (5) is straight-forward, by using the second equa-

tion in (3). We focused on comparing the maximum values of the products P1 and P2.

Among the possible behaviors of the system (3) we observed two significant ones

(depending on g and on the initial values of S):

1) P1(t) ≥ P2(t), ∀ t ≥ 0;

2) ∃ τ > 0 such that P2(t) ≥ P1(t), ∀ t ≤ τ and P1(t) ≥ P2(t), ∀ t ≥ τ

In the second case, any relation between the maximal values of P1 and P2 is possible:

P1
Max > P2

Max or P2
Max > P1

Max. ET is related to the behaviors above (case P1
Max > P2

Max for

the second behavior). This is shown in Figures 7, 8, 9 and Tables 5 and 6. In scenario 2,

the input LPS is an impulse (approximated by a smooth function). The first LPS chal-

lenge and the evolution of the product (TNF-α) for g = 1 is studied in the interval 0–60

(Figure 10), and the second LPS challenge for g = 2.5 is studied in the interval 60–120

(Figure 11). The entire behavior in the interval 0–120 is shown in Figure 12. The corre-

sponding values of the product (TNF-α) are listed in Tables 7 and 8, respectively. The

exponents in the model (3) are g = 1 at the first LPS challenge and g ∈ (1.5, 2.5) at the
second LPS challenge. All other data in the simulations are the same as in the fractal-

like kinetics model above.

Discussion
Endotoxin tolerance has been associated with the upregulation of negative regulators

like IRAK-M, ST2, SOCS1, and SHIP as well as with the dysregulation of TLR4 [1].

The TLR4 pathway employs signaling through two distinct adaptors, MyD88 and TRIF.

The MyD88 pathway leads to the activation of the transcription factor NF-kB and the

transcription of inflammatory genes like TNFA, IL1B, IL6 and IL12B. The TRIF path-

way triggers activation of the transcription factors IRF3 and STAT1 which, in turn,

induce the expression of IFNb and interferon-inducible genes like CCL5 and CXCL10
Table 6 The values of the Product (TNF-α, a.u.) corresponding to the second LPS
challenge; model (3), scenario1

Time 60 62.38 64.77 67.16 69.55 71.94 74.33 76.72 120

Prod. 0 0.505597 0.537655 0.47516 0.396718 0.32319 0.260281 0.208401 0.008591



Figure 10 Power law (model 3), scenario no.2, the LPS is an impulse; first LPS challenge.
Horizontal axes: time (a.u); vertical axes: concentrations (a.u). A = LPS, S = Substrate, P = Product (TNF-α).
See also Table 7.
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[1]. A dysregulation of the cytokine releasing capacity of monocyte/macrophages or

dendritic cells similar to ET is linked to “immunosuppression” and mortality of sepsis

patients. In this so called “immunosuppression” observed in the septic immune

response some anti-inflammatory mediators such as IL-10 or TGF beta may also be

involved. However, despite recent progress in understanding the molecular basis of ET,

there is no consensus yet on the primary mechanism responsible for ET. In this study,
Figure 11 Power law (model 3), scenario no.2, the LPS is an impulse; first LPS challenge. Horizontal
axes: time (a.u); vertical axes: concentrations (a.u). A = LPS, S = Substrate, P = Product (TNF-α). See also
Table 8.



Figure 12 Power law (model 3), the LPS is an impulse; the first response (P1) is significantly greater
than the second response (P1). Horizontal axes: time (a.u); vertical axes: concentrations (a.u). A = LPS,
S = Substrate, P = Product (TNF-α).
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we examined the consequences of the fractal-like kinetics of intracellular enzymatic

reactions on the LPS signaling machinery.

ET is a particular case of preconditioning [31-33] and has been linked with the

down-regulation of the LPS signaling pathway.

LPS signaling (cytokine release under LPS stimulation) can be viewed as a chain of

enzymatic reactions. Most of these reactions take place in the intracellular environment.

In theory, the kinetics of intracellular enzymatic reactions follows the well-known

Michaelis-Menten law. However, researchers formulated most kinetics laws by studying

the behavior of simple in vitro enzymatic systems in which chemical reactions are consid-

ered to take place under diffusive stirring of reactants in a homogenous, dilute environ-

ment [10].

Macromolecules obviously exist under completely different conditions in vitro and

in vivo. In the latter, they are located in compartments or on compartment boundaries

and are surrounded by a variety of small mobile solutes. This heterogeneity means that

the important parameters for chemical reactions in vivo are not only the concentrations

of reactants and products but also the presence of electric fields, gradients of solute

activity (including pH gradients), and transport and reaction rates [34].

The intracellular environment has some particularities that are not seen in in vitro

biochemical reactions, as macromolecular crowding and hindered diffusion of reactants

by compartmentalization (e.g., heterogeneity, inhomogeneity). The finding that

cytoskeleton components may undergo fractal organization as percolation clusters gives
Table 7 The values of the Product (TNF-α, a.u.) corresponding to the first LPS challenge;
model (3), scenario2

Time 0 2.38 4.77 7.16 9.55 11.94 14.33 16.72 60

Prod. 0 0.791142 0.950024 0.788894 0.597031 0.444241 0.329685 0.244569 0.001095



Table 8 The values of the Product (TNF-α, a.u.) corresponding to the second LPS
challenge; model (3), scenario2

Time 60 62.38 64.77 67.16 69.55 71.94 74.33 76.72 120

Prod. 0 0.65047 0.749334 0.675855 0.564764 0.457377 0.365682 0.291171 0.034795
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rise to the interesting possibility that living cells behave according to the principles of

fractal geometry [19]. Taking into account the heterogeneity of the intracellular envir-

onment, we suggest that fractal-like kinetics explains, at least in part, the chemical

framework of ET.

In line with results of previous studies [31-33], we consider ET to be a particular type

of preconditioning. To gain further understanding of ET, in the present study, we

assessed Kopelman’s fractal like-kinetics and Savageau’s power law models using time-

dependent exponents. Furthermore, we added elimination of the product to both

models. We took into account the possibility of a changing degree of macromolecular

crowding between the first and second LPS stimuli. In other words, we tested the

hypothesis (strongly supported by experimental data reported by Hiroi [22]) that

between the two LPS challenges, the degree of diffusion limitation increases and the

spectral dimension changes; consequently, the power law exponents increase.

The power law exponents are time-dependent as a consequence of a changing degree

of macromolecular crowding under different physiological and even pathological

circumstances. Hiroi [22] were the first to show that changing the reaction rate may be

possible when the degree of intracellular macromolecular crowding is modified by

experimentally manipulating the structure of the cytoskeleton. Modifications of the

cytoskeleton structure seem to be well established in macrophages in the presence of

LPS [35-37]. In addition, Schnell and Turner [10] and Grima and Schnell [38] com-

pared the Kopelman and Savageau models, correlating the fractal-like kinetics of intra-

cellular enzymatic reactions with macromolecular crowding.

In our version of Savageau’s power law model, the time dependence of the exponents

is not entirely depicted as a function of time. Future experimental data may bring new

light to this matter. However, this is not a limitation of the model, because the events

are triggered by LPS challenge (exogenous variable).

Discussion of the mathematical models of enzyme kinetics

As described above, the aim of this study was to develop a mathematical model able to

explain or simulate a component of ET. We proposed that the intracellular fractal envir-

onment (macromolecular crowding) contributes to ET and developed two mathematical

models of enzyme kinetics: one based on Kopelman’s fractal-like kinetics framework

[24] and the other based on Savageau’s power law model of fractal-like kinetics.

The Kopelman model is based on four main ideas. 1) Use the time-depending rate

for the Kopelman fractal-like kinetics. 2) Use variable exponents but an autonomous

model in Savageau’s power law model. 3) In both cases, after showing that the QSSA

hypothesis provides good approximations of the general reaction kinetics systems, use

only QSSA models for simulations. 4) ET is mathematically expressed by the difference

between the maximum values of TNF-α released in two consecutive stimulations with

LPS. Two scenarios are considered: LPS as an impulse function (i.e., an approximation

of the Dirac measure) or a constant function.
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Discussion of Kopelman’s model fractal-like kinetics framework

We think that Kopelman’s model provides a good image of the potential influence of a

fractal intracellular environment (macromolecular crowding) on ET. We assume that at

the second LPS challenge, although the initial conditions and elimination of the

substrate and product are the same as for the first challenge, the first reaction influ-

ences the second one, through the values of the rate k1t
− h (history matters!). Results of

simulations show reduced TNF-α release after the second LPS challenge (Figures 3, 4,

5, 6). The value h = 0.33 was reported by Hiroi et al. [22].

Discussion of Savageau’s fractal-like kinetics framework

After the numerical simulations, a more complex (than in Kopelman’s model) behav-

ioral problem with respect to ET was detected. Specifically, we compared the maximum

values of TNF-α release. Depending on the coefficients and on the initial conditions

the maximum value of the second release of the product was significantly lower than

the maximum value of the first release of the product. However, rate value of the

second release of the product may be greater than the rate value of the first release of

the product for a certain period. To include “history” in Savageau’s model, we chose to

change the exponent of the substrate from g = 1 at the first LPS challenge to g > 1 at

the second. This was in line with the data reported by Hiroi et al. [22] supporting a

change in the degree of macromolecular crowding after experimental cytoskeleton

depolymerization and with observations reported by Voit [39]. This model also partially

explains ET. (Figures 9, 10, 11, 12, Tables 5, 6, 7, 8).

Discussion of the biological relevance of the model

ET is a well studied phenomenon. The role of the negative regulators like IRAK-M,

ST2, SOCS1 [1] in the mechanism governing ET has been thoroughly characterized by

experimental studies. The mechanistic basis and multi-leveled regulation of endotoxin

tolerance in monocyte/macrophages was explained and modeled [8,40-42]. The contri-

bution of these “break” mechanisms is undeniable and it probably represents the main

pathway that leads to tolerance.

However, we must consider the fact that these chemical reactions take place in an

intracellular environment. This has major implications since it has been shown that

macro-molecular crowding (MMC) is the main factor influencing reaction kinetics.

Hiroi et al. [22] bring convincing arguments in this direction and the idea proposed by

Kopelman [23], that fractal-like kinetic (FLK) significantly influences intracellular

chemical reactions, is also hard to ignore. MMC in the intracellular environment is a

widely accepted reality and it is sustained by experimental evidence that leave little

room for doubt [43-45]. Our model is meant to draw attention to the similarities

between fractal-like chemical kinetics which this special reaction environment imposes

and the negative preconditioning phenomena out of which endotoxin tolerance is best

studied. Furthermore, we discuss the influence that the organisation of the intracellular

environment has on the cellular response to different challenges. This could eventually

lead to the possibility of influencing the immune response by modifying the inner

structure of the cell [46,47].

Beyond the details of mathematical formalism, this new point of view underlines the

fact that even the passage of time can influence the reaction yield. The “history” of the



Vasilescu et al. Theoretical Biology and Medical Modelling 2013, 10:55 Page 17 of 19
http://www.tbiomed.com/content/10/1/55
chemical system under discussion also plays a role and time is, in keeping with

Kopelman’s philosophy, the leading actor in this scenario.

It is obvious that time is a crucial factor in endotoxin tolerance, since the cell behaves

differently when receiving two identical stimuli separated by a certain time interval. It

is here too that “history” matters.

Our FLK-based model does not minimize the role of the numerous negative regula-

tory factors. It simply draws attention to the fact that macromolecular crowding can

contribute significantly to the induction of endotoxin tolerance by imposing geometric

constrains and a particular chemical kinetic for the intracellular reactions.

Besides homologous tolerance, LPS priming of the immune cells results in diminished

cytokine response after subsequent stimulation with non-LPS stimuli aspeptidoglycan

(PGN), lipoteichoic acid (LTA), Pam3CSK4CysSerLys4 (Pam3CSK4), and flagellin, plus

such cytokines as TNF-α or IL-1b [48]. Cells treated first with bacterial lipoprotein or

MALP-2 (both TLR2 ligands) did not respond to subsequent LPS stimulation and cells

pretreated with LPS did not respond to LTA or flagellin [49].

Different ligands can substitute for each other and sometimes mediate cross-tolerance

both in vitro and in vivo and no qualitative differences could be observed [50]. This is

known as LPS-induced cross-tolerance and has also been observed in association with

cells from septic patients. Similar to “classical” endotoxin tolerance models, cross-

tolerance has also been explained through mechanistic models based on the multiple

negative feedback loops involved in LPS signaling. However, they are less convincing since

this phenomenon appears to be less specific. It is understandable that our model may shed

a new light on the mechanisms of cross tolerance precisely owing to the fact that it is

non-specific. If we accept that macro-molecular crowding can influence the kinetics of

intracellular reactions as shown above, then a model based on fractal-like kinetics can

contribute to the understanding of very complex phenomena.

It may be stated that FLK acts as a supplementary negative regulator, thus contributing

to endotoxin tolerance. In the model we propose it appears as a background chemical

kinetic on which the actions of the other factors (which have been “mechanistically”

described) are superimposed. It is difficult to ascertain whether FLK determines or simply

favors this mechanism.

Conclusion
The model highlights the links between the organization of the intracellular environ-

ment, MMC and the LPS signaling machinery leading to ET. Our FLK-based model

does not minimize the role of the numerous negative regulatory factors. It simply draws

attention to the fact that macromolecular crowding can contribute significantly to the

induction of endotoxin tolerance by imposing geometric constrains and a particular

chemical kinetic for the intracellular reactions.
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