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Abstract

Objective: The classification of Acute Coronary Syndrome (ACS), using artificial
intelligence (AI), has recently drawn the attention of the medical researchers. Using
this approach, patients with myocardial infarction can be differentiated from those
with unstable angina. The present study aims to develop an integrated model, based
on the feature selection and classification, for the automatic classification of ACS.

Methods: A dataset containing medical records of 809 patients suspected to suffer
from ACS was used. For each subject, 266 clinical factors were collected. At first, a
feature selection was performed based on interviews with 20 cardiologists; thereby
40 seminal features for classifying ACS were selected. Next, a feature selection
algorithm was also applied to detect a subset of the features with the best
classification accuracy. As a result, the feature numbers considerably reduced to only
seven. Lastly, based on the seven selected features, eight various common pattern
recognition tools for classification of ACS were used.

Results: The performance of the aforementioned classifiers was compared based on
their accuracy computed from their confusion matrices. Among these methods, the
multi-layer perceptron showed the best performance with the 83.2% accuracy.

Conclusion: The results reveal that an integrated AI-based feature selection and
classification approach is an effective method for the early and accurate classification
of ACS and ultimately a timely diagnosis and treatment of this disease.

Keywords: Acute coronary syndrome, Artificial intelligence, Clinical decision support
systems, Classification, Diagnosis
Background
Acute coronary syndrome (ACS) is caused by insufficient blood supply to the heart

muscle which itself is mostly caused by the rupture of an atherosclerotic plaque resulting

in a partial or complete blockage of coronary arteries [1]. ACS is generally classified into

three coronary arteries-related conditions: ST elevation myocardial infarction (STEMI),

non ST elevation myocardial infarction (NSTEMI), and unstable angina (UA) [2].

ACS is one of the most common problems among patient admitted to the emergency

departments. According to a conservative estimate, at least 6 million patients present

to emergency departments with suspected ACS each year in the United States. In spite

of the high frequency of this presentation, accurate diagnosis of ACS remains still
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challenging and requires a novel approach [3]. It is estimated that there is a 2–5%

chance of misdiagnosis among patients with suspected ACS, which is potentially life-

threatening [4]. Therefore, developing an automatic diagnostic system, based on the

available clinical data, can be an effective solution for reducing this risk.

Past literature has attempted to identify automatic predictions that classify the three

types of ACS using pattern recognition or machine learning approaches [4]. These

methods have been developed on the basis of major clinical features of the ACS such

as: ECG and Troponin level. Due to the overwhelming number of available features for

each patient such as: age, weight, ECG, blood pressure, and medical history, it is quite

challenging to select a subset of features that reliably contribute the most to the classi-

fication of ACS subtypes.

Pattern recognition algorithms have been widely used to classify UA from MI [5].

While such studies have used various features, they have not classified ACS based on

both the ECG findings and Troponin level. On the other hand, according to the World

Health Organization, the diagnosis criteria of MI are the combinations of at least two

of these three major factors: (1) typical clinical manifestations of infarction (i.e.; chest

pain), (2) change in marker’s pattern and (3) a typical ECG pattern involving the

ST-segment changes on ECG [6]. In the current study, both the ECG findings and

Troponin level have been used for ACS classification. Figure 1 demonstrates the algorithm

for diagnosis of patients suspected to have ACS.

Artificial neural networks (ANNs) are powerful and effective tools for the classifica-

tion and prediction of diseases. These methods are capable of constructing a nonlinear

mapping between the input and output. Several studies have used ANNs for classifica-

tion of ACS data. Harrison et al. [4] used Multilayer Perceptron (MLP), which is a com-

mon type of ANNs, for differentiating UA from MI by selecting 13 out of 40 features.

They have achieved a good predictive performance using ECG findings while excluding

Troponin level.

Similar to Harrison et al.’s study, Forberg et al. [7] considered only the ECG informa-

tion for classifying ACS patients. In their study, the performance of ANNs and logistic

regression were compared to the physicians’ decisions. The results showed a relatively

higher efficacy of logistic regression as compared to the ANN. Moreover, Colak et al.
Figure 1 A diagnostic algorithm of classification of ACS based on ECG changes and Troponin level.
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[8] showed a good efficacy of eight learning algorithms for ANNs in detecting ACS

based on clinical data. This being said, one of the main limitations of employing ANNs

for classification of ACS is the lack of explanations of the findings. This issue was

addressed by comparing artificial datasets with real clinically recorded ACS data [7-9].

Other artificial intelligence expert systems have also been used in the detection and

classification of heart disease. For instance, Adeli et al. [10] proposed a fuzzy expert

system for classifying patients into five different groups: healthy, typical angina, atypical

angina, non-angina, and asymptomatic. This system also uses clinical data such as ECG

and blood indices for clinical decision making. The results obtained this way were

comparable to the diagnosis of clinicians. Overall, it seems that all of the current ACS

classification methods have been designed to discriminate MI from UA patients.

The present study aims to improve and extend the classification approach to discrimin-

ate among all three types of ACS: UA, NSTEMI, and STEMI. The classification methods

that are introduced in this study were selected from eight well-known pattern recognition

algorithms such as the Generalized Linear Models (GLMs), Adaptive Network Fuzzy

Interface System (ANFIS), radial basis functions (RBF), k-nearest neighbor (k-NN), MLP,

Naive Bayes, iterative dichotomiser-3 (ID3), and Baggin-ID3. Moreover, a feature selection

algorithm based on the k-NN classifier was used to remove the redundant features of the

dataset thereby increasing the efficacy of the proposed classification approach.
Methods
Dataset technical information

For patients admitted with a tentative diagnosis of ACS to Imam Ali Hospital (i.e. the

main center for cardiovascular care in Kermanshah, Iran) was completed the Euro Heart

Survey on ACS. This questionnaire was designed by the European Society of Cardiology

and has shown reliability and consistency: it was first conducted in 25 countries (in 2000–

2001) and again in 32 European countries [11]. All patients admitted with a tentative diag-

nosis of ACS to Imam Ali hospital in during 2010–2011 were included. According to the

standard protocol of European ACS registry, all patients with unstable angina as well as

those suspected of acute myocardial infarction were differentiated using elevating the car-

diac markers: troponin, CK, and CK-MB and more than one of the suggestive characteris-

tics such as (i) symptoms of myocardial ischemia, (ii) the development of new Q waves,

and (iii) ST-T abnormalities suggestive for ischemic origin [12]. A total number of 809

patients were enrolled in this study. They were divided into four different groups based on

the ACS including: STEMI, NSTEMI, UA, and other. Similar to with previous studies,

follow up data were collected within a year for every patients. The forms were completed

by the attending physician. A data collection officer reviewed and checked each form for

the probable missing data.

For each subject, 266 clinical factors were collected consisting of both numeric and

nominal features. Based on interviews with cardiologists as well as the references in the

literature, 40 seminal attributes for classifying ACS were selected. These factors along

with the values and data types are shown in Table 1.

In the current study, we utilized both numerical and categorical variables. The nu-

merical variables were re-scaled to [−1, 1], by min-max normalization technique. The

re-scaling was carried out in order to deal with the inconsistencies between different



Table 1 Detailed description of recorded clinical features of our ACS data

Label Feature name Value Scale

1 Sex Male=1, Female=2 Nominal

2 Age [−1,1] Ratio

3 Living place
(rural or urban)

Urban=1, Rural=2 Nominal

4 Body Mass Index [−1,1] Ratio

5 History of prior myocardial
infarction

Absence=1, Presence=2 Nominal

6 History of prior angina
pectoris

Absence=1, Presence=2 Nominal

7 History of congestive heart
failure

Absence=1, Presence=2 Nominal

8 History of stroke Absence=1, Presence=2 Nominal

9 History of chronic renal
failure

Absence=1, Presence=2 Nominal

10 History of chronic lung
disease

Absence=1, Presence=2 Nominal

11 Prioritize PCI Absence=1, Presence=2 Nominal

12 Prior CABG Absence=1, Presence=2 Nominal

13 Smoking status Never=1, Former=2, Current=3 Ordinal

14 Diabetes mellitus Non-diabetic=1, Newly diagnosed =2, Diabetic
(dietary control) =3, Diabetic (oral medication) =4,
Diabetic (oral MEDs + insulin) =5, Diabetic (insulin) =6

Ordinal

15 History of hypertension Absence=1, Presence=2 Nominal

16 History of
hypercholesterolemia

Absence=1, Presence=2 Nominal

17 Family history of CAD Absence=1, Presence=2 Nominal

18 Chronic Home MEDs:
Aspirin

Absence=1, Presence=2 Nominal

19 Chronic Home MEDs:
Other antiplatelet

None=1, Other antiplatelet agent=2,
Clopidogrel=3 , Ticlopidine=4

Ordinal

20 Chronic Home MEDs:
Anticoagulants

Absence=1, Presence=2 Nominal

21 Chronic Home MEDs:
Beta-blockers

Absence=1, Presence=2 Nominal

22 Chronic Home MEDs:
ACE inhibitors

Absence=1, Presence=2 Nominal

23 Chronic Home MEDs:
Angiotensin II RB

Absence=1, Presence=2 Nominal

24 Chronic Home MEDs:
Statins

Absence=1, Presence=2 Nominal

25 Chronic Home MEDs:
Non-statin lipid low. Agents

None= 1 , Other non-statin=2, Fibrates=3, Ezitimibe=4 Ordinal

26 Chronic Home MEDs:
Calcium channel blockers

Absence=1, Presence=2 Nominal

27 Chronic Home MEDs:
Calcium channel blockers

Absence=1, Presence=2 Nominal

28 Predominantly presenting
symptom

Asymptomatic=1, Fatigue=2, Chest pain=3, Dyspnoea=4, Other
symptoms=5, Syncope=6, Cardiac arrest-Aborted sudden death= 7

Ordinal

29 Heart rate [−1,1] Ratio

30 Systolic blood pressure [−1,1] Ratio

31 Troponin I elevated Absence=−1, Presence=1 Nominal
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Table 1 Detailed description of recorded clinical features of our ACS data (Continued)

32 CKMB mass elevated Absence=−1, Presence=1 Nominal

33 Total Cholesterol value [−1,1] Ratio

34 Serum creatinine value [−1,1] Ratio

35 Glucose value [−1,1] Ratio

36 Hemoglobin value [−1,1] Ratio

37 Killip class Class I=1, Class II=2, Class III=3, Class IV= 4 Ordinal

38 ECG rhythm Sinus rhythm=1, Atrial fibrillation=2, Pacemaker=3, Other=4 Ordinal

39 ECG QRS annotation Normal=1, RBBB=2, LBBB=3, Other=4 Ordinal

40 ECG STT changes Normal=1, Other=2, ST depression=3, ST elevation=4 Ordinal
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features. This transformation technique has two important advantages. The main advantage

of min-max normalization lies in its ability to rescale the values so that they fall within a

predetermined range. In addition, it reserves the relationships between the initial data [13].

Pattern recognition methods

Different classification methods for modeling ACS data were applied to achieve different

classifiers for classifying of new subjects. The classifying performance of these classifiers

was compared with respect to their performance in classification prediction. These classi-

fication methods, described in the following section, were selected from different tools

including GLMs, ANFIS, RBF, k-NN, MLP, Naive Bayes, ID3, and Bgging-ID3.

Generalized linear models

GLMs are powerful methods in applied statistical, which generalizes the ordinary linear

models [14]. In this approach, the output variable y is modeled by linear combination

of input variables xi (features):

y ¼ ∑
i
bi:xi ð1Þ

Assuming a probability function for the variables, the statistical mean of the output
may have a certain link function as shown in Table 2 [14]. Finally, using the generalized

least square method, the unknown parameters of the model are estimated.

k-nearest neighbor

k-NN is known as a very simple and popular classification algorithm. k-NN classifier,

for each new sample, finds the k neighbors nearest to the new sample from the training

data. Euclidean distance or correlation measure is usually used to find these neighbors.
Table 2 Different probability distribution and their corresponding link function used
in GLMs

Distribution Link function

Normal μ = Xb

Inverse Gaussian μ-2 = Xb

Poisson Log (μ) = Xb

Gamma μ-1 = Xb
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The new sample is then assigned to the class which has the most abundance in the

neighboring samples [15].
Multilayer perceptron

MLPs are the most common structures of the ANNs, which can be used for both re-

gression and classification problems. MLP is known as a feed forward neural network

trained by Back Propagation algorithm with one or more layers between input and

output layer. Feed forward means that the data flows in one direction from the input

to the output layer. In addition, back-propagation refers to the method for computing

the gradient of the error function with respect to the weights for a feed-forward net-

work. MLP consists of neurons which are connected to each other with some weights.

Each neuron sums its inputs from the neurons of the previous layer and passes the

sum through a sigmoidal or S-shaped activation function [16]. It has been shown that

an MLP with one hidden layer can produce enough complexity to map any input

and output data [17].
Radial basis functions

RBF networks can be interpreted as feed-forward networks consisting of an input

layer, a hidden layer and an output layer [17]. In hidden layer each neuron consists

of an activation function which is a radial basis kernel function (typically a Gaussian

function). The output of the radial basis activation function is inversely proportional

to the distance between its input and the center of the neuron. Although the struc-

ture of RBF networks resembles that of MLPs, their input–output mappings and

training algorithms are basically different. RBFs are typically trained using a hybrid

algorithm in two steps [18]. In the first step, the hidden layer is trained (i.e. deter-

mining the radial basis centers and the spreads) by an unsupervised learning method.

In the next step, the output layer is trained (i.e. Predicting the target outputs) by a

supervised learning method.
Adaptive network fuzzy interface system

ANFIS is an integrated neural-fuzzy network based on neural network and fuzzy rules

[19]. The structure of this network is similar to an MLP; however, its neurons have dif-

ferent functions. Indeed, it is a special case of an adaptive network.

In adaptive networks there are two types of neurons (nodes): (i) fixed nodes which

perform simple addition and multiplication, and (ii) adaptive neurons which have

adaptive parameters and need to be estimated based on the input and the output

data. In effect, this approach is generally a regression method which is used as a classifier

in the classification problem. Thus, a tremendous performance from this classifier should

not be expected.
Naive Bayes

Applying Naive Bayes classifier, each new sample is assigned to the most probable class

based on the Bayes decision making. The probability functions of the classes are empir-

ically estimated from the training data. In spite of the low computational complexity,

this method has a relatively high performance [20].
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Iterative dichotomiser-3

Decision trees are powerful and effective approaches to create a classification model. This

method is a flow-chart-like tree structure, where a tree is constructed by the “if-then” rules

(i.e. A logical sequence of questions) extracted from the training data [9,21]. A new case

can be classified by starting at the root of the tree and moving through it until a leaf is

encountered. Decision trees have become one of the most widely applied methods among

numerous classification approaches, because these are white box models with easy-to-in-

terpret results. In addition, its construction does not need any domain knowledge or

parameter setting and thus is appropriate for exploratory knowledge discovery [22,23].

ID3 is one of the major algorithms of decision tree which was used in this study.
Bagging-ID3

Bagging (Bootstrap aggregating) is a popular approach proposed by Bremen [24,25]

which is considered as an ensemble meta-algorithm to build classification models. This

resampling-based technique can be incorporated into various classification algorithms

or regression methods. This incorporation resulted in reducing the variance associated

with the prediction models, and thereby improves the predictive performance of these

models. Bagging consists of creating numerous bootstrap replicates of the learning set

by drawing “B” simple random samples with replacement (bootstrap samples) from the

learning set and using these as new learning sets. Then, the considered prediction

model is applied to each “B” bootstrap sample (i.e. new learning sets). To construct the

final model, the results (i.e. the “B” built models) subsequently are combined into an

ensemble by averaging for regression and simple voting for classification [26-28].

In fact, the true strength of bagging approach is for unstable models, such as decision

trees and neural networks. Unstable models are sensitive to small alterations in the

dataset. Hence, training the same model on two slightly different training sets might re-

sult in substantially different models (i.e. The models with different parameters similar

overall accuracies) [25,29]. Thus, bagging can be a good solution to overcome this

problem. In order to overcome unstably of the ID3, classifier bagging can be incorporated

into the ID3 and emerge Bagging-ID3 classifier.
Feature selection

Feature selection is one of the important steps in a classification problem. In reality,

there are usually many redundant features which do not have any contributions in

discriminating classes. Moreover, redundant features increase the complexity of the

classification algorithm. Thus, they may have an effect on the performance of the

model and may decrease its accuracy as well.

There are two main approaches for performing dimensionality reduction of high dimen-

sional data [18]. The first approach is feature extraction, which focuses on transforming the

existing features into a lower dimensional space. Most feature extraction methods have been

based on two major linear techniques: principal components analysis and Fisher’s linear dis-

criminant analysis [16,18]. Although they can considerably reduce the number of features,

the resulting new features are still a function of the initial features. Thereby, it is usually im-

possible to find a physical interpretation of these new features. The second approach is fea-

ture selection, which is also called feature subset selection in the pattern recognition
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literature. The goal of the feature selection approach is to find an “optimal” subset of

features that maximizes information content or predictive accuracy.

In classification problems, feature selection finds a subset of features which gener-

ates the best discrimination among classes. Some discrimination indexes can be used

for this purpose [4]. Since these indexes are easy to calculate, the whole subset

searching procedure can be performed quickly. However, these indexes are independ-

ent of the classification algorithm and thus the selected subset may not be the best

choice for the classification task. In proposing model by Peng and Jinjin [30], a genetic

algorithm-based strategy for feature selection in heart disease classification is used. In this

approach, the optimal subset of features is found using GA.

We utilized a procedure for feature selection to yield a subset of features with the

best classification accuracy. To this end, a k-NN classifier for the classification and the

elimination algorithm for feature selection was employed:

0- Set k to 0

1. k ← k+1 and S ←{f1, f40}

2. For i = 1, l where l is the size of current selected subset, S, do the following steps
a. Si = S-[31]

b. Perform the classification task with current Si and k and repeat it 100 times

using different randomly selected training and test data

c. acci = average of all accuracy values from previous step

3. Select the best subset: S ←Si*, where i* = argmax acci
4. Go back to 2 until l = 1

5. Go back to 1 until k = 13

6. Ending this algorithm is optimized for both the selected subset of features and the

parameter k of k-NN classifier.
Performance assessment

Model validation

Model validation is one of the most important steps in the model building process [32].

Cross-validation is the most popular resampling-based model validation method [33,34].

The various types of cross-validation method include: data holdout, repeated random sub-

sampling, k-fold, and leave-one-out [32,33]. In the current study, repeated random sub-

sampling cross-validation method was adopted for the model validation. The dataset was

split into two sets of training and test (i.e. two-way data splitting method). The training

set was used to find the model’s parameters and the test set was used to evaluate the

generalizability performance of the final model. The process of train–test was repeated 50

to 1000 times (i.e. adopted according to the used model) using randomly selected training

and test sets. Finally, the estimate of the overall error rate was derived by averaging all the

separate error rate estimates produced from different iterations.

Cross-validation method can help avoid two important issues in pattern recognition

problems: (i) overfitting of the final model (i.e. the final model is unable to generalize

unseen data) and (ii) the error rate estimate will be overly optimistic (i.e. lower than

the true error rate) [31]. It should be noted that in order to select the model and esti-

mate the error rate simultaneously, three-way data splits technique should be applied
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during the cross validation process [31,32]. In other words, the data should be divided

into three disjoint sets namely training, validation, and test sets.

In this procedure, the training set was used for learning, i.e. to optimize the tuning

parameters of the model (e.g. In MLP, in order to determine the optimal weights and

the bias with the back-propagation rule). The validation set was used to optimize the

regularization parameters of the model (e.g. In MLP, in order to determine the opti-

mal number of hidden units and a stopping point of the algorithm). The test set was

used only to estimate the error rate of the final model (fully-tuned model). After

assessing the final model based on the test set, the model must not be further tuned.

Table 3 presents the data splitting method and also the number of repetitions (based

on model’s computation complexity) for each classifier method.

Model performance evaluation criteria

There are a number of criteria used to quantify the performance of a model [32,35].

The performance of the final model can be evaluated by estimating the model accuracy

rate. The evaluation operation is generally performed by comparing the predicted class

labels with the actual class labels.

A matrix called Confusion Matrix (CM) is used to show the performance of a model for

certain problems [32]. If we have C classes, the CM is C×C matrix whose elements CMij

show the misclassified number of samples from class I into class j. Therefore, the rows and

columns of this matrix show the actual and predicted class labels, respectively. In Table 4,

part A shows a summing CM, the underlined number (i.e. corresponding to the predicted

class of 4 and actual classes of 3) indicates that there are 11 samples from class 3 misclassi-

fied as class 4. Consequently, the smaller off-diagonal elements are the better performance

of the classifier. When there are only two classes, other indexes such as sensitivity and

specificity are usually used instead of CM.

A common index for evaluating the performance of a classifier is accurate which is

calculated from the CM as follows:

Acc ¼ ∑iC:Mii

∑i∑jC:Mij
ð2Þ

If the elements of this matrix are divided by the actual number of each class (i.e.
which is equal to the sum of each row), each element (i,j) of the resulting matrix would

show the prediction probability p c�i ciÞj�
This conditional probability indicates the
Table 3 The used data splitting methods and number of repetitions for each
classifier method

NO. Classifier Data splitting method Number of repetitions

1 ANFIS Three-way 50

2 MLP Three-way 100

3 RBF Three-way 1000

4 Bagging ID3 Three-way 1000

5 ID3 Two-way 1000

6 GLM Two-way 1000

7 k-NN Two-way 1000

8 Naive Bayes Two-way 1000



Table 4 An example of CM, APM, and CPM

Actual class Predicted class

Class1 Class2 Class3 Class4

A: CM

Class1 1 0 1 11

Class2 0 49 1 5

Class3 0 6 12 11

Class4 3 0 7 95

B: APM

Class1 0.08 0.00 0.08 0.85

Class2 0.00 0.89 0.02 0.09

Class3 0.00 0.21 0.41 0.38

Class4 0.02 0.00 0.07 0.91

C: CPM

Class1 0.01 0.00 0.00 0.01

Class2 0.00 0.83 0.18 0.00

Class3 0.02 0.01 0.19 0.02

Class4 0.97 0.16 0.63 0.98
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probability that the classifier assigns a sample of class Ci to class c�j . Therefore, p c�i ciÞj�
is

the accuracy of the classifier for class Ci. This matrix is called accuracy probability matrix

(APM). Another useful probability measure is p cijc�j
� �

which indicates that the probabil-

ity of a sample classified as c�j actually belongs to Ci. Similarly, p cijc�j
� �

shows the classifi-

cation correctness of the classification Ci called correctness probability matrix (CPM)

whose elements can be calculated simply from APM by the following relation:

p
�
cijc�j Þ ¼

p
�
c�j jciÞ:p cið Þ

∑kp
�
c�j jckÞ:p ckð Þ

ð3Þ

where p(ci) is the prior probability of the class Ci. The off-diagonal elements of these

matrixes, CM, APM, or CPM, for the perfect ideal classifier are zero. The APM and CPM

corresponded with CM is presented in Table 4, part B and C.

Results and discussion
Table 5 shows the distribution of ACS subtypes (Classes’ names) in the ACS dataset.

The feature selection algorithm was implemented for different odd values of k.

The accuracy plots are shown in Figure 2 for the different odd values of k. As
Table 5 Class sample distribution in the ACS dataset

Class label Class name Frequency Percent

1 STEMI 224 27.69

2 NSTEMI 128 15.82

3 UA 417 51.55

4 Other 40 4.94

Total 809 100.0
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displayed in Table 6, k = 7 provided the best accuracy for the seven features. As it

was expected, Troponin and ECG were presented with these selected features

which can be a validation of feature selection algorithms [6]. It should be noted

that, a limitation of the study (as in most medical studies) was the relatively limited

sample size problem. Accordingly, in this study, all data were used in the feature

selection process.

After obtaining the optimal features for the classification tasks, these features in

all the classifiers were used and their performances were compared with APM and

overall classification accuracy values. The resulted APMs from the GLM method

with four different distributions are presented in Table 7. The values reported in

this table are the mean and the standard deviation of each element. The overall

classification accuracy values of these methods are shown in Table 8.
Figure 2 Classification accuracy plots versus the number of selected features in k-NN classifier for
different odd values of k (k=3, 5, 7, 9, 11 and 13).



Table 6 Final selected features resulted from the feature selection algorithm

Label Variable name

4 Body Mass Index

10 History of Chronic lung disease

27 Chronic Home MEDs: Calcium channel blockers

30 Systolic blood pressure

31 Troponin I elevated

36 Hemoglobin value

40 ECG STT changes
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Table 8 shows that GLMs with normal distribution presented the best classification per-

formance (i.e. 68.49± 3.93) among other distributions. However, Table 7 shows that most

of the samples from NSTEMI class were misclassified into STEMI class. Furthermore,

most of the samples from “others” class were misclassified into UA class. Only the samples

of STEMI and UA classes were classified correctly with an acceptable probability rate.

Table 9 presents the results of APMs obtained from the other aforementioned classifica-

tion algorithms. To obtain these findings, the algorithms were repeated several times with

different random selections of train-test or train-validation-test data based on the descrip-

tions available in Table 3. For further clarification, for instance, the process of model-

building for the MLP classifier was described in details.

In the MLP classifier, the seven selected features and the four class labels were con-

sidered as input and output nodes respectively. At first, an MPL with “N” hidden nodes

was considered. In the next step, three-way data splits technique and also repeated ran-

dom sub-sampling cross-validation method were used. This is, the data set was divided

into training, validation, and test sets. The train set was used for determining optimal

weights with back - propagation rules, while incorporating the validation set. Validation
Table 7 The result of APM from the GLMs method with four different distributions

GLM with Actual class Predicted class

STEMI NSTEMI UA Others

Normal Dist. STEMI 86.82 ± 4.59 1.55 ± 2.11 11.64 ± 4.28 0.00 ± 0.00

NSTEMI 60.52 ± 13.38 10.52 ±10.24 28.96 ± 8.36 0.00 ± 0.00

UA 4.60 ± 2.17 12.16 ± 7.29 83.25 ± 7.23 0.00 ± 0.00

Others 11.16 ± 11.28 7.76 ± 9.43 81.07 ±13.77 0.00 ± 0.00

Inv. Gaussian Dist. STEMI 88.06 ± 4.47 0.5 ± 1.01 11.44 ± 4.44 0.00 ± 0.00

NSTEMI 69.26 ± 8.25 2.06 ± 2.86 28.68 ± 8.19 0.00 ± 0.00

UA 4.72 ± 2.03 17.42 ± 9.52 77.86 ± 9.44 0.00 ± 0.00

Others 12.39 ±11.3 8.57 ± 11.27 79.04 ±15.53 0.00 ± 0.00

Poisson Dist. STEMI 87.78 ± 4.35 0.69 ± 1.32 11.54 ± 4.29 0.00 ± 0.00

NSTEMI 66.22 ±10.82 4.88 ± 6.70 28.90 ± 8.30 0.00 ± 0.00

UA 4.82 ± 2.18 13.99 ± 7.73 81.19 ± 7.75 0.00 ± 0.00

Others 12.23 ±11.21 7.83 ± 9.99 79.95 ±14.86 0.00 ± 0.00

Gamma Dist. STEMI 87.78 ± 4.47 0.55 ± 1.1 11.67 ± 4.44 0.00 ± 0.00

NSTEMI 68.62 ± 9.03 2.49 ± 3.79 28.89 ± 8.24 0.00 ± 0.00

UA 4.77 ± 2.10 15.66 ± 0.66 79.57 ± 8.63 0.00 ± 0.00

Others 12.24 ±11.22 7.80 ± 9.74 79.96 ±14.17 0.00 ± 0.00



Table 8 Overall classification accuracy values for GLMs with different distribution
functions

Distribution Mean Std.

Normal 68.49 3.93

Inverse Gaussian 64.83 4.71

Poisson 66.73 3.99

Gamma 41.99 4.38
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set was used to determine the optimal number of neurons in the hidden layer, as well as

to avoid over-fitting (determine a stopping point for the back propagation algorithm).

When the best “weights” were found, the performance of this network was calculated

based on the classification error on the validation set. It should be mentioned that in order

to make the final network unbiased, the train-validation-test process is repeated 100 times

with different randomly selected starting values. Accordingly, the average of the 100 error
Table 9 The APM for different classifier methods

Classifier Actual class Predicted class

STEMI NSTEMI UA Others

ANFIS STEMI 88.72 ± 4.82 8.14 ± 4.15 1.57 ± 1.80 1.57 ± 1.85

NSTEMI 31.21 ± 9.05 40.04 ± 9.19 23.33 ± 7.33 5.42 ± 4.53

UA 2.72 ± 1.91 17.43 ± 6.01 78.02 ± 5.93 1.84 ± 1.91

Others 5.79 ± 9.30 22.69 ±16.86 67.22 ±17.83 4.30 ± 6.71

7-nn STEMI 94.24 ± 3.22 4.20 ± 2.84 1.56 ± 1.52 0.00 ± 0.00

NSTEMI 31.07 ± 7.64 47.14 ± 8.72 21.78 ± 7.41 0.02 ± 0.22

UA 2.05 ± 1.32 3.64 ± 1.84 94.20 ± 2.23 0.11 ± 0.33

Others 7.44 ± 7.79 7.28 ± 7.77 85.23 ± 10.31 0.05 ± 0.80

Native Bayes STEMI 83.22 ± 4.78 2.59 ± 1.96 11.99 ± 3.94 2.19 ± 2.59

NSTEMI 20.06 ± 6.32 47.59 ± 7.40 28.98 ± 7.35 3.36 ± 2.96

UA 0.04 ± 0.20 7.16 ± 6.58 86.17 ± 7.23 6.64 ± 4.15

Others 0.84 ± 2.88 7.85 ±10.09 80.99 ±12.58 10.32 ± 8.85

ID3 STEMI 84.55 ± 5.81 13.3 ± 5.61 1.92 ± 1.88 0.23 ± 0.73

NSTEMI 26.59 ± 7.58 46.05 ± 9.00 25.09 ± 7.91 2.28 ± 2.99

UA 0.94 ± 0.94 6.05 ± 2.84 88.08 ± 3.76 4.93 ± 2.64

Others 3.09 ± 5.56 12.41 ± 10.70 78.63 ±13.60 5.87 ± 8.03

Bagging-ID3 STEMI 91.77 ± 3.94 6.54 ± 3.51 1.65 ± 1.73 0.03 ± 0.23

NSTEMI 30.59 ± 7.41 46.93 ± 7.29 22.32 ± 6.85 0.16 ± 0.72

UA 1.13 ± 0.85 3.70 ± 1.83 94.07 ± 2.36 1.09 ± 1.05

Others 3.21 ± 4.87 9.84 ± 8.05 85.00 ± 9.50 1.95 ± 4.30

RBF (7 neurons) STEMI 84.99± 4.98 1.76 ± 1.81 13.18 ± 4.74 0.07 ± 0.37

NSTEMI 30.67±17.98 34.88 ±17.88 33.98 ±10.00 0.47 ± 1.31

UA 2.34 ± 2.34 2.18 ± 1.73 95.41 ± 2.35 0.07 ± 0.27

Others 5.40± 8.81 8.37 ± 9.10 84.88 ±12.10 1.34 ± 3.81

MLP (9 neurons) STEMI 93.78 ± 5.05 2.67 ± 2.72 3.38 ± 4.07 0.17 ± 0.68

NSTEMI 29.93 ±10.41 48.33 ±10.21 21.43 ± 9.20 0.31 ± 1.14

UA 0.73 ± 1.26 2.98 ± 2.11 96.21 ± 2.55 0.08 ± 0.34

Others 3.07 ± 6.56 9.76 ± 12.30 82.54 ±15.10 4.62 ± 9.64



Table 10 Overall classification accuracy of all the methods

Classifiers Accuracy (%)

Mean Std.

GLM with normal Dist. 68.49 3.93

ANFIS 71.31 3.73

7-NN 82.92 2.45

Naive Bayes 75.51 4.14

ID3 76.33 2.83

Bagging-ID3 81.12 2.43

RBF 78.42 3.59

MLP 83.24 3.17
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values (based on the validation set) was considered as the final classification performance

of the MLP with N hidden nodes. These steps were also done for different number of

hidden nodes (from 2 to 13). At the end of this process, the best MLP having minimum

average error value was determined as the final model.

As was mentioned earlier, the validation set was used to select the final model; conse-

quently, in order to achieve unbiased error rate estimation of the final model the test-

ing set was used. In fact, once final model was chosen, its real accuracy is assessed on

the test set. The optimum number of hidden layer neurons was determined 9 for MLP.

The overall classification accuracy of all the methods is shown in Table 10. The MLP

followed by the 7-NN method had the best classification performance with overall

accuracies of 83.24 ± 3.17% and 82.92 ± 2.45%, respectively. It should be mentioned

that the priority of the k - NN method over other classification methods (except MLP)

may be due to this fact that, the k-NN classifier takes the advantage of the feature

selection k-NN-based method.

As we expected, Bagging-ID3 generated better results than ID3 due to the fact that it

is actually a modified version of ID3. The results of this classifier were close to MLP

showing its capability in our data classification task. On the other hand, the perform-

ance of 7-NN classifiers was also very close to MLP. By looking at the best resulting

APMs belonging to the MLP classifier, it can be concluded that, firstly, the samples of

“others” class were very similar to the samples of UA class because most of these sam-

ples were misclassified as UA class. It should be noted that this problem was caused by

the fact that the sample percentage of this class (or correspondingly its prior probabil-

ity) was smaller than UA (see Table 5). However, this problem is not crucial because

the risk of this misclassification is not harmful for the patient. Secondly, a large per-

centage of NSTEMI samples were misclassified as STEMI and UA classes. This prob-

lem may be caused by its low prior probability or its similarity to the classes, especially to
Table 11 The CPM of MLP method (with 9 neurons)

Actual class Predicted class

STEMI NSTEMI UA Others

STEMI 92.28 30.70 0.40 1.88

NSTEMI 1.50 28.32 0.94 3.42

UA 6.19 40.92 98.65 94.19

Others 0.03 0.06 0.01 0.51



Figure 3 Bar graph of diagonal elements of APM for all methods, each bar corresponds to the
accuracy probability (i.e. p(c�i cij )) of class ci.
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the STEMI class. A misclassification of NSTEMI sample as STEMI class is not risky for

the patients because the patients continue to remain under monitoring. However, being

misclassified to the UA class could be harmful for the patient because the patient might

be discharged. Nevertheless, this problem is not crucial in our MLP classifier.

Since the prior probability of classes we used are not the same, it is more appropriate

to interpret the correctness of the classifier decision. This means that we should know

the correct probability of a decision which assigns a sample to a class c�i . For this pur-
pose, we can use CPM which is defined in this section. As mentioned earlier, each

element (i,j)of CPM indicates the probability of a sample classified as c�i , actually be-

longing to ci or p cijc�j
� �

. The CPM of MLP classifier is presented in Table 11.

It is observed that in UA class the 98.7% of the decisions were correctly made. There-

fore, if the classifier assigns a patient to UA class, we should not worry about the risk

that the patient has STEMI or NSTEMI. In other words, the risk of discharging an MI

patient as a UA case was too low 1.35%.

For a better comparison of accuracy and correctness between all methods studied

in this research, the bar graphs of diagonal elements of all APMs and CPMs were

shown in Figures 3 and 4, respectively. These Figures show the probabilities of p c�i jci
� �

(See Figure 3) and p cijc�i
� �

(See Figure 4). It can be seen that the performance of MLP
Figure 4 Bar graph of diagonal elements of CPM for all methods, each bar corresponds to the
correctness probability (i.e. p(ci c�i

�� )) of class ci.
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classifier was significantly better than the rest. However, both accuracy and correctness

measures for “others” and NSTEMI were not high enough which means that the classifier

failed to model these regions of data. This problem can be solved by acquiring either

more samples or new clinical features which can distinguish them more precisely.

Conclusion
Accuracy improvement strategies play a key role in correctly classifying ACS patients, which

ultimately saves valuable time and prevents potential misdiagnoses. Artificial intelligence-

based approaches are powerful strategy, which can be used to this end. The current study

proposed an integrated artificial intelligence-based method in order to discriminate among

different types of ACS: UA, STEMI, and NSTEMI, with greater accuracy than current

methods. A k-NN-based feature selection algorithm was used to find a subset of the

features with the best classification accuracy. As a result, the feature numbers considerably

reduced to only seven. Finally, eight different common pattern recognition methods were

used to classify the subtypes of ACS based on the seven selected features. The performance

of the classifiers was then compared based on their accuracy computed from their confu-

sion matrices. The MLP and 7-NN methods showed the highest accuracy was 83.24% and

82.92%, respectively. The GLM and ANFIS methods, on the other hand, showed the lowest

overall classification accuracy of 68.5% and 71.3%, respectively. Overall, MLP showed the

best performance between these classifiers. Although MLP classifier is slightly more accur-

ate than k-NN classifier, k-NN has some advantages such as simple implementability,

understandability and interpretability; hence, future research is needed to further elucidate

this model. In summary, early accurate classification of ACS by the incorporation of an

AI-based feature selection with an AI-based classifier demonstrated promising results that

can be used in the clinical field to timely diagnose and treat ACS patients.
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